metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Dimesitylimidazolidinium tetra­chloridogold(III) di­chloro­methane solvate

aDepartment of Chemistry, University of Stellenbosch, Private Bag X1, Matieland, South Africa
*Correspondence e-mail: lianger@sun.ac.za

(Received 8 September 2008; accepted 26 September 2008; online 4 October 2008)

The title ionic compound, (C21H27N2)[AuCl4]·CH2Cl2, was obtained from the reaction of 1,3-dimesitylimidazolidinium chloride with t-BuOK and a solution of AuCl3 in tetra­hydro­furan. In the crystal structure, numerous weak C—H⋯Cl hydrogen bonds form double layers parallel to (100), which are further stabilized by ππ inter­actions between mesitylene rings [centroid–centroid distance = 4.308 (4) Å], resulting in the formation of a three-dimensional supra­molecular assembly.

Related literature

For related literature, see: Arduengo et al. (1995[Arduengo, A. J. III, Goerlich, J. R. & Marshall, W. J. (1995). J. Am. Chem. Soc. 117, 11027-11028.]); da Costa et al. (2007[Costa, R. C. da, Hampel, F. & Gladysz, J. A. (2007). Polyhedron, 26, 581-588.]); Adé et al. (2004[Adé, A., Cerrada, E., Contel, M., Laguna, M., Merino, P. & Tejero, T. (2004). J. Organomet. Chem. 689, 1788-1795.]); Asaji et al. (2004[Asaji, T., Akiyama, E., Tajima, F., Eda, K., Hashimoto, M. & Furukawa, Y. (2004). Polyhedron, 23, 1605-1611.]); Makotchenko et al. (2006[Makotchenko, E. V., Baidina, I. A. & Naumov, D. Yu. (2006). J. Struct. Chem. 47, 499-503.]); Brammer et al. (2001[Brammer, L., Bruton, E. A. & Sherwood, P. (2001). Cryst. Growth Des. 1, 277-290.]).

[Scheme 1]

Experimental

Crystal data
  • (C21H27N2)[AuCl4]·CH2Cl2

  • Mr = 731.14

  • Monoclinic, P 21 /c

  • a = 19.590 (3) Å

  • b = 8.9986 (13) Å

  • c = 15.306 (2) Å

  • β = 96.601 (2)°

  • V = 2680.4 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.10 mm−1

  • T = 100 (2) K

  • 0.30 × 0.25 × 0.10 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.]) Tmin = 0.146, Tmax = 0.546

  • 15546 measured reflections

  • 6083 independent reflections

  • 4516 reflections with I > 2σ(I)

  • Rint = 0.094

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.086

  • S = 0.91

  • 6083 reflections

  • 286 parameters

  • H-atom parameters constrained

  • Δρmax = 2.12 e Å−3

  • Δρmin = −2.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °) (with cut-off parameters as in Brammer et al., 2001[Brammer, L., Bruton, E. A. & Sherwood, P. (2001). Cryst. Growth Des. 1, 277-290.])

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯Cl1i 0.95 2.78 3.706 (6) 164
C12—H12C⋯Cl4ii 0.98 2.87 3.724 (6) 147
C15—H15⋯Cl3ii 0.95 2.87 3.740 (7) 152
C15—H15⋯Cl4ii 0.95 2.88 3.368 (6) 113
C17—H17A⋯Cl4 0.99 3.05 3.794 (6) 133
C17—H17B⋯Cl2iii 0.99 2.95 3.736 (6) 137
C17—H17B⋯Cl3iii 0.99 2.96 3.882 (6) 155
C18—H18B⋯Cl1 0.99 2.78 3.511 (6) 131
C25—H25A⋯Cl4ii 0.98 2.89 3.832 (6) 162
C25—H25B⋯Cl29iv 0.98 2.88 3.742 (7) 148
C25—H25C⋯Cl2iii 0.98 2.97 3.901 (6) 160
C25—H25C⋯Cl3iii 0.98 3.03 3.691 (6) 126
C26—H26B⋯Cl4 0.98 2.90 3.829 (7) 158
C27—H27C⋯Cl30v 0.98 3.04 3.838 (8) 140
C28—H28A⋯Cl3 0.99 2.63 3.486 (7) 145
Symmetry codes: (i) x, y-1, z; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) x, y, z-1; (v) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: X-SEED.

Supporting information


Comment top

During the course of ongoing studies on imine compounds of gold(III), we have isolated the title ionic compound, (I). The asymmetric unit (Fig. 1) consists of 1,3-dimesitylimidazolidinium cation, tetrachloro-gold(III) anion, and a dichloromethane molecule. To the best of our knowledge, there have been only two reports on crystal structures containing the title carbenium ion, presenting the structure of the 1,3-dimesitylimidazolidinium chloride acetonitrile solvate, (II), (Arduengo et al., 1995) and the imidazolidinium salt of a ruthenium(III) complex, (III) (da Costa et al., 2007), respectively. The structural parameters associated with the carbenium ion are similar to the reported ones. The only difference is the orientation of one of the mesitylene rings (C19-C24), which is almost perpendicular with respect to the plane of the imidazolidinium ring. The dihedral angle between those two planes is 89.5 (3)°, whereas in previous reports both the mesitylene rings were more or less twisted with respect to the plane of the imidazolidinium ring [66.0 (3)° and 75.1 (3)°] for (II) and 82.0 (3)° for (III). This corresponds with the orientation of the other mesitylene ring (C5-C10) [72.1 (3)°] described here.

The anionic part displays a typical square-planar geometry around Au and the Au-Cl distances compare well with previously reported values (Adé et al., 2004; Asaji et al., 2004; Makotchenko et al., 2006). All Cl atoms participate in the formation of weak C-H···Cl hydrogen bonds (Table 1) forming double layers in the bc plane [individual layers are linked by C27-H27C···Cl30 bonds with C···Cl distance of 3.838 (8) Å] which are further extended in the third dimension by face-to-face π-π interactions between mesitylene rings (C5-C10) of neighbouring double layers [symmetry code: 2 - x, -y, 1 - z] with centroid-centroid distance of 4.308 (4) Å (Fig. 2).

Related literature top

For related literature, see: Arduengo et al. (1995); da Costa et al. (2007); Adé et al. (2004); Asaji et al. (2004); Makotchenko et al. (2006); Brammer et al. (2001).

Experimental top

For the preparation of the title compound, 1,3-dimesitylimidazolidinium chloride (0.04 g, 1.2 mmol) in THF (20 ml) was treated with t-BuOK (0.13 g, 1.2 mmol) at room temperature, and then filtered through Celite into a solution of AuCl3 (0.35 g, 1.2 mmol) in THF (20 ml). The solvent was removed under reduced pressure. Orange crystals suitable for single crystal X-ray analysis were obtained from a dichloromethane solution layered with hexane at 253 K.

Refinement top

H atoms were positioned geometrically, with C-H = 0.95, 0.99 and 0.98 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: X-SEED (Barbour, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Space-filling representation of double layers (yellow-red) extended in the third dimension by π-π interactions (shown in blue).
1,3-Dimesitylimidazolidinium tetrachloridogold(III) dichloromethane solvate top
Crystal data top
(C21H27N2)[AuCl4]·CH2Cl2F(000) = 1424
Mr = 731.14Dx = 1.812 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3906 reflections
a = 19.590 (3) Åθ = 2.5–27.6°
b = 8.9986 (13) ŵ = 6.10 mm1
c = 15.306 (2) ÅT = 100 K
β = 96.601 (2)°Plate, orange
V = 2680.4 (7) Å30.30 × 0.25 × 0.10 mm
Z = 4
Data collection top
Bruker APEX CCD area-detector
diffractometer
6083 independent reflections
Radiation source: fine-focus sealed tube4516 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.094
ω scansθmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 2125
Tmin = 0.146, Tmax = 0.546k = 911
15546 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 0.91 w = 1/[σ2(Fo2) + (0.0211P)2]
where P = (Fo2 + 2Fc2)/3
6083 reflections(Δ/σ)max = 0.002
286 parametersΔρmax = 2.12 e Å3
0 restraintsΔρmin = 2.24 e Å3
Crystal data top
(C21H27N2)[AuCl4]·CH2Cl2V = 2680.4 (7) Å3
Mr = 731.14Z = 4
Monoclinic, P21/cMo Kα radiation
a = 19.590 (3) ŵ = 6.10 mm1
b = 8.9986 (13) ÅT = 100 K
c = 15.306 (2) Å0.30 × 0.25 × 0.10 mm
β = 96.601 (2)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
6083 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
4516 reflections with I > 2σ(I)
Tmin = 0.146, Tmax = 0.546Rint = 0.094
15546 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 0.91Δρmax = 2.12 e Å3
6083 reflectionsΔρmin = 2.24 e Å3
286 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.816928 (12)0.61599 (3)0.706473 (15)0.01554 (8)
Cl10.90506 (8)0.57587 (17)0.62476 (10)0.0221 (4)
Cl20.86227 (8)0.84160 (17)0.74770 (10)0.0229 (4)
Cl30.72796 (8)0.65262 (18)0.78862 (11)0.0240 (4)
Cl40.76938 (8)0.39359 (17)0.65952 (10)0.0220 (3)
C50.8618 (3)0.1217 (7)0.3991 (4)0.0168 (13)
C60.9177 (3)0.1185 (7)0.3509 (4)0.0184 (13)
C70.9615 (3)0.0040 (7)0.3640 (4)0.0179 (14)
H70.99970.01010.33110.022*
C80.9517 (3)0.1156 (7)0.4218 (4)0.0223 (14)
C90.8956 (3)0.1060 (7)0.4701 (4)0.0234 (15)
H90.88810.18290.51060.028*
C100.8503 (3)0.0132 (7)0.4605 (4)0.0222 (15)
C110.7906 (3)0.0228 (8)0.5168 (4)0.0259 (16)
H11C0.78990.12170.54340.039*
H11A0.79650.05260.56320.039*
H11B0.74710.00550.47960.039*
C120.9314 (3)0.2390 (7)0.2867 (4)0.0228 (15)
H12C0.89380.24180.23860.034*
H12A0.97470.21840.26280.034*
H12B0.93450.33520.31690.034*
C130.9994 (4)0.2463 (8)0.4345 (4)0.0299 (17)
H13B0.98290.32580.39370.045*
H13C1.00100.28240.49520.045*
H13A1.04560.21610.42310.045*
N140.8162 (3)0.2491 (6)0.3895 (3)0.0171 (12)
C150.7516 (3)0.2431 (7)0.3605 (4)0.0161 (13)
H150.73050.15760.33270.019*
N160.7176 (3)0.3665 (5)0.3729 (3)0.0168 (11)
C170.7660 (3)0.4782 (7)0.4162 (4)0.0170 (14)
H17A0.75050.51360.47190.020*
H17B0.77070.56440.37720.020*
C180.8333 (3)0.3929 (7)0.4333 (4)0.0210 (14)
H18A0.87070.44410.40690.025*
H18B0.84710.37950.49710.025*
C190.6464 (3)0.4010 (7)0.3447 (4)0.0165 (13)
C200.5985 (3)0.3755 (7)0.4036 (4)0.0207 (14)
C210.5323 (3)0.4244 (7)0.3781 (4)0.0191 (14)
H210.49830.40970.41680.023*
C220.5134 (3)0.4949 (7)0.2971 (4)0.0209 (15)
C230.5620 (3)0.5118 (7)0.2400 (4)0.0210 (15)
H230.54920.55740.18450.025*
C240.6297 (3)0.4639 (7)0.2613 (4)0.0202 (15)
C250.6811 (3)0.4777 (7)0.1960 (4)0.0230 (15)
H25C0.72220.52910.22360.034*
H25B0.66090.53470.14490.034*
H25A0.69380.37850.17710.034*
C260.6168 (4)0.2988 (8)0.4893 (4)0.0303 (17)
H26C0.57800.30480.52430.045*
H26B0.65710.34670.52120.045*
H26A0.62720.19420.47870.045*
C270.4414 (3)0.5523 (9)0.2740 (5)0.0317 (18)
H27C0.43170.56190.21000.048*
H27A0.43690.64960.30150.048*
H27B0.40870.48260.29550.048*
C280.6210 (4)0.7360 (8)0.9489 (4)0.0303 (17)
H28B0.60540.81680.90750.036*
H28A0.65920.68330.92510.036*
Cl290.65120 (9)0.8137 (2)1.05262 (12)0.0335 (4)
Cl300.55384 (12)0.6129 (3)0.95642 (15)0.0580 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.01694 (12)0.01813 (12)0.01117 (12)0.00007 (12)0.00005 (8)0.00093 (11)
Cl10.0243 (8)0.0229 (8)0.0202 (8)0.0012 (7)0.0073 (7)0.0006 (6)
Cl20.0252 (9)0.0197 (8)0.0236 (9)0.0021 (7)0.0019 (7)0.0038 (6)
Cl30.0232 (8)0.0241 (9)0.0263 (9)0.0015 (7)0.0089 (7)0.0007 (7)
Cl40.0268 (8)0.0220 (8)0.0167 (8)0.0060 (7)0.0004 (6)0.0012 (7)
C50.019 (3)0.019 (3)0.010 (3)0.002 (3)0.004 (2)0.002 (3)
C60.014 (3)0.027 (4)0.014 (3)0.002 (3)0.002 (2)0.008 (3)
C70.011 (3)0.028 (4)0.015 (3)0.004 (3)0.002 (3)0.009 (3)
C80.032 (4)0.024 (3)0.010 (3)0.007 (3)0.003 (3)0.004 (3)
C90.029 (4)0.024 (4)0.017 (3)0.003 (3)0.001 (3)0.001 (3)
C100.024 (4)0.027 (4)0.015 (4)0.000 (3)0.004 (3)0.001 (3)
C110.027 (4)0.031 (4)0.020 (4)0.006 (3)0.006 (3)0.007 (3)
C120.015 (3)0.027 (4)0.027 (4)0.001 (3)0.005 (3)0.002 (3)
C130.036 (4)0.039 (4)0.014 (4)0.013 (4)0.003 (3)0.003 (3)
N140.014 (3)0.025 (3)0.012 (3)0.001 (2)0.000 (2)0.002 (2)
C150.021 (3)0.019 (3)0.008 (3)0.005 (3)0.002 (3)0.006 (2)
N160.017 (3)0.015 (3)0.018 (3)0.000 (2)0.002 (2)0.004 (2)
C170.015 (3)0.017 (3)0.017 (3)0.002 (3)0.004 (3)0.003 (3)
C180.013 (3)0.025 (4)0.025 (3)0.007 (3)0.002 (3)0.006 (3)
C190.018 (3)0.014 (3)0.017 (3)0.003 (3)0.001 (3)0.001 (3)
C200.025 (3)0.019 (3)0.018 (3)0.003 (3)0.003 (3)0.004 (3)
C210.017 (3)0.024 (4)0.017 (3)0.006 (3)0.004 (3)0.000 (3)
C220.011 (3)0.025 (4)0.026 (4)0.002 (3)0.000 (3)0.001 (3)
C230.022 (4)0.023 (4)0.018 (4)0.008 (3)0.002 (3)0.000 (3)
C240.021 (4)0.020 (3)0.019 (4)0.004 (3)0.001 (3)0.004 (3)
C250.026 (4)0.028 (4)0.016 (4)0.003 (3)0.006 (3)0.001 (3)
C260.030 (4)0.035 (4)0.026 (4)0.006 (3)0.002 (3)0.004 (3)
C270.020 (4)0.049 (5)0.026 (4)0.006 (4)0.005 (3)0.006 (4)
C280.039 (4)0.032 (4)0.020 (4)0.004 (4)0.005 (3)0.004 (3)
Cl290.0332 (10)0.0352 (10)0.0312 (10)0.0055 (9)0.0001 (8)0.0011 (8)
Cl300.0640 (15)0.0613 (15)0.0492 (13)0.0310 (13)0.0087 (11)0.0151 (12)
Geometric parameters (Å, º) top
Au1—Cl12.2742 (16)N16—C171.484 (7)
Au1—Cl22.2759 (16)C17—C181.523 (8)
Au1—Cl32.2872 (16)C17—H17A0.9900
Au1—Cl42.2881 (16)C17—H17B0.9900
C5—C61.390 (8)C18—H18A0.9900
C5—C101.391 (8)C18—H18B0.9900
C5—N141.449 (8)C19—C201.392 (9)
C6—C71.397 (8)C19—C241.401 (8)
C6—C121.508 (8)C20—C211.383 (9)
C7—C81.367 (9)C20—C261.489 (9)
C7—H70.9500C21—C221.404 (9)
C8—C91.397 (9)C21—H210.9500
C8—C131.501 (9)C22—C231.373 (9)
C9—C101.389 (9)C22—C271.505 (8)
C9—H90.9500C23—C241.397 (8)
C10—C111.533 (9)C23—H230.9500
C11—H11C0.9800C24—C251.503 (9)
C11—H11A0.9800C25—H25C0.9800
C11—H11B0.9800C25—H25B0.9800
C12—H12C0.9800C25—H25A0.9800
C12—H12A0.9800C26—H26C0.9800
C12—H12B0.9800C26—H26B0.9800
C13—H13B0.9800C26—H26A0.9800
C13—H13C0.9800C27—H27C0.9800
C13—H13A0.9800C27—H27A0.9800
N14—C151.294 (7)C27—H27B0.9800
N14—C181.478 (8)C28—Cl301.734 (7)
C15—N161.320 (8)C28—Cl291.773 (7)
C15—H150.9500C28—H28B0.9900
N16—C191.446 (7)C28—H28A0.9900
Cl1—Au1—Cl289.85 (6)C18—C17—H17A111.1
Cl1—Au1—Cl3179.15 (6)N16—C17—H17B111.1
Cl2—Au1—Cl390.96 (6)C18—C17—H17B111.1
Cl1—Au1—Cl489.76 (6)H17A—C17—H17B109.1
Cl2—Au1—Cl4177.57 (6)N14—C18—C17102.5 (4)
Cl3—Au1—Cl489.44 (6)N14—C18—H18A111.3
C6—C5—C10122.8 (6)C17—C18—H18A111.3
C6—C5—N14118.4 (5)N14—C18—H18B111.3
C10—C5—N14118.6 (6)C17—C18—H18B111.3
C5—C6—C7116.7 (6)H18A—C18—H18B109.2
C5—C6—C12122.7 (6)C20—C19—C24123.6 (6)
C7—C6—C12120.6 (6)C20—C19—N16118.1 (5)
C8—C7—C6122.9 (6)C24—C19—N16118.3 (5)
C8—C7—H7118.6C21—C20—C19116.4 (6)
C6—C7—H7118.6C21—C20—C26121.3 (6)
C7—C8—C9118.4 (6)C19—C20—C26122.4 (6)
C7—C8—C13121.9 (6)C20—C21—C22122.5 (6)
C9—C8—C13119.7 (6)C20—C21—H21118.7
C10—C9—C8121.5 (6)C22—C21—H21118.7
C10—C9—H9119.2C23—C22—C21118.7 (6)
C8—C9—H9119.2C23—C22—C27120.8 (6)
C9—C10—C5117.7 (6)C21—C22—C27120.5 (6)
C9—C10—C11120.2 (6)C22—C23—C24121.8 (6)
C5—C10—C11122.2 (6)C22—C23—H23119.1
C10—C11—H11C109.5C24—C23—H23119.1
C10—C11—H11A109.5C23—C24—C19116.9 (6)
H11C—C11—H11A109.5C23—C24—C25120.7 (6)
C10—C11—H11B109.5C19—C24—C25122.4 (6)
H11C—C11—H11B109.5C24—C25—H25C109.5
H11A—C11—H11B109.5C24—C25—H25B109.5
C6—C12—H12C109.5H25C—C25—H25B109.5
C6—C12—H12A109.5C24—C25—H25A109.5
H12C—C12—H12A109.5H25C—C25—H25A109.5
C6—C12—H12B109.5H25B—C25—H25A109.5
H12C—C12—H12B109.5C20—C26—H26C109.5
H12A—C12—H12B109.5C20—C26—H26B109.5
C8—C13—H13B109.5H26C—C26—H26B109.5
C8—C13—H13C109.5C20—C26—H26A109.5
H13B—C13—H13C109.5H26C—C26—H26A109.5
C8—C13—H13A109.5H26B—C26—H26A109.5
H13B—C13—H13A109.5C22—C27—H27C109.5
H13C—C13—H13A109.5C22—C27—H27A109.5
C15—N14—C5124.6 (5)H27C—C27—H27A109.5
C15—N14—C18110.7 (5)C22—C27—H27B109.5
C5—N14—C18122.8 (5)H27C—C27—H27B109.5
N14—C15—N16113.9 (6)H27A—C27—H27B109.5
N14—C15—H15123.0Cl30—C28—Cl29111.7 (4)
N16—C15—H15123.0Cl30—C28—H28B109.3
C15—N16—C19128.6 (5)Cl29—C28—H28B109.3
C15—N16—C17109.1 (5)Cl30—C28—H28A109.3
C19—N16—C17122.2 (5)Cl29—C28—H28A109.3
N16—C17—C18103.4 (5)H28B—C28—H28A107.9
N16—C17—H17A111.1
C10—C5—C6—C72.7 (9)C19—N16—C17—C18180.0 (5)
N14—C5—C6—C7178.1 (5)C15—N14—C18—C175.3 (7)
C10—C5—C6—C12177.8 (6)C5—N14—C18—C17170.6 (5)
N14—C5—C6—C122.4 (8)N16—C17—C18—N145.5 (6)
C5—C6—C7—C81.1 (9)C15—N16—C19—C2094.1 (8)
C12—C6—C7—C8179.4 (6)C17—N16—C19—C2091.1 (7)
C6—C7—C8—C90.2 (9)C15—N16—C19—C2488.5 (8)
C6—C7—C8—C13179.9 (6)C17—N16—C19—C2486.3 (7)
C7—C8—C9—C100.1 (9)C24—C19—C20—C213.9 (9)
C13—C8—C9—C10179.9 (6)N16—C19—C20—C21173.3 (5)
C8—C9—C10—C51.6 (9)C24—C19—C20—C26175.6 (6)
C8—C9—C10—C11177.9 (6)N16—C19—C20—C267.2 (9)
C6—C5—C10—C93.0 (9)C19—C20—C21—C220.6 (9)
N14—C5—C10—C9178.4 (5)C26—C20—C21—C22178.9 (6)
C6—C5—C10—C11176.6 (6)C20—C21—C22—C232.0 (10)
N14—C5—C10—C111.1 (9)C20—C21—C22—C27177.2 (6)
C6—C5—N14—C15118.6 (7)C21—C22—C23—C241.4 (10)
C10—C5—N14—C1565.8 (8)C27—C22—C23—C24177.8 (6)
C6—C5—N14—C1878.2 (7)C22—C23—C24—C191.6 (9)
C10—C5—N14—C1897.4 (7)C22—C23—C24—C25177.3 (6)
C5—N14—C15—N16167.8 (5)C20—C19—C24—C234.5 (9)
C18—N14—C15—N162.9 (7)N16—C19—C24—C23172.8 (5)
N14—C15—N16—C19176.4 (6)C20—C19—C24—C25174.5 (6)
N14—C15—N16—C171.0 (7)N16—C19—C24—C258.3 (9)
C15—N16—C17—C184.3 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···Cl1i0.952.783.706 (6)164
C12—H12C···Cl4ii0.982.873.724 (6)147
C15—H15···Cl3ii0.952.873.740 (7)152
C15—H15···Cl4ii0.952.883.368 (6)113
C17—H17A···Cl40.993.053.794 (6)133
C17—H17B···Cl2iii0.992.953.736 (6)137
C17—H17B···Cl3iii0.992.963.882 (6)155
C18—H18B···Cl10.992.783.511 (6)131
C25—H25A···Cl4ii0.982.893.832 (6)162
C25—H25B···Cl29iv0.982.883.742 (7)148
C25—H25C···Cl2iii0.982.973.901 (6)160
C25—H25C···Cl3iii0.983.033.691 (6)126
C26—H26B···Cl40.982.903.829 (7)158
C27—H27C···Cl30v0.983.043.838 (8)140
C28—H28A···Cl30.992.633.486 (7)145
Symmetry codes: (i) x, y1, z; (ii) x, y+1/2, z1/2; (iii) x, y+3/2, z1/2; (iv) x, y, z1; (v) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula(C21H27N2)[AuCl4]·CH2Cl2
Mr731.14
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)19.590 (3), 8.9986 (13), 15.306 (2)
β (°) 96.601 (2)
V3)2680.4 (7)
Z4
Radiation typeMo Kα
µ (mm1)6.10
Crystal size (mm)0.30 × 0.25 × 0.10
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.146, 0.546
No. of measured, independent and
observed [I > 2σ(I)] reflections
15546, 6083, 4516
Rint0.094
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.087, 0.91
No. of reflections6083
No. of parameters286
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.12, 2.24

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···Cl1i0.952.783.706 (6)164
C12—H12C···Cl4ii0.982.873.724 (6)147
C15—H15···Cl3ii0.952.873.740 (7)152
C15—H15···Cl4ii0.952.883.368 (6)113
C17—H17A···Cl40.993.053.794 (6)133
C17—H17B···Cl2iii0.992.953.736 (6)137
C17—H17B···Cl3iii0.992.963.882 (6)155
C18—H18B···Cl10.992.783.511 (6)131
C25—H25A···Cl4ii0.982.893.832 (6)162
C25—H25B···Cl29iv0.982.883.742 (7)148
C25—H25C···Cl2iii0.982.973.901 (6)160
C25—H25C···Cl3iii0.983.033.691 (6)126
C26—H26B···Cl40.982.903.829 (7)158
C27—H27C···Cl30v0.983.043.838 (8)140
C28—H28A···Cl30.992.633.486 (7)145
Symmetry codes: (i) x, y1, z; (ii) x, y+1/2, z1/2; (iii) x, y+3/2, z1/2; (iv) x, y, z1; (v) x+1, y+1, z+1.
 

Acknowledgements

The authors thank the National Research Foundation of South Africa and the University of Stellenbosch for financial support.

References

First citationAdé, A., Cerrada, E., Contel, M., Laguna, M., Merino, P. & Tejero, T. (2004). J. Organomet. Chem. 689, 1788–1795.  Google Scholar
First citationArduengo, A. J. III, Goerlich, J. R. & Marshall, W. J. (1995). J. Am. Chem. Soc. 117, 11027–11028.  CrossRef CAS Web of Science Google Scholar
First citationAsaji, T., Akiyama, E., Tajima, F., Eda, K., Hashimoto, M. & Furukawa, Y. (2004). Polyhedron, 23, 1605–1611.  Web of Science CSD CrossRef CAS Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBrammer, L., Bruton, E. A. & Sherwood, P. (2001). Cryst. Growth Des. 1, 277–290.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosta, R. C. da, Hampel, F. & Gladysz, J. A. (2007). Polyhedron, 26, 581–588.  Google Scholar
First citationMakotchenko, E. V., Baidina, I. A. & Naumov, D. Yu. (2006). J. Struct. Chem. 47, 499–503.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds