organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-4-[(1,5-Di­methyl-3-oxo-2-phenyl-2,3-di­hydro-1H-pyrazol-4-yl)imino­meth­yl]phenyl 4-bromo­benzene­sulfonate

aCollege of Sciences, Hebei University of Science & Technology, Shijiazhuang 050018, People's Republic of China, and bCollege of Chemical & Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang 050018, People's Republic of China
*Correspondence e-mail: han_jianrong@163.com

(Received 27 October 2008; accepted 28 October 2008; online 31 October 2008)

In the title compound, C24H20BrN3O4S, the central benzene ring makes dihedral angles of 17.13 (13), 39.83 (13) and 58.37 (13)°, respectively, with the pyrazolone ring, the bromo­benzene ring and the terminal phenyl ring. In the crystal structure, the packing is stabilized by a weak non-classical inter­molecular C—H⋯O hydrogen bond which links the mol­ecules into a chain propagating in [100].

Related literature

For a related structure, see: Han et al. (2007[Han, J.-R., Zhen, X.-L., Tian, X., Li, F. & Liu, S.-X. (2007). Acta Cryst. E63, o4035.]). For general background, see: Kahwa et al. (1986[Kahwa, I. A., Selbin, J., Hsieh, T. C.-Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179-185.]); Klayman et al. (1979[Klayman, D. L., Bartosevich, J. F., Griffin, T. S., Mason, C. J. & Scovill, J. P. (1979). J. Med. Chem. 22, 855-862.]); Santos et al. (2001[Santos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838-844.]). For reference geometrical data: see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C24H20BrN3O4S

  • Mr = 526.40

  • Monoclinic, P 21 /n

  • a = 6.9959 (14) Å

  • b = 33.222 (6) Å

  • c = 10.218 (2) Å

  • β = 95.992 (3)°

  • V = 2361.9 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.86 mm−1

  • T = 294 (2) K

  • 0.18 × 0.16 × 0.11 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.693, Tmax = 0.815

  • 12151 measured reflections

  • 4174 independent reflections

  • 2506 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.107

  • S = 1.01

  • 4174 reflections

  • 300 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17A⋯O4i 0.96 2.40 3.361 (5) 176
Symmetry code: (i) x-1, y, z.

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The synthesis and structure of Schiff bases have attracted much attention in biology and chemistry (Kahwa et al., 1986; Klayman et al., 1979). Many Schiff base derivatives have been synthesized and employed to develop protein and enzyme mimics (Santos et al., 2001). Among the large number of compounds, 4-amino-1,5-dimethyl-2-phenylpyrazol-3-one forms a variety of Schiff bases with aldehydes, and the synthesis and crystal structures of some of them, such as (E)-4-[(1,5-Dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-ylimino) methyl]-phenyl 4-chlorobenzoate (Han et al., 2007) has been reported.

As part of an investigation of the potential coordination properties of Schiff bases that could function as ligands, we now report the synthesis and structure of the title compound, (I).

In the title molecule (Fig. 1), the pyrazolone ring (C14—C16/N1/N2/N3/O4) is nearly planar, with an r.m.s. deviation for fitted atoms of 0.029 Å. It makes a dihedral angle of 50.07 (13)° with its attached phenyl ring (C19—C24). The central benzene ring (C7—C13/O3) is almost planar, with an r.m.s. deviation for fitted atoms of 0.040Å. This group makes dihedral angles of 17.13 (13)°, 39.83 (13)° and 58.37 (13)°, respectively, with the the pyrazolone ring (C14—C16/N1/N2/N3/O4), the terminal C1—C6 benzene ring and the terminal C19—C24 phenyl ring. Otherwise, all bond lengths and angles are within their normal ranges (Allen et al., 1987).

In the crystal, the packing is stabilized by a weak, non-classical intermolecular C17—H17A···O4 hydrogen bond that links molecules into one-dimensional extended chains running along the a axis (Table 1, Fig. 2).

Related literature top

For a related structure, see: Han et al. (2007). For general background, see: Kahwa et al. (1986); Klayman et al. (1979); Santos et al. (2001). For reference geometrical data: see: Allen et al. (1987).

Experimental top

An anhydrous ethanol solution (50 ml) of 4-formylphenyl 4-bromobenzenesulfonate (3.41 g, 10 mmol) was added to an anhydrous ethanol solution (50 ml) of 4-amino-1,5-dimethyl-2-phenylpyrazol-3-one (2.03 g, 10 mmol) and the mixture stirred at 350 K for 3 h under N2, giving a yellow precipitate. The product was isolated, recrystallized from acetonitrile, and then dried in a vacuum to give pure compound (I) in 87% yield. Yellow blocks of (I) were obtained by slow evaporation of an acetonitrile solution.

Refinement top

The H atoms were included in calculated positions (C—H = 0.93–0.96Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids for non-H atoms drawn at the 30% probability level.
[Figure 2] Fig. 2. Packing diagram for (I), with H bonds drawn as dashed lines.
(E)-4-[(1,5-Dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4- yl)iminomethyl]phenyl 4-bromobenzenesulfonate top
Crystal data top
C24H20BrN3O4SF(000) = 1072
Mr = 526.40Dx = 1.480 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1963 reflections
a = 6.9959 (14) Åθ = 2.9–25.2°
b = 33.222 (6) ŵ = 1.86 mm1
c = 10.218 (2) ÅT = 294 K
β = 95.992 (3)°Block, yellow
V = 2361.9 (8) Å30.18 × 0.16 × 0.11 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4174 independent reflections
Radiation source: fine-focus sealed tube2506 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.693, Tmax = 0.815k = 3927
12151 measured reflectionsl = 1210
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0386P)2 + 1.1353P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
4174 reflectionsΔρmax = 0.28 e Å3
300 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0031 (5)
Crystal data top
C24H20BrN3O4SV = 2361.9 (8) Å3
Mr = 526.40Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.9959 (14) ŵ = 1.86 mm1
b = 33.222 (6) ÅT = 294 K
c = 10.218 (2) Å0.18 × 0.16 × 0.11 mm
β = 95.992 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4174 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2506 reflections with I > 2σ(I)
Tmin = 0.693, Tmax = 0.815Rint = 0.058
12151 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.01Δρmax = 0.28 e Å3
4174 reflectionsΔρmin = 0.23 e Å3
300 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.44278 (7)0.221319 (15)0.16276 (5)0.0730 (2)
S10.32046 (15)0.32822 (3)0.18138 (10)0.0519 (3)
N10.0354 (4)0.49730 (9)0.2384 (3)0.0428 (8)
N20.1008 (4)0.56730 (9)0.4793 (3)0.0424 (8)
N30.0680 (4)0.58680 (9)0.4468 (3)0.0413 (8)
O10.4033 (4)0.31657 (9)0.2973 (3)0.0710 (9)
O20.4292 (4)0.32724 (8)0.0550 (3)0.0649 (8)
O30.2468 (4)0.37319 (7)0.2123 (2)0.0557 (7)
O40.3126 (3)0.57085 (8)0.3161 (3)0.0523 (7)
C10.0241 (6)0.29604 (12)0.0562 (4)0.0516 (10)
H10.08060.30800.02060.062*
C20.1397 (6)0.27304 (12)0.0533 (4)0.0580 (11)
H20.19260.26940.02570.070*
C30.2254 (6)0.25539 (12)0.1669 (4)0.0515 (10)
C40.1490 (7)0.26142 (13)0.2856 (4)0.0638 (12)
H40.20870.25020.36260.077*
C50.0158 (6)0.28417 (13)0.2892 (4)0.0590 (11)
H50.06740.28800.36850.071*
C60.1050 (5)0.30142 (11)0.1744 (3)0.0421 (9)
C70.2344 (6)0.40100 (11)0.1067 (4)0.0450 (10)
C80.0584 (6)0.40745 (11)0.0611 (4)0.0470 (10)
H80.04790.39230.09350.056*
C90.0417 (5)0.43669 (11)0.0336 (4)0.0471 (10)
H90.07660.44120.06490.057*
C100.2019 (5)0.45956 (11)0.0826 (4)0.0429 (9)
C110.3780 (5)0.45208 (12)0.0337 (4)0.0534 (11)
H110.48560.46700.06530.064*
C120.3946 (6)0.42264 (12)0.0617 (4)0.0549 (11)
H120.51190.41780.09410.066*
C130.1877 (5)0.49231 (11)0.1787 (4)0.0463 (10)
H130.29080.50980.19670.056*
C140.0223 (5)0.52968 (10)0.3248 (3)0.0373 (9)
C150.1548 (5)0.56282 (11)0.3545 (3)0.0384 (9)
C160.1307 (5)0.53488 (11)0.3982 (4)0.0395 (9)
C170.3093 (5)0.50989 (12)0.3944 (4)0.0570 (11)
H17A0.41940.52640.36850.086*
H17B0.32010.49880.48010.086*
H17C0.30310.48840.33220.086*
C180.2542 (5)0.59204 (12)0.5268 (4)0.0584 (12)
H18A0.33510.60260.45300.088*
H18B0.19790.61390.57880.088*
H18C0.32970.57580.57960.088*
C190.1734 (5)0.61215 (11)0.5422 (4)0.0405 (9)
C200.2802 (5)0.64372 (12)0.4972 (4)0.0512 (10)
H200.27880.64860.40750.061*
C210.3887 (6)0.66770 (13)0.5880 (5)0.0652 (12)
H210.46300.68840.55860.078*
C220.3878 (7)0.66132 (14)0.7211 (5)0.0707 (13)
H220.45910.67780.78140.085*
C230.2799 (7)0.63016 (14)0.7642 (5)0.0719 (13)
H230.27890.62580.85400.086*
C240.1737 (6)0.60533 (12)0.6761 (4)0.0568 (11)
H240.10280.58420.70630.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0799 (4)0.0750 (4)0.0635 (3)0.0191 (3)0.0040 (2)0.0108 (2)
S10.0520 (7)0.0551 (7)0.0491 (7)0.0086 (5)0.0076 (5)0.0027 (5)
N10.0394 (19)0.0448 (19)0.044 (2)0.0047 (14)0.0013 (16)0.0025 (15)
N20.0279 (17)0.051 (2)0.050 (2)0.0043 (15)0.0134 (14)0.0036 (16)
N30.0293 (17)0.048 (2)0.048 (2)0.0008 (14)0.0101 (15)0.0016 (15)
O10.068 (2)0.076 (2)0.075 (2)0.0053 (16)0.0348 (17)0.0107 (16)
O20.0584 (18)0.069 (2)0.063 (2)0.0112 (15)0.0128 (15)0.0004 (15)
O30.080 (2)0.0478 (17)0.0394 (17)0.0059 (14)0.0052 (14)0.0025 (13)
O40.0341 (15)0.0641 (18)0.0611 (19)0.0074 (13)0.0166 (13)0.0066 (14)
C10.063 (3)0.058 (3)0.033 (2)0.007 (2)0.003 (2)0.0026 (18)
C20.072 (3)0.071 (3)0.033 (2)0.001 (2)0.015 (2)0.003 (2)
C30.056 (3)0.050 (3)0.048 (3)0.008 (2)0.000 (2)0.0074 (19)
C40.077 (3)0.076 (3)0.037 (3)0.013 (3)0.003 (2)0.004 (2)
C50.069 (3)0.075 (3)0.033 (2)0.004 (2)0.008 (2)0.000 (2)
C60.049 (2)0.044 (2)0.033 (2)0.0098 (18)0.0056 (18)0.0027 (17)
C70.054 (3)0.040 (2)0.041 (2)0.002 (2)0.008 (2)0.0055 (18)
C80.047 (2)0.053 (3)0.041 (2)0.0049 (19)0.0005 (19)0.0059 (19)
C90.046 (2)0.050 (2)0.047 (2)0.006 (2)0.0109 (19)0.005 (2)
C100.043 (2)0.040 (2)0.046 (2)0.0046 (18)0.0061 (19)0.0056 (18)
C110.044 (2)0.054 (3)0.064 (3)0.009 (2)0.009 (2)0.006 (2)
C120.046 (3)0.055 (3)0.066 (3)0.003 (2)0.015 (2)0.001 (2)
C130.039 (2)0.050 (2)0.051 (3)0.0012 (18)0.007 (2)0.0028 (19)
C140.030 (2)0.041 (2)0.041 (2)0.0020 (17)0.0004 (17)0.0061 (17)
C150.030 (2)0.046 (2)0.039 (2)0.0096 (18)0.0053 (17)0.0072 (17)
C160.029 (2)0.042 (2)0.047 (2)0.0031 (17)0.0022 (18)0.0102 (18)
C170.037 (2)0.063 (3)0.072 (3)0.003 (2)0.008 (2)0.005 (2)
C180.038 (2)0.075 (3)0.065 (3)0.011 (2)0.018 (2)0.002 (2)
C190.035 (2)0.038 (2)0.049 (3)0.0077 (17)0.0058 (18)0.0037 (18)
C200.053 (3)0.053 (3)0.049 (3)0.007 (2)0.011 (2)0.003 (2)
C210.064 (3)0.054 (3)0.078 (4)0.015 (2)0.010 (3)0.004 (2)
C220.076 (3)0.066 (3)0.068 (4)0.017 (3)0.003 (3)0.014 (3)
C230.091 (4)0.075 (3)0.047 (3)0.007 (3)0.003 (3)0.002 (2)
C240.062 (3)0.056 (3)0.051 (3)0.006 (2)0.003 (2)0.007 (2)
Geometric parameters (Å, º) top
Br1—C31.900 (4)C9—C101.403 (5)
S1—O11.425 (3)C9—H90.9300
S1—O21.429 (3)C10—C111.399 (5)
S1—O31.601 (3)C10—C131.475 (5)
S1—C61.758 (4)C11—C121.394 (5)
N1—C131.292 (4)C11—H110.9300
N1—C141.401 (4)C12—H120.9300
N2—C161.362 (4)C13—H130.9300
N2—N31.416 (4)C14—C161.380 (5)
N2—C181.474 (4)C14—C151.451 (5)
N3—C151.418 (4)C16—C171.497 (5)
N3—C191.433 (5)C17—H17A0.9600
O3—C71.430 (4)C17—H17B0.9600
O4—C151.239 (4)C17—H17C0.9600
C1—C21.380 (5)C18—H18A0.9600
C1—C61.398 (5)C18—H18B0.9600
C1—H10.9300C18—H18C0.9600
C2—C31.381 (5)C19—C241.386 (5)
C2—H20.9300C19—C201.394 (5)
C3—C41.390 (5)C20—C211.387 (6)
C4—C51.382 (6)C20—H200.9300
C4—H40.9300C21—C221.378 (6)
C5—C61.393 (5)C21—H210.9300
C5—H50.9300C22—C231.380 (6)
C7—C121.370 (5)C22—H220.9300
C7—C81.378 (5)C23—C241.380 (6)
C8—C91.385 (5)C23—H230.9300
C8—H80.9300C24—H240.9300
O1—S1—O2121.36 (18)C10—C11—H11119.5
O1—S1—O3103.89 (16)C7—C12—C11118.5 (4)
O2—S1—O3109.24 (15)C7—C12—H12120.7
O1—S1—C6108.71 (18)C11—C12—H12120.7
O2—S1—C6109.24 (17)N1—C13—C10121.7 (3)
O3—S1—C6102.77 (16)N1—C13—H13119.2
C13—N1—C14120.5 (3)C10—C13—H13119.2
C16—N2—N3107.3 (3)C16—C14—N1123.0 (3)
C16—N2—C18124.8 (3)C16—C14—C15107.8 (3)
N3—N2—C18118.4 (3)N1—C14—C15129.2 (3)
N2—N3—C15108.9 (3)O4—C15—N3123.2 (3)
N2—N3—C19119.4 (3)O4—C15—C14131.9 (3)
C15—N3—C19123.9 (3)N3—C15—C14104.9 (3)
C7—O3—S1119.9 (2)N2—C16—C14110.5 (3)
C2—C1—C6120.1 (4)N2—C16—C17121.9 (3)
C2—C1—H1120.0C14—C16—C17127.5 (4)
C6—C1—H1120.0C16—C17—H17A109.5
C1—C2—C3120.4 (4)C16—C17—H17B109.5
C1—C2—H2119.8H17A—C17—H17B109.5
C3—C2—H2119.8C16—C17—H17C109.5
C2—C3—C4120.0 (4)H17A—C17—H17C109.5
C2—C3—Br1120.8 (3)H17B—C17—H17C109.5
C4—C3—Br1119.1 (3)N2—C18—H18A109.5
C5—C4—C3119.9 (4)N2—C18—H18B109.5
C5—C4—H4120.0H18A—C18—H18B109.5
C3—C4—H4120.0N2—C18—H18C109.5
C4—C5—C6120.3 (4)H18A—C18—H18C109.5
C4—C5—H5119.8H18B—C18—H18C109.5
C6—C5—H5119.8C24—C19—C20120.2 (4)
C5—C6—C1119.2 (4)C24—C19—N3121.5 (3)
C5—C6—S1119.0 (3)C20—C19—N3118.2 (3)
C1—C6—S1121.7 (3)C21—C20—C19119.1 (4)
C12—C7—C8122.2 (4)C21—C20—H20120.5
C12—C7—O3118.7 (3)C19—C20—H20120.5
C8—C7—O3118.9 (4)C22—C21—C20120.9 (4)
C7—C8—C9119.3 (4)C22—C21—H21119.5
C7—C8—H8120.3C20—C21—H21119.5
C9—C8—H8120.3C21—C22—C23119.3 (4)
C8—C9—C10120.5 (4)C21—C22—H22120.4
C8—C9—H9119.8C23—C22—H22120.4
C10—C9—H9119.8C24—C23—C22121.1 (4)
C11—C10—C9118.5 (4)C24—C23—H23119.5
C11—C10—C13119.5 (3)C22—C23—H23119.5
C9—C10—C13122.0 (3)C23—C24—C19119.4 (4)
C12—C11—C10121.0 (4)C23—C24—H24120.3
C12—C11—H11119.5C19—C24—H24120.3
C16—N2—N3—C157.1 (4)C10—C11—C12—C70.1 (6)
C18—N2—N3—C15155.2 (3)C14—N1—C13—C10177.2 (3)
C16—N2—N3—C19157.5 (3)C11—C10—C13—N1171.6 (3)
C18—N2—N3—C1954.4 (4)C9—C10—C13—N111.5 (6)
O1—S1—O3—C7152.2 (3)C13—N1—C14—C16175.3 (3)
O2—S1—O3—C721.4 (3)C13—N1—C14—C155.1 (6)
C6—S1—O3—C794.5 (3)N2—N3—C15—O4174.2 (3)
C6—C1—C2—C30.4 (6)C19—N3—C15—O425.4 (5)
C1—C2—C3—C41.3 (6)N2—N3—C15—C144.5 (4)
C1—C2—C3—Br1176.6 (3)C19—N3—C15—C14153.3 (3)
C2—C3—C4—C51.8 (6)C16—C14—C15—O4178.2 (4)
Br1—C3—C4—C5176.2 (3)N1—C14—C15—O42.2 (6)
C3—C4—C5—C60.6 (7)C16—C14—C15—N30.4 (4)
C4—C5—C6—C11.1 (6)N1—C14—C15—N3179.2 (3)
C4—C5—C6—S1177.1 (3)N3—N2—C16—C146.9 (4)
C2—C1—C6—C51.6 (6)C18—N2—C16—C14152.4 (3)
C2—C1—C6—S1176.6 (3)N3—N2—C16—C17172.9 (3)
O1—S1—C6—C519.4 (4)C18—N2—C16—C1727.4 (5)
O2—S1—C6—C5153.8 (3)N1—C14—C16—N2176.3 (3)
O3—S1—C6—C590.3 (3)C15—C14—C16—N24.0 (4)
O1—S1—C6—C1158.8 (3)N1—C14—C16—C173.9 (6)
O2—S1—C6—C124.4 (4)C15—C14—C16—C17175.7 (3)
O3—S1—C6—C191.5 (3)N2—N3—C19—C2429.2 (5)
S1—O3—C7—C1286.2 (4)C15—N3—C19—C24116.5 (4)
S1—O3—C7—C899.0 (4)N2—N3—C19—C20152.1 (3)
C12—C7—C8—C90.1 (6)C15—N3—C19—C2062.2 (5)
O3—C7—C8—C9174.7 (3)C24—C19—C20—C211.0 (5)
C7—C8—C9—C100.0 (6)N3—C19—C20—C21177.7 (3)
C8—C9—C10—C110.0 (5)C19—C20—C21—C221.7 (6)
C8—C9—C10—C13176.9 (3)C20—C21—C22—C231.2 (7)
C9—C10—C11—C120.1 (6)C21—C22—C23—C240.1 (7)
C13—C10—C11—C12177.0 (4)C22—C23—C24—C190.8 (7)
C8—C7—C12—C110.1 (6)C20—C19—C24—C230.3 (6)
O3—C7—C12—C11174.8 (3)N3—C19—C24—C23178.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17A···O4i0.962.403.361 (5)176
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC24H20BrN3O4S
Mr526.40
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)6.9959 (14), 33.222 (6), 10.218 (2)
β (°) 95.992 (3)
V3)2361.9 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.86
Crystal size (mm)0.18 × 0.16 × 0.11
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.693, 0.815
No. of measured, independent and
observed [I > 2σ(I)] reflections
12151, 4174, 2506
Rint0.058
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.107, 1.01
No. of reflections4174
No. of parameters300
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.23

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17A···O4i0.962.403.361 (5)176
Symmetry code: (i) x1, y, z.
 

Footnotes

Additional contact author, e-mail: liu_shouxin@163.com.

Acknowledgements

The project was supported by the Foundation of the Education Department of Hebei Province (grant No. 606022).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHan, J.-R., Zhen, X.-L., Tian, X., Li, F. & Liu, S.-X. (2007). Acta Cryst. E63, o4035.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKahwa, I. A., Selbin, J., Hsieh, T. C.-Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179–185.  CrossRef CAS Web of Science Google Scholar
First citationKlayman, D. L., Bartosevich, J. F., Griffin, T. S., Mason, C. J. & Scovill, J. P. (1979). J. Med. Chem. 22, 855–862.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSantos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838–844.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds