organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1,5-Di­methyl-4-[3-(4-nitro­benz­yl­oxy)benzyl­­idene­amino]-2-phenyl-1H-pyrazol-3(2H)-one

aCollege of Chemical & Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang 050018, People's Republic of China, and bCollege of Sciences, Hebei University of Science & Technology, Shijiazhuang 050018, People's Republic of China
*Correspondence e-mail: liu_shouxin@163.com

(Received 27 October 2008; accepted 28 October 2008; online 31 October 2008)

In the title compound, C25H22N4O4, the central benzene ring, makes dihedral angles of 74.35 (6), 17.01 (8) and 62.19 (7)°, respectively, with the nitro­benzyl ring, the pyrazolone ring and the terminal phenyl ring. Inter­molecular C—H⋯O hydrogen bonds help to consolidate the crystal packing.

Related literature

For the potential applications of Schiff bases, see: Jones et al. (1979[Jones, R. D., Summerville, D. A. & Basolo, F. (1979). Chem. Rev. 17, 139-179.]); Larson & Pecoraro (1991[Larson, E. J. & Pecoraro, V. L. (1991). J. Am. Chem. Soc. 113, 3810-3818.]); Santos et al. (2001[Santos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838-844.]). For a related structure, see: Han & Zhen (2005[Han, J.-R. & Zhen, X.-L. (2005). Acta Cryst. E61, o3815-o3816.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C25H22N4O4

  • Mr = 442.47

  • Triclinic, [P \overline 1]

  • a = 8.003 (2) Å

  • b = 9.798 (3) Å

  • c = 14.425 (5) Å

  • α = 90.844 (5)°

  • β = 92.310 (6)°

  • γ = 101.202 (6)°

  • V = 1108.4 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 294 (2) K

  • 0.20 × 0.18 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.956, Tmax = 0.991

  • 5780 measured reflections

  • 3898 independent reflections

  • 2302 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.125

  • S = 1.01

  • 3898 reflections

  • 300 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7B⋯O4i 0.97 2.50 3.293 (3) 139
Symmetry code: (i) -x+2, -y+1, -z.

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

There has been a steady growth of interest in the synthesis, structure, and reactivity of Schiff bases due to their potential applications in areas such as biological modelling, catalysis, and molecular magnets (Jones et al., 1979; Larson & Pecoraro, 1991). One of the aims of investigating the structural chemistry of Schiff bases is to develop protein and enzyme mimics (Santos et al., 2001). Among the large number of the compounds, 4-amino-1,5-dimethyl-2-phenylpyrazol-3-one forms a variety of Schiff bases with aldehydes, and the synthesis and crystal structures of them, such as (E)-(4)-(3-ethoxy-4-hydroxybenzylideneamino)- 1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one (Han & Zhen, 2005) have been reported. In present study we report the syntheses and molecular structure of the title compound, (I), (Fig. 1).

The bond lengths and angles in (I) are within their normal ranges (Allen et al., 1987). The pyrazolone ring (C15—C17/N2—N4/O4) is close to planar, with an r.m.s. deviation for the fitted atoms of 0.0441 Å. It makes a dihedral angle of 49.38 (8)° with the attached phenyl ring (C20—C25). The central benzene ring (C8—C14/O3) is also planar, with an r.m.s. deviation for the fitted atoms of 0.0079 Å, and it makes dihedral angles of 74.35 (6)°, 17.01 (8)° and 62.19 (7)° with the nitrobenzyl ring (C1—C7), the pyrazolone ring (C15—C17/N2—N4/O4) and the terminal phenyl ring (C20—C25), respectively.

Packing is stabilized by weak, non-classical intermolecular C7—H7B···O4i (symmetry code (i): 2 - x, 1 - y, -z) hydrogen bonds that form inversion related dimers, (Fig. 2, Table 1).

Related literature top

For general background, see: Allen et al. (1987); Han & Zhen (2005) Jones et al. (1979); Larson & Pecoraro, (1991); Santos et al. (2001).

Experimental top

An anhydrous ethanol solution (50 ml) of 4-amino-1,5-dimethyl-2-phenylpyrazol-3-one (2.03 g, 10 mmol) was added to an anhydrous ethanol solution (100 ml) of 3-(4-nitrobenzyloxy)benzaldehyde (2.57 g, 10 mmol) and the mixture stirred at 350 K for 5 h under nitrogen, giving a yellow precipitate. The product was isolated, recrystallized from acetonitrile and then dried in a vacuum to give the pure compound in 81% yield. Yellow single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of an acetonitrile solution.

Refinement top

The H atoms were included in calculated positions and refined using a riding model approximation. Constrained C—H and N—H bond lengths and isotropic U parameters: 0.93 Å and Uiso(H) = 1.2Ueq(C) for Csp2—H; 0.97 Å and Uiso(H) = 1.2Ueq(C) for methylene C—H; 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl C—H.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I) with displacement ellipsoids for non-H atoms drawn at the 30% probability level.
[Figure 2] Fig. 2. Packing diagram for (I), with H bonds drawn as dashed lines.
(E)-1,5-Dimethyl-4-[3-(4-nitrobenzyloxy)benzylideneamino]-2-phenyl- 1H-pyrazol-3(2H)-one top
Crystal data top
C25H22N4O4Z = 2
Mr = 442.47F(000) = 464
Triclinic, P1Dx = 1.326 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.003 (2) ÅCell parameters from 2119 reflections
b = 9.798 (3) Åθ = 2.4–23.9°
c = 14.425 (5) ŵ = 0.09 mm1
α = 90.844 (5)°T = 294 K
β = 92.310 (6)°Block, yellow
γ = 101.202 (6)°0.20 × 0.18 × 0.10 mm
V = 1108.4 (6) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3898 independent reflections
Radiation source: fine-focus sealed tube2302 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 49
Tmin = 0.956, Tmax = 0.991k = 1111
5780 measured reflectionsl = 1617
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0501P)2 + 0.1798P]
where P = (Fo2 + 2Fc2)/3
3898 reflections(Δ/σ)max < 0.001
300 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C25H22N4O4γ = 101.202 (6)°
Mr = 442.47V = 1108.4 (6) Å3
Triclinic, P1Z = 2
a = 8.003 (2) ÅMo Kα radiation
b = 9.798 (3) ŵ = 0.09 mm1
c = 14.425 (5) ÅT = 294 K
α = 90.844 (5)°0.20 × 0.18 × 0.10 mm
β = 92.310 (6)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3898 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2302 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.991Rint = 0.026
5780 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.01Δρmax = 0.15 e Å3
3898 reflectionsΔρmin = 0.16 e Å3
300 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N11.8078 (5)0.2593 (4)0.4869 (2)0.0967 (10)
N20.7686 (2)0.2222 (2)0.00080 (12)0.0422 (5)
N30.5534 (2)0.05908 (19)0.14560 (13)0.0457 (5)
N40.4987 (2)0.05116 (19)0.19115 (13)0.0456 (5)
O11.9568 (4)0.3106 (3)0.4734 (2)0.1346 (12)
O21.7631 (4)0.1619 (4)0.5360 (2)0.1486 (14)
O31.2066 (2)0.43844 (16)0.24686 (11)0.0527 (5)
O40.5147 (2)0.28509 (17)0.15735 (12)0.0599 (5)
C11.3860 (3)0.3378 (3)0.42021 (17)0.0575 (7)
H11.27250.30700.43380.069*
C21.5095 (4)0.2734 (3)0.45952 (17)0.0656 (8)
H21.48050.19870.49860.079*
C31.6757 (4)0.3223 (3)0.43939 (19)0.0625 (8)
C41.7205 (4)0.4273 (3)0.3794 (2)0.0727 (9)
H41.83400.45700.36540.087*
C51.5966 (4)0.4887 (3)0.3400 (2)0.0634 (8)
H51.62620.55970.29810.076*
C61.4285 (3)0.4471 (2)0.36121 (16)0.0458 (6)
C71.2964 (3)0.5206 (3)0.32183 (17)0.0554 (7)
H7A1.21810.53410.36920.066*
H7B1.35000.61110.30010.066*
C81.0789 (3)0.4895 (2)0.20062 (15)0.0409 (6)
C90.9887 (3)0.4033 (2)0.13208 (15)0.0402 (6)
H91.01850.31810.11910.048*
C100.8547 (3)0.4415 (2)0.08225 (15)0.0390 (6)
C110.8139 (3)0.5693 (2)0.10135 (17)0.0510 (6)
H110.72450.59690.06820.061*
C120.9050 (3)0.6558 (3)0.16911 (17)0.0553 (7)
H120.87680.74190.18110.066*
C131.0377 (3)0.6174 (2)0.21982 (16)0.0480 (6)
H131.09820.67640.26600.058*
C140.7563 (3)0.3497 (2)0.01004 (15)0.0439 (6)
H140.68270.38530.03030.053*
C150.6729 (3)0.1381 (2)0.06885 (15)0.0394 (6)
C160.6681 (3)0.0010 (2)0.07688 (16)0.0430 (6)
C170.5600 (3)0.1751 (3)0.14076 (16)0.0441 (6)
C180.7646 (3)0.0883 (3)0.02119 (19)0.0609 (7)
H18A0.68850.17120.00350.091*
H18B0.81510.03700.03350.091*
H18C0.85260.11310.05750.091*
C190.5755 (4)0.1761 (3)0.2039 (2)0.0815 (10)
H19A0.66260.14520.24700.122*
H19B0.47020.21360.23740.122*
H19C0.60850.24670.16570.122*
C200.3426 (3)0.0258 (2)0.24550 (15)0.0429 (6)
C210.2107 (3)0.0796 (3)0.22521 (17)0.0546 (7)
H210.22180.13760.17580.066*
C220.0611 (3)0.0984 (3)0.2790 (2)0.0678 (8)
H220.02700.17240.26730.081*
C230.0401 (4)0.0105 (3)0.34928 (19)0.0680 (8)
H230.06260.02210.38380.082*
C240.1725 (4)0.0950 (3)0.36802 (19)0.0677 (8)
H240.15930.15570.41550.081*
C250.3243 (3)0.1123 (3)0.31772 (17)0.0590 (7)
H250.41480.18240.33240.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.086 (2)0.139 (3)0.079 (2)0.064 (2)0.0193 (19)0.031 (2)
N20.0413 (11)0.0414 (12)0.0430 (12)0.0069 (9)0.0026 (9)0.0009 (9)
N30.0454 (12)0.0396 (12)0.0529 (12)0.0122 (9)0.0050 (10)0.0050 (10)
N40.0458 (12)0.0429 (12)0.0461 (12)0.0060 (9)0.0088 (9)0.0012 (10)
O10.0696 (18)0.178 (3)0.167 (3)0.0610 (19)0.0341 (18)0.045 (2)
O20.151 (3)0.210 (4)0.117 (3)0.116 (3)0.005 (2)0.049 (2)
O30.0569 (10)0.0463 (10)0.0548 (11)0.0148 (8)0.0200 (8)0.0083 (8)
O40.0688 (12)0.0429 (11)0.0664 (12)0.0114 (9)0.0219 (9)0.0046 (9)
C10.0452 (15)0.0752 (19)0.0525 (16)0.0124 (14)0.0027 (13)0.0078 (14)
C20.073 (2)0.090 (2)0.0424 (16)0.0360 (17)0.0040 (14)0.0140 (14)
C30.0520 (18)0.094 (2)0.0489 (17)0.0370 (17)0.0127 (14)0.0179 (16)
C40.0469 (18)0.086 (2)0.083 (2)0.0065 (16)0.0052 (16)0.0171 (19)
C50.0579 (19)0.0587 (18)0.071 (2)0.0040 (15)0.0047 (15)0.0012 (14)
C60.0453 (15)0.0501 (15)0.0398 (14)0.0061 (12)0.0059 (11)0.0075 (12)
C70.0619 (17)0.0515 (16)0.0502 (16)0.0097 (13)0.0169 (13)0.0061 (12)
C80.0443 (14)0.0389 (14)0.0392 (13)0.0080 (11)0.0015 (11)0.0033 (11)
C90.0441 (14)0.0319 (13)0.0444 (14)0.0074 (11)0.0001 (11)0.0016 (11)
C100.0412 (14)0.0371 (14)0.0385 (13)0.0066 (11)0.0011 (11)0.0039 (11)
C110.0568 (16)0.0473 (15)0.0524 (16)0.0207 (13)0.0074 (12)0.0027 (12)
C120.0704 (18)0.0422 (15)0.0566 (17)0.0211 (14)0.0041 (14)0.0063 (13)
C130.0572 (16)0.0411 (15)0.0457 (15)0.0117 (12)0.0049 (12)0.0067 (11)
C140.0427 (14)0.0462 (16)0.0429 (14)0.0099 (11)0.0038 (11)0.0055 (11)
C150.0392 (13)0.0386 (14)0.0390 (13)0.0055 (11)0.0042 (11)0.0009 (11)
C160.0377 (13)0.0432 (15)0.0481 (15)0.0091 (11)0.0009 (11)0.0016 (11)
C170.0427 (14)0.0426 (15)0.0451 (15)0.0041 (12)0.0003 (11)0.0031 (12)
C180.0627 (17)0.0536 (16)0.0697 (19)0.0229 (14)0.0131 (14)0.0031 (14)
C190.081 (2)0.075 (2)0.094 (2)0.0380 (17)0.0233 (18)0.0422 (18)
C200.0447 (14)0.0440 (14)0.0387 (14)0.0075 (12)0.0061 (11)0.0029 (11)
C210.0507 (16)0.0564 (16)0.0528 (16)0.0015 (13)0.0078 (13)0.0144 (13)
C220.0507 (17)0.0715 (19)0.075 (2)0.0033 (14)0.0114 (15)0.0185 (16)
C230.0587 (18)0.074 (2)0.0666 (19)0.0077 (16)0.0233 (14)0.0060 (16)
C240.082 (2)0.0652 (19)0.0503 (17)0.0049 (17)0.0183 (15)0.0127 (14)
C250.0632 (18)0.0593 (17)0.0465 (16)0.0056 (14)0.0095 (13)0.0063 (13)
Geometric parameters (Å, º) top
N1—O21.204 (4)C9—H90.9300
N1—O11.226 (4)C10—C111.380 (3)
N1—C31.474 (4)C10—C141.464 (3)
N2—C141.278 (3)C11—C121.372 (3)
N2—C151.394 (3)C11—H110.9300
N3—C161.362 (3)C12—C131.380 (3)
N3—N41.404 (3)C12—H120.9300
N3—C191.454 (3)C13—H130.9300
N4—C171.399 (3)C14—H140.9300
N4—C201.425 (3)C15—C161.360 (3)
O3—C81.376 (3)C15—C171.444 (3)
O3—C71.422 (3)C16—C181.483 (3)
O4—C171.225 (3)C18—H18A0.9600
C1—C61.377 (3)C18—H18B0.9600
C1—C21.380 (3)C18—H18C0.9600
C1—H10.9300C19—H19A0.9600
C2—C31.368 (4)C19—H19B0.9600
C2—H20.9300C19—H19C0.9600
C3—C41.358 (4)C20—C211.370 (3)
C4—C51.366 (4)C20—C251.373 (3)
C4—H40.9300C21—C221.380 (3)
C5—C61.376 (3)C21—H210.9300
C5—H50.9300C22—C231.366 (4)
C6—C71.489 (3)C22—H220.9300
C7—H7A0.9700C23—C241.367 (4)
C7—H7B0.9700C23—H230.9300
C8—C91.375 (3)C24—C251.370 (4)
C8—C131.383 (3)C24—H240.9300
C9—C101.382 (3)C25—H250.9300
O2—N1—O1124.4 (4)C11—C12—H12119.4
O2—N1—C3118.4 (4)C13—C12—H12119.4
O1—N1—C3117.2 (4)C12—C13—C8118.6 (2)
C14—N2—C15120.26 (19)C12—C13—H13120.7
C16—N3—N4106.75 (17)C8—C13—H13120.7
C16—N3—C19123.4 (2)N2—C14—C10122.0 (2)
N4—N3—C19116.3 (2)N2—C14—H14119.0
C17—N4—N3109.20 (18)C10—C14—H14119.0
C17—N4—C20123.36 (19)C16—C15—N2123.0 (2)
N3—N4—C20119.91 (18)C16—C15—C17107.85 (19)
C8—O3—C7117.38 (18)N2—C15—C17129.1 (2)
C6—C1—C2121.0 (2)C15—C16—N3110.6 (2)
C6—C1—H1119.5C15—C16—C18128.7 (2)
C2—C1—H1119.5N3—C16—C18120.7 (2)
C3—C2—C1118.2 (3)O4—C17—N4123.6 (2)
C3—C2—H2120.9O4—C17—C15131.6 (2)
C1—C2—H2120.9N4—C17—C15104.81 (19)
C4—C3—C2122.0 (3)C16—C18—H18A109.5
C4—C3—N1120.2 (3)C16—C18—H18B109.5
C2—C3—N1117.8 (3)H18A—C18—H18B109.5
C3—C4—C5119.1 (3)C16—C18—H18C109.5
C3—C4—H4120.4H18A—C18—H18C109.5
C5—C4—H4120.4H18B—C18—H18C109.5
C4—C5—C6121.0 (3)N3—C19—H19A109.5
C4—C5—H5119.5N3—C19—H19B109.5
C6—C5—H5119.5H19A—C19—H19B109.5
C5—C6—C1118.6 (2)N3—C19—H19C109.5
C5—C6—C7120.3 (2)H19A—C19—H19C109.5
C1—C6—C7121.0 (2)H19B—C19—H19C109.5
O3—C7—C6108.51 (19)C21—C20—C25120.1 (2)
O3—C7—H7A110.0C21—C20—N4121.3 (2)
C6—C7—H7A110.0C25—C20—N4118.6 (2)
O3—C7—H7B110.0C20—C21—C22119.1 (2)
C6—C7—H7B110.0C20—C21—H21120.5
H7A—C7—H7B108.4C22—C21—H21120.5
C9—C8—O3115.52 (19)C23—C22—C21121.2 (3)
C9—C8—C13120.2 (2)C23—C22—H22119.4
O3—C8—C13124.3 (2)C21—C22—H22119.4
C8—C9—C10121.0 (2)C22—C23—C24118.9 (3)
C8—C9—H9119.5C22—C23—H23120.5
C10—C9—H9119.5C24—C23—H23120.5
C11—C10—C9118.8 (2)C23—C24—C25120.8 (3)
C11—C10—C14119.8 (2)C23—C24—H24119.6
C9—C10—C14121.4 (2)C25—C24—H24119.6
C12—C11—C10120.2 (2)C24—C25—C20119.8 (2)
C12—C11—H11119.9C24—C25—H25120.1
C10—C11—H11119.9C20—C25—H25120.1
C11—C12—C13121.2 (2)
C16—N3—N4—C179.3 (2)C15—N2—C14—C10180.0 (2)
C19—N3—N4—C17151.5 (2)C11—C10—C14—N2167.5 (2)
C16—N3—N4—C20160.00 (19)C9—C10—C14—N212.7 (3)
C19—N3—N4—C2057.8 (3)C14—N2—C15—C16173.7 (2)
C6—C1—C2—C31.0 (4)C14—N2—C15—C173.7 (3)
C1—C2—C3—C42.9 (4)N2—C15—C16—N3174.59 (19)
C1—C2—C3—N1175.8 (2)C17—C15—C16—N33.3 (3)
O2—N1—C3—C4176.4 (3)N2—C15—C16—C183.9 (4)
O1—N1—C3—C43.8 (4)C17—C15—C16—C18178.2 (2)
O2—N1—C3—C24.9 (5)N4—N3—C16—C157.7 (3)
O1—N1—C3—C2174.9 (3)C19—N3—C16—C15146.6 (2)
C2—C3—C4—C51.9 (4)N4—N3—C16—C18173.6 (2)
N1—C3—C4—C5176.7 (3)C19—N3—C16—C1834.8 (4)
C3—C4—C5—C61.0 (4)N3—N4—C17—O4170.3 (2)
C4—C5—C6—C12.8 (4)C20—N4—C17—O420.9 (4)
C4—C5—C6—C7176.5 (2)N3—N4—C17—C157.2 (2)
C2—C1—C6—C51.8 (4)C20—N4—C17—C15156.7 (2)
C2—C1—C6—C7177.4 (2)C16—C15—C17—O4174.8 (3)
C8—O3—C7—C6179.61 (19)N2—C15—C17—O42.9 (4)
C5—C6—C7—O3101.9 (3)C16—C15—C17—N42.5 (2)
C1—C6—C7—O378.9 (3)N2—C15—C17—N4179.8 (2)
C7—O3—C8—C9176.4 (2)C17—N4—C20—C21117.6 (3)
C7—O3—C8—C132.9 (3)N3—N4—C20—C2128.8 (3)
O3—C8—C9—C10178.4 (2)C17—N4—C20—C2560.5 (3)
C13—C8—C9—C100.9 (3)N3—N4—C20—C25153.1 (2)
C8—C9—C10—C111.1 (3)C25—C20—C21—C220.9 (4)
C8—C9—C10—C14179.1 (2)N4—C20—C21—C22179.0 (2)
C9—C10—C11—C120.4 (4)C20—C21—C22—C232.8 (4)
C14—C10—C11—C12179.8 (2)C21—C22—C23—C242.2 (5)
C10—C11—C12—C130.4 (4)C22—C23—C24—C250.3 (5)
C11—C12—C13—C80.5 (4)C23—C24—C25—C202.2 (4)
C9—C8—C13—C120.2 (3)C21—C20—C25—C241.6 (4)
O3—C8—C13—C12179.1 (2)N4—C20—C25—C24176.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7B···O4i0.972.503.293 (3)139
Symmetry code: (i) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC25H22N4O4
Mr442.47
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)8.003 (2), 9.798 (3), 14.425 (5)
α, β, γ (°)90.844 (5), 92.310 (6), 101.202 (6)
V3)1108.4 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.18 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.956, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
5780, 3898, 2302
Rint0.026
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.125, 1.01
No. of reflections3898
No. of parameters300
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.16

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7B···O4i0.972.503.293 (3)139
Symmetry code: (i) x+2, y+1, z.
 

Footnotes

Additional contact author, e-mail: han_jianrong@163.com.

Acknowledgements

The project was supported by the Foundation of the Education Department of Hebei Province (grant No. 606022).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHan, J.-R. & Zhen, X.-L. (2005). Acta Cryst. E61, o3815–o3816.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJones, R. D., Summerville, D. A. & Basolo, F. (1979). Chem. Rev. 17, 139–179.  CrossRef Web of Science Google Scholar
First citationLarson, E. J. & Pecoraro, V. L. (1991). J. Am. Chem. Soc. 113, 3810–3818.  CSD CrossRef CAS Web of Science Google Scholar
First citationSantos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838–844.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds