metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Potassium L-2-nitrimino-1,3-diazepane-4-carboxyl­ate monohydrate

aMolecule Structure Research Center, National Academy of Sciences RA, Azatutyan Avenue 26, 375014 Yerevan, Republic of Armenia
*Correspondence e-mail: harkar@nfsat.am

(Received 28 May 2008; accepted 28 July 2008; online 9 October 2008)

The title compound, K+·C6H9N4O4·H2O, crystallizes with the K atoms located on special positions related by pseudocentres of symmetry. Each K atom is coordinated by six O-atom donors. The N and water H atoms are involved in inter- and intra­molecular N—H⋯O, N—H⋯N and O—H⋯O hydrogen bonding. The data indicate inversion twinning.

Related literature

For related literature, see: Apreyan & Petrosyan (2008[Apreyan, R. A. & Petrosyan, A. M. (2008). In preparation.]); Apreyan et al. (2008a[Apreyan, R. A., Karapetyan, H. A. & Petrosyan, A. M. (2008a). J. Mol. Struct. 874, 187-193.],b[Apreyan, R. A., Karapetyan, H. A. & Petrosyan, A. M. (2008b). J. Mol. Struct. 875, 272-281.]); Karapetyan (2008a[Karapetyan, H. A. (2008a). Acta Cryst. E64, o943.],b[Karapetyan, H. A. (2008b). Acta Cryst. E64, o1222.]); Karapetyan et al. (2007[Karapetyan, H. A., Antipin, M. Yu., Sukiasyan, R. P. & Petrosyan, A. M. (2007). J. Mol. Struct. 831, 90-96.]); Kurtz & Perry (1968[Kurtz, S. K. & Perry, T. T. (1968). J. Appl. Phys. 39, 3798-3812.]); Paul et al. (1961[Paul, R., Anderson, G. W. & Callahan, F. M. (1961). J. Org. Chem. 26, 3347-3350.]); Petrosyan et al. (2005[Petrosyan, A. M., Sukiasyan, R. P., Karapetyan, H. A., Antipin, M. Yu. & Apreyan, R. A. (2005). J. Cryst. Growth, 275, e1927-e1933.]).

[Scheme 1]

Experimental

Crystal data
  • K+·C6H9N4O4·H2O

  • Mr = 258.29

  • Orthorhombic, I 222

  • a = 7.3883 (15) Å

  • b = 10.087 (2) Å

  • c = 29.031 (6) Å

  • V = 2163.5 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.51 mm−1

  • T = 293 (2) K

  • 0.21 × 0.14 × 0.11 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 5030 measured reflections

  • 3141 independent reflections

  • 1736 reflections with I > 2σ(I)

  • Rint = 0.030

  • 3 standard reflections every 400 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.193

  • S = 1.04

  • 3141 reflections

  • 154 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.39 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1350 Friedel pairs

  • Flack parameter: 0.48 (20)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H11⋯O1i 0.87 (2) 2.09 (5) 2.885 (5) 153 (10)
O5—H10⋯O3ii 0.856 (19) 2.03 (4) 2.793 (4) 148 (6)
N2—H9⋯N3iii 0.86 2.39 3.080 (4) 138
N1—H2⋯O3 0.86 2.09 2.561 (5) 114
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y-1, z; (iii) x, -y+2, -z+1.

Data collection: DATCOL in CAD-4 Software (Enraf–Nonius, 1988[Enraf-Nonius (1988). CAD-4 Manual. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: LS in CAD-4 Software; data reduction: HELENA (Spek, 1997[Spek, A. L. (1997). HELENA. University of Utrecht, The Netherlands.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Cyclic L-2-nitrimino-1,3-diazepane-4-carboxylic acid (L-NIDCA), produced by elimination of amine from L-nitroarginine (Paul et al., 1961) , may generate new non-linear optical materials like L-nitroarginine itself [Apreyan et al. (2008a, 2008b); Karapetyan et al.(2007); Petrosyan et al. (2005); the crystal structures of L-NIDCA and its monohydrate have been recently reported [Karapetyan (2008a, 2008b)].

This paper presents a structural study of the potassium salt of L-NIDCA monohydrate. The structure was solved and refined in the orthorhombic unit cell with I222 space group. The choice of the non-centric space group was based on the generation of second harmonic observed on a powder sample (YAG:Nd laser, Kurtz-Perry method [Kurtz & Perry,1968]). In this structure, two independent potassium cations occupy special positions. These potassium atoms are located about pseudo-inversion centers, which is most likely the reason for the presence of high level pseudosymmetry in the structure. Both potassium cations are coordinated by six oxygen atoms with K···O bond lengths in the ranges 2.712 (5)-2.815 (7) Å for K1 and 2.642 (5)-2.783 (6) Å for K2.

A view of the asymmetric unit is shown in Fig. 1. The high value of Ueq of atom C3 of the 1,3-diazepane ring compared to those of its neighbors indicates potential disorder of this atom. In the crystal structure, the nitrogen-bound H atoms and the water H atoms are involved in N—H···O, N—H···N and O—H···O hydrogen bonding (Table 1), one of them being intra- and the other three intermolecular, linking anions and water molecules in infinite layers parallel to the bc plane (Fig. 2).

Related literature top

For related literature, see: Apreyan & Petrosyan (2008); Apreyan et al. (2008a,b); Karapetyan (2008a,b); Karapetyan et al. (2007); Kurtz & Perry (1968); Paul et al. (1961); Petrosyan et al. (2005).

Experimental top

The title compound was synthesized from a mixture of aqueous solutions containing L-nitroarginine (2 g, Sigma-Aldrich) and KOH (0.512 g) at room temperature. Single crystals of the title compound were obtained by slow evaporation of the solution. At 97° C decomposition of the crystals was observed.

Refinement top

The data set was collected in a full sphere of reciprocal space. Space group I222 was chosen on the basis of the powder second harmonic of YAG:Nb laser generation property of the crystals of the title compound. In spite of the fact that all H atoms appear in difference Fourier maps in reasonable positions, they became unacceptable after refinement. Because of this, all the H atoms except those belonging to the water molecule were placed in geometrically calculated positions and included in the refinement in a riding model approximation, with Uiso(H) = 1.2Ueq(carrier atom). The positions of the H atoms of the water molecule were located in difference Fourier maps and included in the refinement with fixed O—H (0.85 Å), H···H (1.35 Å) distances and isotropic temperature parameters Uiso(H) = 1.4Ueq(O). The absolute configuration has been determined using L-nitroarginine of known absolute configuration.

Computing details top

Data collection: DATCOL in CAD-4 Software (Enraf–Nonius, 1988); cell refinement: LS in CAD-4 Software (Enraf–Nonius, 1988); data reduction: HELENA (Spek, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A perspective view of the asymmetric unit, showing the atomic numbering and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing of the molecules. For clarity, only the donors in the original molecule and their corresponding acceptors are labelled. Symmetry codes are: (i) x, y - 1, z; (ii)-x + 1/2, y - 1/2, -z + 1/2; (iii) x, 2 - y, 1 - z. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.
Potassium L-2-nitrimino-1,3-diazepane-4-carboxylate monohydrate top
Crystal data top
K+·C6H9N4O4·H2OF(000) = 1072
Mr = 258.29Dx = 1.586 Mg m3
Orthorhombic, I222Mo Kα radiation, λ = 0.71073 Å
Hall symbol: I 2 2Cell parameters from 24 reflections
a = 7.3883 (15) Åθ = 14–16°
b = 10.087 (2) ŵ = 0.51 mm1
c = 29.031 (6) ÅT = 293 K
V = 2163.5 (8) Å3Prism, yellow
Z = 80.21 × 0.14 × 0.11 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.030
Radiation source: fine-focus sealed tubeθmax = 30.0°, θmin = 2.1°
Graphite monochromatorh = 1010
ω/2θ scansk = 1313
5030 measured reflectionsl = 3838
3141 independent reflections3 standard reflections every 400 reflections
1726 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.193 w = 1/[σ2(Fo2) + (0.0676P)2 + 6.1136P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3141 reflectionsΔρmax = 0.43 e Å3
154 parametersΔρmin = 0.39 e Å3
3 restraintsAbsolute structure: Flack (1983), 1350 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.48 (20)
Crystal data top
K+·C6H9N4O4·H2OV = 2163.5 (8) Å3
Mr = 258.29Z = 8
Orthorhombic, I222Mo Kα radiation
a = 7.3883 (15) ŵ = 0.51 mm1
b = 10.087 (2) ÅT = 293 K
c = 29.031 (6) Å0.21 × 0.14 × 0.11 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.030
5030 measured reflections3 standard reflections every 400 reflections
3141 independent reflections intensity decay: none
1726 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.065H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.193Δρmax = 0.43 e Å3
S = 1.04Δρmin = 0.39 e Å3
3141 reflectionsAbsolute structure: Flack (1983), 1350 Friedel pairs
154 parametersAbsolute structure parameter: 0.48 (20)
3 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.50000.50000.26313 (7)0.0481 (5)
K20.00000.50000.26268 (8)0.0536 (5)
O10.2429 (10)0.6833 (3)0.28276 (9)0.0510 (8)
O20.2513 (10)0.8993 (3)0.29658 (9)0.0618 (10)
O30.2476 (15)1.1286 (3)0.37039 (10)0.0905 (16)
O40.2389 (10)1.2557 (3)0.42935 (11)0.0723 (12)
O50.2461 (12)0.3267 (3)0.30317 (11)0.0644 (10)
N10.2755 (14)0.8784 (3)0.38382 (11)0.0630 (19)
H20.33730.93200.36700.076*
N20.2659 (10)0.8275 (3)0.46137 (11)0.0583 (14)
H90.32240.85260.48580.070*
N30.2516 (11)1.0441 (3)0.44244 (10)0.0490 (10)
N40.2478 (12)1.1416 (3)0.41290 (11)0.0526 (10)
C10.2419 (12)0.7820 (4)0.30906 (13)0.0433 (11)
C20.2101 (7)0.7544 (4)0.36059 (14)0.0397 (12)
H10.07940.74700.36570.048*
C30.294 (2)0.6381 (6)0.37834 (19)0.118 (5)
H40.42400.65140.37930.142*
H30.26970.56450.35780.142*
C40.2262 (15)0.6022 (4)0.42740 (17)0.069 (2)
H50.11500.55260.42320.082*
H60.31390.54040.43990.082*
C50.1931 (9)0.6894 (5)0.46054 (17)0.0601 (19)
H70.23190.64810.48910.072*
H80.06240.69740.46240.072*
C60.2498 (15)0.9152 (4)0.42687 (13)0.0475 (10)
H100.288 (8)0.279 (5)0.3251 (13)0.07 (2)*
H110.288 (14)0.287 (8)0.2790 (13)0.16 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0547 (12)0.0388 (11)0.0507 (11)0.0026 (10)0.0000.000
K20.0566 (12)0.0404 (12)0.0637 (13)0.0021 (11)0.0000.000
O10.070 (2)0.0423 (15)0.0409 (14)0.000 (3)0.008 (3)0.0129 (13)
O20.115 (3)0.0374 (15)0.0326 (13)0.013 (4)0.002 (4)0.0002 (11)
O30.202 (5)0.0350 (16)0.0343 (15)0.001 (5)0.009 (5)0.0075 (12)
O40.136 (4)0.0279 (13)0.0534 (18)0.006 (4)0.007 (4)0.0024 (13)
O50.103 (3)0.0470 (17)0.0436 (17)0.009 (4)0.003 (4)0.0143 (15)
N10.134 (6)0.0286 (16)0.0266 (16)0.021 (4)0.012 (3)0.0014 (12)
N20.115 (4)0.0309 (16)0.0291 (15)0.017 (3)0.012 (4)0.0006 (13)
N30.087 (3)0.0286 (14)0.0312 (15)0.007 (4)0.006 (4)0.0001 (12)
N40.088 (3)0.0310 (16)0.0393 (17)0.005 (4)0.014 (4)0.0017 (13)
C10.057 (3)0.039 (2)0.0339 (18)0.007 (4)0.010 (3)0.0022 (15)
C20.049 (3)0.0352 (19)0.0344 (19)0.004 (2)0.002 (2)0.0046 (16)
C30.267 (17)0.043 (3)0.043 (3)0.046 (7)0.002 (6)0.008 (2)
C40.125 (6)0.029 (2)0.052 (2)0.013 (4)0.008 (5)0.0091 (18)
C50.098 (6)0.037 (2)0.045 (3)0.001 (3)0.004 (3)0.011 (2)
C60.079 (3)0.0335 (17)0.0298 (17)0.002 (5)0.001 (5)0.0016 (14)
Geometric parameters (Å, º) top
K1—O12.712 (5)O4—N41.247 (4)
K1—O1i2.712 (5)O5—H100.856 (19)
K1—O2ii2.736 (6)O5—H110.87 (2)
K1—O2iii2.736 (6)N1—C61.318 (5)
K1—O5i2.815 (7)N1—C21.502 (6)
K1—O52.815 (7)N1—H20.8600
K1—C1ii3.524 (5)N2—C61.342 (5)
K1—C1iii3.524 (5)N2—C51.494 (7)
K1—K23.6942 (8)N2—H90.8600
K1—K2iv3.6942 (8)N3—N41.305 (4)
K1—H112.70 (11)N3—C61.377 (5)
K2—O12.642 (5)C1—C21.540 (6)
K2—O1v2.642 (5)C1—K1viii3.524 (5)
K2—O2vi2.714 (6)C2—C31.423 (9)
K2—O2ii2.714 (6)C2—H10.9800
K2—O52.783 (6)C3—C41.552 (9)
K2—O5v2.783 (6)C3—H40.9700
K2—K1vii3.6942 (8)C3—H30.9700
K2—H113.06 (6)C4—C51.326 (7)
O1—C11.255 (4)C4—H50.9700
O2—C11.239 (5)C4—H60.9700
O2—K2viii2.714 (6)C5—H70.9700
O2—K1viii2.736 (6)C5—H80.9700
O3—N41.241 (4)
O1—K1—O1i155.74 (15)O2ii—K2—K1vii132.78 (15)
O1—K1—O2ii84.89 (16)O5—K2—K1vii130.69 (16)
O1i—K1—O2ii110.81 (14)O5v—K2—K1vii49.08 (15)
O1—K1—O2iii110.81 (14)O1—K2—K147.16 (12)
O1i—K1—O2iii84.89 (16)O1v—K2—K1132.72 (12)
O2ii—K1—O2iii101.4 (2)O2vi—K2—K1132.78 (15)
O1—K1—O5i87.51 (15)O2ii—K2—K147.57 (13)
O1i—K1—O5i82.52 (14)O5—K2—K149.08 (15)
O2ii—K1—O5i160.81 (11)O5v—K2—K1130.69 (16)
O2iii—K1—O5i65.09 (14)K1vii—K2—K1179.60 (13)
O1—K1—O582.52 (14)O1—K2—H1189 (2)
O1i—K1—O587.51 (15)O1v—K2—H1187 (2)
O2ii—K1—O565.09 (14)O2vi—K2—H11146.2 (10)
O2iii—K1—O5160.81 (11)O2ii—K2—H1150.6 (8)
O5i—K1—O5131.23 (19)O5—K2—H1116.1 (6)
O1—K1—C1ii101.25 (17)O5v—K2—H11146.1 (6)
O1i—K1—C1ii93.15 (14)K1vii—K2—H11134 (2)
O2ii—K1—C1ii17.69 (15)K1—K2—H1146 (2)
O2iii—K1—C1ii101.48 (14)C1—O1—K2133.3 (6)
O5i—K1—C1ii166.12 (17)C1—O1—K1132.3 (5)
O5—K1—C1ii61.33 (12)K2—O1—K187.26 (8)
O1—K1—C1iii93.15 (14)C1—O2—K2viii125.5 (5)
O1i—K1—C1iii101.25 (17)C1—O2—K1viii120.1 (6)
O2ii—K1—C1iii101.48 (14)K2viii—O2—K1viii85.34 (8)
O2iii—K1—C1iii17.69 (15)K2—O5—K182.59 (8)
O5i—K1—C1iii61.33 (12)K2—O5—H10155 (4)
O5—K1—C1iii166.12 (17)K1—O5—H10114 (5)
C1ii—K1—C1iii107.02 (17)K2—O5—H11101 (5)
O1—K1—K245.59 (12)K1—O5—H1174 (7)
O1i—K1—K2134.53 (12)H10—O5—H11102 (3)
O2ii—K1—K247.09 (13)C6—N1—C2127.9 (6)
O2iii—K1—K2132.56 (15)C6—N1—H2116.0
O5i—K1—K2131.90 (15)C2—N1—H2116.0
O5—K1—K248.33 (15)C6—N2—C5124.8 (5)
C1ii—K1—K259.38 (14)C6—N2—H9117.6
C1iii—K1—K2120.34 (15)C5—N2—H9117.6
O1—K1—K2iv134.53 (12)N4—N3—C6119.7 (3)
O1i—K1—K2iv45.59 (12)O3—N4—O4118.6 (3)
O2ii—K1—K2iv132.56 (15)O3—N4—N3125.0 (3)
O2iii—K1—K2iv47.09 (13)O4—N4—N3116.4 (3)
O5i—K1—K2iv48.33 (15)O2—C1—O1125.4 (4)
O5—K1—K2iv131.90 (15)O2—C1—C2117.8 (3)
C1ii—K1—K2iv120.34 (15)O1—C1—C2116.6 (4)
C1iii—K1—K2iv59.38 (14)O2—C1—K1viii42.2 (4)
K2—K1—K2iv179.60 (13)O1—C1—K1viii97.8 (3)
O1—K1—H1195.8 (12)C2—C1—K1viii127.8 (4)
O1i—K1—H1180.1 (15)C3—C2—N1112.6 (5)
O2ii—K1—H1154.4 (13)C3—C2—C1115.8 (5)
O2iii—K1—H11142.9 (4)N1—C2—C1103.6 (4)
O5i—K1—H11144.2 (12)C3—C2—H1108.2
O5—K1—H1117.9 (4)N1—C2—H1108.2
C1ii—K1—H1146.4 (10)C1—C2—H1108.2
C1iii—K1—H11153.2 (8)C2—C3—C4112.6 (8)
K2—K1—H1154.5 (15)C2—C3—H4109.1
K2iv—K1—H11125.5 (15)C4—C3—H4109.1
O1—K2—O1v154.51 (16)C2—C3—H3109.1
O1—K2—O2vi109.73 (14)C4—C3—H3109.1
O1v—K2—O2vi86.68 (16)H4—C3—H3107.8
O1—K2—O2ii86.68 (16)C5—C4—C3124.8 (4)
O1v—K2—O2ii109.73 (14)C5—C4—H5106.1
O2vi—K2—O2ii101.3 (2)C3—C4—H5106.1
O1—K2—O584.41 (15)C5—C4—H6106.1
O1v—K2—O584.89 (16)C3—C4—H6106.1
O2vi—K2—O5160.93 (12)H5—C4—H6106.3
O2ii—K2—O565.81 (15)C4—C5—N2124.3 (5)
O1—K2—O5v84.89 (16)C4—C5—H7106.3
O1v—K2—O5v84.41 (15)N2—C5—H7106.3
O2vi—K2—O5v65.81 (15)C4—C5—H8106.3
O2ii—K2—O5v160.93 (12)N2—C5—H8106.3
O5—K2—O5v130.0 (2)H7—C5—H8106.4
O1—K2—K1vii132.72 (12)N1—C6—N2120.6 (4)
O1v—K2—K1vii47.16 (12)N1—C6—N3125.2 (4)
O2vi—K2—K1vii47.57 (13)N2—C6—N3112.1 (3)
O1v—K2—O1—C149.9 (4)O2ii—K1—O5—K253.73 (14)
O2vi—K2—O1—C177.6 (4)O2iii—K1—O5—K2101.4 (5)
O2ii—K2—O1—C1178.5 (4)O5i—K1—O5—K2114.12 (11)
O5—K2—O1—C1115.5 (4)C1ii—K1—O5—K273.12 (16)
O5v—K2—O1—C115.6 (4)C1iii—K1—O5—K238.4 (6)
K1vii—K2—O1—C127.7 (5)K2iv—K1—O5—K2179.55 (14)
K1—K2—O1—C1151.7 (4)C6—N3—N4—O32.1 (16)
O1v—K2—O1—K1101.82 (8)C6—N3—N4—O4175.9 (10)
O2vi—K2—O1—K1130.65 (16)K2viii—O2—C1—O149.8 (12)
O2ii—K2—O1—K129.78 (10)K1viii—O2—C1—O157.6 (12)
O5—K2—O1—K136.21 (12)K2viii—O2—C1—C2135.8 (5)
O5v—K2—O1—K1167.33 (12)K1viii—O2—C1—C2116.8 (5)
K1vii—K2—O1—K1179.47 (16)K2viii—O2—C1—K1viii107.4 (3)
O1i—K1—O1—C149.8 (4)K2—O1—C1—O2114.3 (9)
O2ii—K1—O1—C1178.2 (4)K1—O1—C1—O2105.4 (9)
O2iii—K1—O1—C177.9 (4)K2—O1—C1—C260.2 (8)
O5i—K1—O1—C115.8 (4)K1—O1—C1—C280.1 (8)
O5—K1—O1—C1116.3 (4)K2—O1—C1—K1viii79.4 (3)
C1ii—K1—O1—C1175.0 (4)K1—O1—C1—K1viii140.3 (2)
C1iii—K1—O1—C176.9 (5)C6—N1—C2—C367.0 (11)
K2—K1—O1—C1152.2 (4)C6—N1—C2—C1167.2 (9)
K2iv—K1—O1—C128.3 (5)O2—C1—C2—C3146.7 (9)
O1i—K1—O1—K2102.45 (8)O1—C1—C2—C338.4 (11)
O2ii—K1—O1—K229.60 (10)K1viii—C1—C2—C3164.0 (6)
O2iii—K1—O1—K2129.84 (15)O2—C1—C2—N122.9 (10)
O5i—K1—O1—K2168.04 (12)O1—C1—C2—N1162.2 (8)
O5—K1—O1—K235.89 (12)K1viii—C1—C2—N172.2 (6)
C1ii—K1—O1—K222.82 (11)N1—C2—C3—C472.2 (10)
C1iii—K1—O1—K2130.87 (14)C1—C2—C3—C4168.9 (7)
K2iv—K1—O1—K2179.46 (17)C2—C3—C4—C539.8 (16)
O1—K2—O5—K134.97 (11)C3—C4—C5—N219.3 (15)
O1v—K2—O5—K1168.20 (12)C6—N2—C5—C452.9 (12)
O2vi—K2—O5—K1104.1 (5)C2—N1—C6—N242.7 (16)
O2ii—K2—O5—K153.89 (13)C2—N1—C6—N3154.9 (9)
O5v—K2—O5—K1113.49 (10)C5—N2—C6—N143.0 (15)
K1vii—K2—O5—K1179.56 (14)C5—N2—C6—N3152.5 (8)
O1—K1—O5—K234.09 (11)N4—N3—C6—N112.3 (17)
O1i—K1—O5—K2168.08 (12)N4—N3—C6—N2176.0 (9)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1/2, y1/2, z+1/2; (iii) x+1/2, y+3/2, z+1/2; (iv) x+1, y, z; (v) x, y+1, z; (vi) x1/2, y+3/2, z+1/2; (vii) x1, y, z; (viii) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H11···O1ii0.87 (2)2.09 (5)2.885 (5)153 (10)
O5—H10···O3ix0.86 (2)2.03 (4)2.793 (4)148 (6)
N2—H9···N3x0.862.393.080 (4)138
N1—H2···O30.862.092.561 (5)114
Symmetry codes: (ii) x+1/2, y1/2, z+1/2; (ix) x, y1, z; (x) x, y+2, z+1.

Experimental details

Crystal data
Chemical formulaK+·C6H9N4O4·H2O
Mr258.29
Crystal system, space groupOrthorhombic, I222
Temperature (K)293
a, b, c (Å)7.3883 (15), 10.087 (2), 29.031 (6)
V3)2163.5 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.51
Crystal size (mm)0.21 × 0.14 × 0.11
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5030, 3141, 1726
Rint0.030
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.193, 1.04
No. of reflections3141
No. of parameters154
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.39
Absolute structureFlack (1983), 1350 Friedel pairs
Absolute structure parameter0.48 (20)

Computer programs: DATCOL in CAD-4 Software (Enraf–Nonius, 1988), LS in CAD-4 Software (Enraf–Nonius, 1988), HELENA (Spek, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H11···O1i0.87 (2)2.09 (5)2.885 (5)153 (10)
O5—H10···O3ii0.856 (19)2.03 (4)2.793 (4)148 (6)
N2—H9···N3iii0.862.393.080 (4)137.8
N1—H2···O30.862.092.561 (5)113.6
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y1, z; (iii) x, y+2, z+1.
 

Acknowledgements

The author expresses his thanks to Dr R. A. Apreyan and Dr A. M. Petrosyan for providing the crystals and to Dr R. A. Tamazyan for valuable discussion of the results.

References

First citationApreyan, R. A., Karapetyan, H. A. & Petrosyan, A. M. (2008a). J. Mol. Struct. 874, 187–193.  Web of Science CSD CrossRef CAS Google Scholar
First citationApreyan, R. A., Karapetyan, H. A. & Petrosyan, A. M. (2008b). J. Mol. Struct. 875, 272–281.  Web of Science CSD CrossRef CAS Google Scholar
First citationApreyan, R. A. & Petrosyan, A. M. (2008). In preparation.  Google Scholar
First citationEnraf–Nonius (1988). CAD-4 Manual. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKarapetyan, H. A. (2008a). Acta Cryst. E64, o943.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKarapetyan, H. A. (2008b). Acta Cryst. E64, o1222.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKarapetyan, H. A., Antipin, M. Yu., Sukiasyan, R. P. & Petrosyan, A. M. (2007). J. Mol. Struct. 831, 90–96.  Web of Science CSD CrossRef CAS Google Scholar
First citationKurtz, S. K. & Perry, T. T. (1968). J. Appl. Phys. 39, 3798–3812.  CrossRef CAS Web of Science Google Scholar
First citationPaul, R., Anderson, G. W. & Callahan, F. M. (1961). J. Org. Chem. 26, 3347–3350.  CrossRef Web of Science Google Scholar
First citationPetrosyan, A. M., Sukiasyan, R. P., Karapetyan, H. A., Antipin, M. Yu. & Apreyan, R. A. (2005). J. Cryst. Growth, 275, e1927–e1933.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (1997). HELENA. University of Utrecht, The Netherlands.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds