organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(4-Meth­oxy­phen­yl)isochroman-1-one

aDepartment of Chemistry, National Textile University, Faisalabad, Pakistan, bDepartment of Physics, University of Sargodha, Sargodha, Pakistan, cDepartment of Chemistry, Government College University, Lahore, Pakistan, and dDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 27 September 2008; accepted 9 October 2008; online 15 October 2008)

In the mol­ecule of the title compound, C16H14O3, the aromatic rings are oriented at a dihedral angle of 72.02 (6)°. The heterocyclic ring adopts a twisted conformation. In the crystal structure, there are C—H⋯π contacts between the heterocyclic and phenyl rings, and between the methyl group and methoxy­phenyl ring.

Related literature

For related structures, see: Schmalle et al. (1982[Schmalle, H. W., Jarchow, O. H., Hausen, B. M. & Schulz, K.-H. (1982). Acta Cryst. B38, 2938-2941.]); Schnebel et al. (2003[Schnebel, M., Weidner, I., Wartchow, R. & Butenschon, H. (2003). Eur. J. Org. Chem. pp. 4363-4372.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14O3

  • Mr = 254.27

  • Monoclinic, P 21 /c

  • a = 11.8933 (7) Å

  • b = 14.6874 (9) Å

  • c = 7.4521 (4) Å

  • β = 101.040 (2)°

  • V = 1277.66 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 (2) K

  • 0.24 × 0.16 × 0.12 mm

Data collection
  • Bruker KappaAPEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.980, Tmax = 0.996

  • 12426 measured reflections

  • 3302 independent reflections

  • 2275 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.117

  • S = 1.01

  • 3302 reflections

  • 175 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C2–C7 and C10–C15 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8BCg2i 0.97 2.94 3.8398 (16) 154
C16—H16BCg3ii 0.96 2.89 3.7804 (17) 154
Symmetry codes: (i) -x+1, -y, -z; (ii) -x+2, -y, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The title compound was prepared in order to evalute its potential as antibacterial and antifungal agents. The CCDC search (Allen, 2002) showed that the crystal structures of rac-exo-tricarbonyl-(h6-3-phenylisochromanone)-chromium (Schnebel et al., 2003) and 3,4-dihydro-8-hydroxy-3-(4-hydroxyphenyl)-isocoumarin (Schmalle et al., 1982) have been reported, which have close resemblance as far as isochromane and attached phenyl ring is considered.

In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C2–C7) and C (C10–C15) are, of course, planar, and they are oriented at a dihedral angle of 72.02 (6)°. Ring B (O2/C1/C2/C7–C9) is not planar, having total puckering amplitude, QT, of 0.483 (2) Å and twisted conformation [ϕ = 41.63 (3)° and θ = 116.64 (3)°] (Cremer & Pople, 1975).

In the crystal structure, there are C—H···π contacts (Table 1) between the heterocyclic and phenyl rings and the methyl group and methoxyphenyl ring, in which they may be effective in the stabilization of the structure.

Related literature top

For related structures, see: Schmalle et al. (1982); Schnebel et al. (2003). For bond-length data, see: Allen et al. (1987). For ring puckering parameters, see: Cremer & Pople (1975). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

As shown in Fig. 3, a mixture of homophthalic acid, (1), (1.98 g, 11.0 mmol) and 4-methoxybenzoyl chloride, (2), (7.85 g, 46 mmol) was heated under reflux at 473 K. After concentration, the residue was chromatographed on silica gel column using petroleum ether (333–353 K) to give 3-(4-methoxyphenyl)isocoumarin, (3). 2-[2'-Oxoethyl-2'-(4'-methoxyphenyl)]benzoic acid, (4), was obtained by refluxing a solution of (3) (4 g, 15.9 mmol) in ethanol (200 ml) and potassium hydroxide (5%, 200 ml) for 4 h. NaBH4 (1.6 g) was added to a solution of (4) (4.81 g, 17.8 mmol) in sodium hydroxide (1%, 180 ml) and the resulting solution was stirred overnight at room temperature. After being acidified with HCl, the whole mixture was extracted with dichloromethane (2 × 15 ml). Usual work-up gave crude racemic hydroxy-acid, (5), which was dissolved in acetic anhydride (5 ml) and heated under reflux for 2 h to get the title compound (6). The crude compound was purified by column chromatography on silica gel with petroleum ether and recrystallized in ethanol.

Refinement top

H9 atom was located in difference syntheses and refined as [C—H = 0.968 (15) Å; Uiso(H) = 0.0527 A2]. The remaining H atoms were positioned geometrically, with C—H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound.
[Figure 3] Fig. 3. Preparation of the title compound.
3-(4-Methoxyphenyl)isochroman-1-one top
Crystal data top
C16H14O3F(000) = 536
Mr = 254.27Dx = 1.332 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3302 reflections
a = 11.8933 (7) Åθ = 2.2–28.8°
b = 14.6874 (9) ŵ = 0.09 mm1
c = 7.4521 (4) ÅT = 296 K
β = 101.040 (2)°Prismatic, yellow
V = 1277.66 (13) Å30.24 × 0.16 × 0.12 mm
Z = 4
Data collection top
Bruker KappaAPEXII CCD
diffractometer
3302 independent reflections
Radiation source: fine-focus sealed tube2275 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 7.40 pixels mm-1θmax = 28.8°, θmin = 2.2°
ω scansh = 1616
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1919
Tmin = 0.980, Tmax = 0.996l = 910
12426 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0481P)2 + 0.2427P]
where P = (Fo2 + 2Fc2)/3
3302 reflections(Δ/σ)max < 0.001
175 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C16H14O3V = 1277.66 (13) Å3
Mr = 254.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.8933 (7) ŵ = 0.09 mm1
b = 14.6874 (9) ÅT = 296 K
c = 7.4521 (4) Å0.24 × 0.16 × 0.12 mm
β = 101.040 (2)°
Data collection top
Bruker KappaAPEXII CCD
diffractometer
3302 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2275 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.996Rint = 0.023
12426 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.14 e Å3
3302 reflectionsΔρmin = 0.22 e Å3
175 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.56862 (10)0.12610 (9)0.37797 (13)0.0668 (4)
O20.68506 (8)0.13694 (7)0.11396 (12)0.0495 (3)
O31.15702 (8)0.09384 (8)0.43236 (15)0.0642 (4)
C10.57829 (12)0.13397 (9)0.21507 (18)0.0460 (4)
C20.48087 (11)0.13874 (8)0.11934 (17)0.0421 (4)
C30.37156 (12)0.15327 (9)0.2200 (2)0.0512 (5)
C40.27961 (12)0.15613 (10)0.1325 (2)0.0575 (5)
C50.29633 (12)0.14322 (10)0.0534 (2)0.0576 (5)
C60.40443 (12)0.12764 (10)0.1541 (2)0.0519 (5)
C70.49834 (11)0.12588 (8)0.06918 (17)0.0422 (4)
C80.61822 (11)0.11135 (10)0.17022 (17)0.0465 (4)
C90.70140 (11)0.16318 (9)0.07877 (17)0.0440 (4)
C100.82407 (11)0.14481 (9)0.16272 (17)0.0438 (4)
C110.88770 (12)0.20841 (10)0.27598 (19)0.0525 (5)
C120.99780 (12)0.18919 (11)0.3646 (2)0.0573 (5)
C131.04728 (11)0.10621 (10)0.34024 (18)0.0484 (4)
C140.98541 (12)0.04249 (10)0.2268 (2)0.0542 (5)
C150.87482 (12)0.06259 (10)0.1397 (2)0.0529 (5)
C161.20764 (14)0.00719 (12)0.4207 (2)0.0664 (6)
H30.360430.161050.345990.0615*
H40.206310.166790.199030.0690*
H50.233960.145010.111860.0691*
H60.414380.118260.279550.0623*
H8A0.625020.131970.295490.0558*
H8B0.636410.046930.172370.0558*
H90.6859 (12)0.2278 (10)0.0814 (19)0.0527*
H110.855770.264870.292520.0630*
H121.039080.232450.441480.0687*
H141.017720.013640.208920.0651*
H150.833510.019220.063190.0635*
H16A1.284120.007330.491430.0995*
H16B1.163060.038390.467490.0995*
H16C1.210010.006050.295340.0995*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0692 (7)0.0953 (8)0.0350 (5)0.0026 (6)0.0079 (5)0.0001 (5)
O20.0472 (5)0.0654 (6)0.0364 (5)0.0014 (4)0.0096 (4)0.0001 (4)
O30.0460 (6)0.0818 (8)0.0601 (6)0.0054 (5)0.0018 (5)0.0082 (5)
C10.0519 (8)0.0472 (7)0.0378 (6)0.0003 (6)0.0062 (6)0.0032 (5)
C20.0466 (7)0.0375 (6)0.0410 (7)0.0019 (5)0.0057 (5)0.0020 (5)
C30.0539 (8)0.0477 (8)0.0480 (8)0.0011 (6)0.0003 (6)0.0040 (6)
C40.0443 (8)0.0557 (8)0.0688 (10)0.0005 (6)0.0013 (7)0.0014 (7)
C50.0464 (8)0.0594 (9)0.0694 (10)0.0051 (6)0.0170 (7)0.0047 (7)
C60.0513 (8)0.0585 (8)0.0477 (8)0.0056 (6)0.0138 (6)0.0006 (6)
C70.0446 (7)0.0408 (6)0.0409 (7)0.0030 (5)0.0072 (5)0.0008 (5)
C80.0465 (7)0.0574 (8)0.0351 (6)0.0001 (6)0.0064 (5)0.0041 (5)
C90.0465 (7)0.0474 (7)0.0375 (6)0.0012 (6)0.0069 (5)0.0026 (5)
C100.0435 (7)0.0493 (7)0.0396 (6)0.0033 (5)0.0106 (5)0.0023 (5)
C110.0501 (8)0.0503 (8)0.0565 (8)0.0003 (6)0.0089 (6)0.0116 (6)
C120.0514 (8)0.0615 (9)0.0561 (9)0.0065 (7)0.0033 (7)0.0168 (7)
C130.0416 (7)0.0636 (9)0.0401 (7)0.0007 (6)0.0079 (5)0.0026 (6)
C140.0522 (8)0.0547 (8)0.0547 (8)0.0056 (6)0.0074 (7)0.0085 (7)
C150.0514 (8)0.0522 (8)0.0525 (8)0.0039 (6)0.0033 (6)0.0126 (6)
C160.0561 (9)0.0836 (12)0.0574 (9)0.0146 (8)0.0060 (7)0.0092 (8)
Geometric parameters (Å, º) top
O1—C11.2028 (16)C12—C131.380 (2)
O2—C11.3475 (17)C13—C141.376 (2)
O2—C91.4636 (15)C14—C151.383 (2)
O3—C131.3655 (17)C3—H30.9300
O3—C161.418 (2)C4—H40.9300
C1—C21.4741 (19)C5—H50.9300
C2—C31.387 (2)C6—H60.9300
C2—C71.3931 (18)C8—H8A0.9700
C3—C41.377 (2)C8—H8B0.9700
C4—C51.375 (2)C9—H90.968 (15)
C5—C61.378 (2)C11—H110.9300
C6—C71.385 (2)C12—H120.9300
C7—C81.4947 (19)C14—H140.9300
C8—C91.5102 (19)C15—H150.9300
C9—C101.4977 (19)C16—H16A0.9600
C10—C111.3831 (19)C16—H16B0.9600
C10—C151.375 (2)C16—H16C0.9600
C11—C121.378 (2)
O1···C16i3.367 (2)C16···H142.5100
O3···C4ii3.4157 (18)H3···O12.5800
O3···C3ii3.3841 (18)H3···O3vi2.8300
O1···H32.5800H3···C5iv3.0300
O1···H6iii2.8500H4···O3vi2.9000
O1···H9iv2.608 (15)H5···O3x2.8200
O1···H8Aiii2.6500H5···C13x3.1000
O1···H16Ai2.8600H6···O1xi2.8500
O2···H11iv2.6900H6···H8A2.4900
O2···H152.6400H8A···O1xi2.6500
O2···H16Ci2.7800H8A···H62.4900
O3···H3ii2.8300H8B···C152.9000
O3···H4ii2.9000H8B···C2viii3.0500
O3···H5v2.8200H8B···C3viii2.9700
C3···C6iv3.395 (2)H9···C22.915 (14)
C3···O3vi3.3841 (18)H9···H112.3700
C3···C5iv3.465 (2)H9···O1vii2.608 (15)
C4···O3vi3.4157 (18)H9···C1vii2.967 (15)
C5···C3vii3.465 (2)H11···H92.3700
C6···C3vii3.395 (2)H11···O2vii2.6900
C16···O1i3.367 (2)H14···C162.5100
C1···H9iv2.967 (15)H14···H16B2.3600
C2···H8Bviii3.0500H14···H16C2.2600
C2···H92.915 (14)H15···O22.6400
C3···H16Avi3.0700H15···C4viii3.0000
C3···H8Bviii2.9700H15···C5viii2.8800
C4···H15viii3.0000H16A···C3ii3.0700
C5···H3vii3.0300H16A···O1i2.8600
C5···H15viii2.8800H16B···C142.7600
C13···H5v3.1000H16B···H142.3600
C14···H16B2.7600H16B···C15ix3.0700
C14···H16C2.7200H16C···C142.7200
C15···H16Bix3.0700H16C···H142.2600
C15···H8B2.9000H16C···O2i2.7800
C1—O2—C9119.41 (10)C4—C3—H3120.00
C13—O3—C16117.70 (12)C3—C4—H4120.00
O1—C1—O2117.72 (13)C5—C4—H4120.00
O1—C1—C2124.12 (13)C4—C5—H5120.00
O2—C1—C2118.15 (11)C6—C5—H5120.00
C1—C2—C3119.19 (12)C5—C6—H6120.00
C1—C2—C7120.16 (12)C7—C6—H6120.00
C3—C2—C7120.63 (12)C7—C8—H8A110.00
C2—C3—C4119.71 (13)C7—C8—H8B110.00
C3—C4—C5119.89 (14)C9—C8—H8A110.00
C4—C5—C6120.77 (14)C9—C8—H8B110.00
C5—C6—C7120.27 (13)H8A—C8—H8B108.00
C2—C7—C6118.72 (12)O2—C9—H9106.7 (8)
C2—C7—C8118.10 (12)C8—C9—H9110.0 (9)
C6—C7—C8123.18 (12)C10—C9—H9110.0 (9)
C7—C8—C9110.17 (11)C10—C11—H11120.00
O2—C9—C8109.56 (10)C12—C11—H11120.00
O2—C9—C10107.35 (10)C11—C12—H12120.00
C8—C9—C10112.99 (11)C13—C12—H12120.00
C9—C10—C11120.57 (12)C13—C14—H14120.00
C9—C10—C15121.45 (12)C15—C14—H14120.00
C11—C10—C15117.85 (13)C10—C15—H15119.00
C10—C11—C12120.85 (14)C14—C15—H15119.00
C11—C12—C13120.51 (14)O3—C16—H16A109.00
O3—C13—C12116.22 (13)O3—C16—H16B109.00
O3—C13—C14124.44 (13)O3—C16—H16C109.00
C12—C13—C14119.34 (13)H16A—C16—H16B109.00
C13—C14—C15119.47 (13)H16A—C16—H16C109.00
C10—C15—C14121.98 (13)H16B—C16—H16C109.00
C2—C3—H3120.00
C9—O2—C1—O1168.75 (13)C5—C6—C7—C8178.66 (13)
C9—O2—C1—C212.42 (17)C2—C7—C8—C932.06 (16)
C1—O2—C9—C847.27 (15)C6—C7—C8—C9147.57 (13)
C1—O2—C9—C10170.31 (11)C7—C8—C9—O255.05 (14)
C16—O3—C13—C12175.67 (13)C7—C8—C9—C10174.68 (11)
C16—O3—C13—C144.8 (2)O2—C9—C10—C11134.82 (12)
O1—C1—C2—C313.4 (2)O2—C9—C10—C1549.38 (16)
O1—C1—C2—C7164.54 (14)C8—C9—C10—C11104.28 (15)
O2—C1—C2—C3167.82 (12)C8—C9—C10—C1571.51 (16)
O2—C1—C2—C714.21 (18)C9—C10—C11—C12175.05 (13)
C1—C2—C3—C4178.77 (12)C15—C10—C11—C120.9 (2)
C7—C2—C3—C40.81 (19)C9—C10—C15—C14175.39 (13)
C1—C2—C7—C6177.78 (12)C11—C10—C15—C140.5 (2)
C1—C2—C7—C82.58 (17)C10—C11—C12—C130.8 (2)
C3—C2—C7—C60.17 (18)C11—C12—C13—O3179.38 (13)
C3—C2—C7—C8179.48 (12)C11—C12—C13—C140.2 (2)
C2—C3—C4—C51.0 (2)O3—C13—C14—C15179.72 (13)
C3—C4—C5—C60.2 (2)C12—C13—C14—C150.2 (2)
C4—C5—C6—C70.8 (2)C13—C14—C15—C100.0 (2)
C5—C6—C7—C21.0 (2)
Symmetry codes: (i) x+2, y, z; (ii) x+1, y, z+1; (iii) x, y, z1; (iv) x, y+1/2, z1/2; (v) x+1, y, z; (vi) x1, y, z1; (vii) x, y+1/2, z+1/2; (viii) x+1, y, z; (ix) x+2, y, z+1; (x) x1, y, z; (xi) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···Cg2viii0.972.943.8398 (16)154
C16—H16B···Cg3ix0.962.893.7804 (17)154
Symmetry codes: (viii) x+1, y, z; (ix) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC16H14O3
Mr254.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)11.8933 (7), 14.6874 (9), 7.4521 (4)
β (°) 101.040 (2)
V3)1277.66 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.24 × 0.16 × 0.12
Data collection
DiffractometerBruker KappaAPEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.980, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
12426, 3302, 2275
Rint0.023
(sin θ/λ)max1)0.677
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.117, 1.01
No. of reflections3302
No. of parameters175
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.22

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···Cg2i0.972.943.8398 (16)154
C16—H16B···Cg3ii0.962.893.7804 (17)154
Symmetry codes: (i) x+1, y, z; (ii) x+2, y, z+1.
 

Acknowledgements

The authors acknowledge the Higher Education Commision, Islamabad, Pakistan, for funding the purchase of the diffractometer at GCU, Lahore.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSchmalle, H. W., Jarchow, O. H., Hausen, B. M. & Schulz, K.-H. (1982). Acta Cryst. B38, 2938–2941.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSchnebel, M., Weidner, I., Wartchow, R. & Butenschon, H. (2003). Eur. J. Org. Chem. pp. 4363–4372.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds