organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Phenyl-5-[4-(tri­fluoro­meth­yl)phen­yl]­pyrazolidin-3-one monohydrate

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: zhuhj@njut.edu.cn

(Received 26 August 2008; accepted 7 October 2008; online 11 October 2008)

In the mol­ecule of the title compound, C16H13F3N2O·H2O, the two benzene rings are oriented at a dihedral angle of 82.55 (3)° and the pyrazole ring adopts an envelope conformation. In the crystal structure, inter­molecular C—H⋯F hydrogen bonds link the mol­ecules into chains.

Related literature

For general background, see: Menozzi et al. (1990[Menozzi, G., Mosti, L. & Schenone, P. (1990). Farmaco, 45, 167-186.]); James & William (2003[James, D. M. & William, D. B. (2003). WO Patent No. 2003055860.]); Shi et al. (2006[Shi, H., Zhu, H.-J. & Wang, J.-T. (2006). Acta Cryst. E62, o233-o235.]). For related literature, see: Jia et al. (2008[Jia, H.-S., Li, Y.-F., Liu, Y.-Y., Liu, S. & Zhu, H.-J. (2008). Acta Cryst. E64, o855.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13F3N2O·H2O

  • Mr = 324.30

  • Triclinic, [P \overline 1]

  • a = 7.4960 (15) Å

  • b = 9.794 (2) Å

  • c = 13.319 (3) Å

  • α = 97.70 (3)°

  • β = 101.58 (3)°

  • γ = 107.97 (3)°

  • V = 890.8 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 294 (2) K

  • 0.20 × 0.10 × 0.05 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.980, Tmax = 0.995

  • 3463 measured reflections

  • 3196 independent reflections

  • 1611 reflections with I > 2σ(I)

  • Rint = 0.068

  • 3 standard reflections frequency: 120 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.077

  • wR(F2) = 0.186

  • S = 1.00

  • 3196 reflections

  • 211 parameters

  • 48 restraints

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
OW2—HW2B⋯OW1 0.85 1.99 2.50 (3) 118
C14—H14A⋯F3i 0.93 2.54 3.262 (6) 134
N1—H1A⋯Oii 0.86 1.98 2.811 (6) 161
C9—H9B⋯Oiii 0.97 2.60 3.555 (7) 168
Symmetry code: (i) x-1, y+1, z; (ii) -x+1, -y+2, -z+2; (iii) -x+2, -y+2, -z+2.

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Nowadays, heterocyclic compounds as medicines and pesticides have been developed most quickly. Among them, pyrazole and its derivatives exhibit better bioactivity, such as antipyretic (Menozzi et al., 1990) and anticancer (James & William, 2003) activities. They are also useful in the treatment of inflammation and related disorders (Shi et al., 2006). We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C2-C7) and C (C11-C16) are, of course, planar and the dihedral angle between them is 82.55 (3)°. Ring B (N1/N2/C8-C10) is not planar, and adopts envelope conformation with C8 atom displaced by 0.358 (3) Å from the plane of the other ring atoms. The intramolecular C-H···N and C-H···F hydrogen bonds (Table 1) result in the formation of two planar five-membered rings D (N2/C4/C5/C8/H4A) and E (F3/C1/C2/C7/H7A). They are oriented with respect to ring A at dihedral angles of 3.20 (3)° and 2.57 (3)°, respectively. So, rings A, D and E are nearly coplanar.

In the crystal structure, intermolecular C-H···F hydrogen bonds (Table 1) link the molecules into chains (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For general background, see: Menozzi et al. (1990); James & William (2003); Shi et al. (2006). For related literature, see: Jia et al. (2008). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was prepared by the literature method (Jia et al., 2008). For the preparation of the title compound, n-butanol (40 ml) and ethanolamine (4 ml) were added to a solution of sodium (40 mmol) in anhydrous methanol (9 ml). Then, methanol was removed by distillation and methyl 3-(4-(trifluoromethyl)phenyl)acrylate (30 mmol) was added. The mixture was refluxed for 1.5 h at 385 K, after which phenylhydrazine (4 ml) was added. The mixture was refluxed for another 10 h, and then left to cool to room temperature. It was then acidified with acetic acid (50%), allowed to stand and filtered. The filter cake was chromatographed over silica gel (500 g) eluting with a mixture of ethyl acetate and petroleum ether to give the title compound (m.p. 413- 415 K). Crystals suitable for x-ray analysis were obtained by dissolving the title compound (1.5 g) in ethyl acetate (25 ml) and evaporating the solvent slowly at room temperature for about 10 d.

Refinement top

The water molecule was disordered. During the refinement process the disordered O and H atoms were refined with occupancies of 0.50. H atoms were positioned geometrically, with O-H = 0.85 Å (for H2O), N-H = 0.86 (for NH) and C-H = 0.93, 0.98 and 0.97 Å for aromatic, methine and methylene H, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C,N,O).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dotted lines.
[Figure 2] Fig. 2. A packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
1-Phenyl-5-[4-(trifluoromethyl)phenyl]pyrazolidin-3-one monohydrate top
Crystal data top
C16H13F3N2O·H2OZ = 2
Mr = 324.30F(000) = 336
Triclinic, P1Dx = 1.209 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4960 (15) ÅCell parameters from 25 reflections
b = 9.794 (2) Åθ = 9–12°
c = 13.319 (3) ŵ = 0.10 mm1
α = 97.70 (3)°T = 294 K
β = 101.58 (3)°Needle, colorless
γ = 107.97 (3)°0.20 × 0.10 × 0.05 mm
V = 890.8 (4) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
1611 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.068
Graphite monochromatorθmax = 25.2°, θmin = 1.6°
ω/2θ scansh = 88
Absorption correction: ψ scan
(North et al., 1968)
k = 1111
Tmin = 0.980, Tmax = 0.995l = 015
3463 measured reflections3 standard reflections every 120 min
3196 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.077Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.186H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.06P)2 + 0.58P]
where P = (Fo2 + 2Fc2)/3
3196 reflections(Δ/σ)max < 0.001
211 parametersΔρmax = 0.21 e Å3
48 restraintsΔρmin = 0.23 e Å3
Crystal data top
C16H13F3N2O·H2Oγ = 107.97 (3)°
Mr = 324.30V = 890.8 (4) Å3
Triclinic, P1Z = 2
a = 7.4960 (15) ÅMo Kα radiation
b = 9.794 (2) ŵ = 0.10 mm1
c = 13.319 (3) ÅT = 294 K
α = 97.70 (3)°0.20 × 0.10 × 0.05 mm
β = 101.58 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1611 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.068
Tmin = 0.980, Tmax = 0.9953 standard reflections every 120 min
3463 measured reflections intensity decay: none
3196 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.07748 restraints
wR(F2) = 0.186H-atom parameters constrained
S = 1.00Δρmax = 0.21 e Å3
3196 reflectionsΔρmin = 0.23 e Å3
211 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
OW10.464 (3)1.4138 (15)1.0235 (11)0.288 (8)0.50
HW1A0.53051.38131.06750.345*0.50
HW1B0.43671.48911.04390.345*0.50
OW20.805 (3)1.5022 (19)1.0058 (13)0.328 (9)0.50
HW2A0.86731.56420.97520.394*0.50
HW2B0.74361.52801.04770.394*0.50
O0.7711 (4)1.0639 (3)1.0297 (2)0.0741 (9)
N10.5378 (4)0.9682 (3)0.8750 (2)0.0520 (8)
H1A0.44220.93880.90270.062*
N20.5122 (4)0.9482 (3)0.7661 (2)0.0495 (7)
F10.8128 (5)0.3357 (4)0.6898 (3)0.1429 (12)
F20.7729 (6)0.3635 (4)0.5389 (3)0.1549 (14)
F31.0292 (5)0.4452 (4)0.6316 (3)0.1343 (11)
C10.8642 (9)0.4424 (7)0.6409 (5)0.097
C20.8153 (7)0.5692 (4)0.6625 (3)0.0695 (11)
C30.6372 (7)0.5629 (5)0.6753 (4)0.0924 (15)
H3A0.54190.47210.66760.111*
C40.5972 (6)0.6888 (5)0.6994 (4)0.0869 (14)
H4A0.47170.68270.70140.104*
C50.7395 (5)0.8228 (4)0.7207 (3)0.0480 (9)
C60.9191 (5)0.8233 (4)0.7059 (3)0.0654 (11)
H6A1.01760.91280.71500.079*
C70.9539 (6)0.6985 (5)0.6791 (3)0.0660 (11)
H7A1.07640.70300.67210.079*
C80.7150 (4)0.9668 (4)0.7541 (2)0.0443 (8)
H8A0.73841.02430.70030.053*
C90.8485 (5)1.0570 (4)0.8573 (2)0.0512 (9)
H9A0.90011.15960.85380.061*
H9B0.95561.02220.87770.061*
C100.7225 (5)1.0368 (4)0.9337 (3)0.0568 (10)
C110.4190 (4)1.0326 (4)0.7171 (3)0.0485 (9)
C120.3624 (5)1.0040 (4)0.6080 (3)0.0587 (10)
H12A0.39210.93100.56980.070*
C130.2660 (6)1.0793 (5)0.5571 (3)0.0694 (12)
H13A0.23181.05920.48420.083*
C140.2170 (6)1.1866 (5)0.6116 (4)0.0759 (12)
H14A0.15101.23930.57600.091*
C150.2666 (6)1.2142 (4)0.7181 (4)0.0716 (12)
H15A0.22921.28400.75450.086*
C160.3695 (5)1.1430 (4)0.7737 (3)0.0557 (10)
H16A0.40601.16620.84660.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
OW10.37 (2)0.239 (16)0.249 (16)0.119 (17)0.069 (15)0.038 (12)
OW20.31 (2)0.312 (19)0.33 (2)0.089 (17)0.053 (17)0.039 (15)
O0.0489 (17)0.132 (3)0.0524 (17)0.0415 (16)0.0149 (13)0.0292 (16)
N10.0365 (17)0.082 (2)0.0465 (17)0.0262 (16)0.0146 (14)0.0257 (15)
N20.0361 (16)0.0695 (19)0.0517 (18)0.0246 (15)0.0166 (14)0.0191 (15)
F10.161 (3)0.128 (3)0.146 (3)0.051 (2)0.048 (3)0.037 (2)
F20.168 (4)0.152 (3)0.143 (3)0.061 (3)0.033 (3)0.020 (2)
F30.134 (3)0.131 (3)0.149 (3)0.054 (2)0.046 (2)0.030 (2)
C10.1060.0990.0950.0450.0380.010
C20.080 (3)0.060 (2)0.079 (3)0.037 (2)0.025 (2)0.013 (2)
C30.084 (3)0.070 (3)0.119 (4)0.013 (2)0.043 (3)0.009 (3)
C40.053 (3)0.076 (3)0.124 (4)0.011 (2)0.037 (3)0.004 (3)
C50.0356 (19)0.057 (2)0.056 (2)0.0196 (17)0.0133 (16)0.0184 (17)
C60.039 (2)0.071 (2)0.083 (3)0.0130 (19)0.023 (2)0.007 (2)
C70.053 (2)0.078 (3)0.082 (3)0.036 (2)0.026 (2)0.022 (2)
C80.0291 (18)0.068 (2)0.0437 (19)0.0187 (17)0.0230 (15)0.0132 (17)
C90.0347 (19)0.070 (2)0.046 (2)0.0167 (18)0.0150 (16)0.0019 (17)
C100.036 (2)0.087 (3)0.053 (2)0.021 (2)0.0159 (18)0.026 (2)
C110.0298 (19)0.064 (2)0.058 (2)0.0191 (17)0.0170 (17)0.0159 (18)
C120.054 (2)0.088 (3)0.043 (2)0.040 (2)0.0123 (18)0.0052 (19)
C130.069 (3)0.110 (3)0.040 (2)0.039 (3)0.018 (2)0.025 (2)
C140.065 (3)0.104 (3)0.074 (3)0.043 (3)0.019 (2)0.039 (3)
C150.065 (3)0.069 (3)0.095 (3)0.040 (2)0.029 (2)0.012 (2)
C160.044 (2)0.072 (2)0.053 (2)0.025 (2)0.0106 (18)0.0093 (19)
Geometric parameters (Å, º) top
OW1—HW1A0.8502C5—C81.499 (4)
OW1—HW1B0.8499C6—C71.344 (5)
OW2—HW2A0.8500C6—H6A0.9300
OW2—HW2B0.8499C7—H7A0.9300
O—C101.226 (4)C8—C91.499 (4)
N1—C101.352 (4)C8—H8A0.9800
N1—N21.404 (4)C9—C101.513 (4)
N1—H1A0.8600C9—H9A0.9700
N2—C111.384 (4)C9—H9B0.9700
N2—C81.518 (4)C11—C121.392 (5)
F1—C11.303 (6)C11—C161.420 (5)
F2—C11.389 (6)C12—C131.339 (5)
F3—C11.260 (6)C12—H12A0.9300
C1—C21.409 (6)C13—C141.381 (5)
C2—C71.324 (5)C13—H13A0.9300
C2—C31.363 (6)C14—C151.358 (5)
C3—C41.369 (6)C14—H14A0.9300
C3—H3A0.9300C15—C161.368 (5)
C4—C51.363 (5)C15—H15A0.9300
C4—H4A0.9300C16—H16A0.9300
C5—C61.398 (4)
HW1A—OW1—HW1B120.0C5—C8—N2112.4 (3)
HW2A—OW2—HW2B120.0C9—C8—N2105.1 (2)
C10—N1—N2115.7 (3)C5—C8—H8A108.2
C10—N1—H1A122.2C9—C8—H8A108.2
N2—N1—H1A122.2N2—C8—H8A108.2
C11—N2—N1115.6 (3)C8—C9—C10104.5 (3)
C11—N2—C8116.8 (3)C8—C9—H9A110.9
N1—N2—C8102.8 (2)C10—C9—H9A110.9
F3—C1—F1103.2 (5)C8—C9—H9B110.9
F3—C1—F292.8 (4)C10—C9—H9B110.9
F1—C1—F298.4 (5)H9A—C9—H9B108.9
F3—C1—C2123.8 (6)O—C10—N1124.4 (3)
F1—C1—C2120.7 (5)O—C10—C9129.1 (3)
F2—C1—C2111.8 (5)N1—C10—C9106.2 (3)
C7—C2—C3119.5 (4)N2—C11—C12119.1 (3)
C7—C2—C1117.8 (5)N2—C11—C16122.5 (3)
C3—C2—C1122.4 (5)C12—C11—C16118.3 (3)
C2—C3—C4120.7 (4)C13—C12—C11121.3 (3)
C2—C3—H3A119.7C13—C12—H12A119.3
C4—C3—H3A119.7C11—C12—H12A119.3
C5—C4—C3120.7 (4)C12—C13—C14120.7 (4)
C5—C4—H4A119.7C12—C13—H13A119.6
C3—C4—H4A119.7C14—C13—H13A119.6
C4—C5—C6116.1 (4)C15—C14—C13119.0 (4)
C4—C5—C8125.2 (3)C15—C14—H14A120.5
C6—C5—C8118.7 (3)C13—C14—H14A120.5
C7—C6—C5122.1 (4)C14—C15—C16122.4 (4)
C7—C6—H6A118.9C14—C15—H15A118.8
C5—C6—H6A118.9C16—C15—H15A118.8
C2—C7—C6120.6 (4)C15—C16—C11118.1 (3)
C2—C7—H7A119.7C15—C16—H16A120.9
C6—C7—H7A119.7C11—C16—H16A120.9
C5—C8—C9114.7 (3)
C10—N1—N2—C11109.8 (3)C11—N2—C8—C5130.5 (3)
C10—N1—N2—C818.6 (4)N1—N2—C8—C5101.8 (3)
F3—C1—C2—C73.6 (8)C11—N2—C8—C9104.2 (3)
F1—C1—C2—C7132.2 (6)N1—N2—C8—C923.5 (3)
F2—C1—C2—C7112.9 (5)C5—C8—C9—C10103.1 (3)
F3—C1—C2—C3178.0 (5)N2—C8—C9—C1020.8 (4)
F1—C1—C2—C342.2 (8)N2—N1—C10—O179.7 (3)
F2—C1—C2—C372.7 (7)N2—N1—C10—C95.5 (4)
C7—C2—C3—C43.6 (7)C8—C9—C10—O164.2 (4)
C1—C2—C3—C4177.9 (5)C8—C9—C10—N110.4 (4)
C2—C3—C4—C56.1 (7)N1—N2—C11—C12170.6 (3)
C3—C4—C5—C66.2 (6)C8—N2—C11—C1268.2 (4)
C3—C4—C5—C8176.1 (4)N1—N2—C11—C166.1 (5)
C4—C5—C6—C74.2 (6)C8—N2—C11—C16115.1 (3)
C8—C5—C6—C7177.9 (3)N2—C11—C12—C13177.7 (4)
C3—C2—C7—C61.6 (7)C16—C11—C12—C130.9 (6)
C1—C2—C7—C6176.2 (4)C11—C12—C13—C141.1 (6)
C5—C6—C7—C22.0 (6)C12—C13—C14—C150.5 (6)
C4—C5—C8—C9121.9 (4)C13—C14—C15—C162.3 (7)
C6—C5—C8—C960.5 (4)C14—C15—C16—C112.4 (6)
C4—C5—C8—N22.0 (5)N2—C11—C16—C15175.9 (3)
C6—C5—C8—N2179.6 (3)C12—C11—C16—C150.8 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW2—HW2B···OW10.851.992.50 (3)118
C4—H4A···N20.932.532.875 (6)102
C7—H7A···F30.932.412.731 (6)100
C14—H14A···F3i0.932.543.262 (6)134
N1—H1A···Oii0.861.982.811 (6)161
C9—H9B···Oiii0.972.603.555 (7)168
Symmetry codes: (i) x1, y+1, z; (ii) x+1, y+2, z+2; (iii) x+2, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC16H13F3N2O·H2O
Mr324.30
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)7.4960 (15), 9.794 (2), 13.319 (3)
α, β, γ (°)97.70 (3), 101.58 (3), 107.97 (3)
V3)890.8 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.10 × 0.05
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.980, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
3463, 3196, 1611
Rint0.068
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.077, 0.186, 1.00
No. of reflections3196
No. of parameters211
No. of restraints48
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.23

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW2—HW2B···OW10.851.992.50 (3)118.00
C14—H14A···F3i0.932.543.262 (6)134.00
N1—H1A···Oii0.861.982.811 (6)161
C9—H9B···Oiii0.972.603.555 (7)168
Symmetry codes: (i) x1, y+1, z; (ii) x+1, y+2, z+2; (iii) x+2, y+2, z+2.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationJames, D. M. & William, D. B. (2003). WO Patent No. 2003055860.  Google Scholar
First citationJia, H.-S., Li, Y.-F., Liu, Y.-Y., Liu, S. & Zhu, H.-J. (2008). Acta Cryst. E64, o855.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMenozzi, G., Mosti, L. & Schenone, P. (1990). Farmaco, 45, 167–186.  CAS PubMed Web of Science Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, H., Zhu, H.-J. & Wang, J.-T. (2006). Acta Cryst. E62, o233–o235.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds