metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 11| November 2008| Pages m1397-m1398

Di-μ-bromido-bis­­[bromido(4,4′-di­methyl-2,2′-bi­pyridine-κ2N,N′)mercury(II)]

aIslamic Azad University, Shahr-e-Rey Branch, Tehran, Iran, bDepartment of Chemistry, Islamic Azad University, Kazeroon Branch, Kazeroon, Fars, Iran, and cDepartment of Chemistry, Shahid Beheshti University, Tehran 1983963113, Iran
*Correspondence e-mail: v_amani2002@yahoo.com

(Received 27 September 2008; accepted 8 October 2008; online 15 October 2008)

The asymmetric unit of the title compound, [Hg2Br4(C12H12N2)2], contains one half-mol­ecule. The HgII atom is five-coordinated in a trigonal–bipyramidal configuration by two N atoms from the chelating 4,4′-dimethyl-2,2′-bipyridine ligand, two bridging Br and one terminal Br atom, leading to a centrosymmetric dimeric mol­ecule. There is a ππ contact between the pyridine rings [centroid-to-centroid distance = 3.756 (5) Å].

Related literature

For related literature, see: Ahmadi, Kalateh, Ebadi et al. (2008[Ahmadi, R., Kalateh, K., Ebadi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1266.]); Ahmadi, Khalighi et al. (2008[Ahmadi, R., Khalighi, A., Kalateh, K., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1233.]); Ahmadi, Kalateh, Abedi et al. (2008[Ahmadi, R., Kalateh, K., Abedi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1306-m1307.]); Kalateh et al. (2008[Kalateh, K., Ahmadi, R., Ebadi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1353-m1354.]); Khalighi et al. (2008[Khalighi, A., Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1211-m1212.]); Khavasi et al. (2008[Khavasi, H. R., Abedi, A., Amani, V., Notash, B. & Safari, N. (2008). Polyhedron, 27, 1848-1854.]); Tadayon Pour et al. (2008[Tadayon Pour, N., Ebadi, A., Abedi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1305.]); Yousefi, Rashidi Vahid et al. (2008[Yousefi, M., Rashidi Vahid, R., Amani, V., Arab Chamjangali, M. & Khavasi, H. R. (2008). Acta Cryst. E64, m1339-m1340.]); Yousefi, Tadayon Pour et al. (2008[Yousefi, M., Tadayon Pour, N., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1259.]); Yousefi, Khalighi et al. (2008[Yousefi, M., Khalighi, A., Tadayon Pour, N., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1284-m1285.]). For related structures, see: Craig et al. (1974[Craig, D. C., Farhangi, Y., Graddon, D. P. & Stephenson, N. C. (1974). Cryst. Struct. Commun. 3, 155-158.]); Perlepes et al. (1995[Perlepes, S. P., Kasselouri, S., Garoufis, A., Lutz, F., Bau, R. & Hadjiliadis, N. (1995). Polyhedron, 14, 1461-1470.]).

[Scheme 1]

Experimental

Crystal data
  • [Hg2Br4(C12H12N2)2]

  • Mr = 1089.25

  • Triclinic, [P \overline 1]

  • a = 7.3187 (15) Å

  • b = 9.2647 (19) Å

  • c = 11.345 (2) Å

  • α = 103.50 (3)°

  • β = 102.02 (3)°

  • γ = 107.87 (3)°

  • V = 678.6 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 17.21 mm−1

  • T = 120 (2) K

  • 0.45 × 0.25 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: numerical; shape of crystal determined optically (X-SHAPE and X-RED; Stoe & Cie, 2005[Stoe & Cie (2005). X-SHAPE and X-RED. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.008, Tmax = 0.180

  • 8289 measured reflections

  • 3632 independent reflections

  • 3504 reflections with I > 2σ(I)

  • Rint = 0.073

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.165

  • S = 1.07

  • 3632 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 2.11 e Å−3

  • Δρmin = −1.85 e Å−3

Table 1
Selected bond lengths (Å)

Br1—Hg1 2.5645 (15)
Br2—Hg1 2.7331 (11)
Br2—Hg1i 2.7884 (11)
N1—Hg1 2.409 (7)
N2—Hg1 2.346 (6)
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Recently, we reported the syntheses and crystal structures of [Zn(5,5'-dmbpy)Cl2], (II), (Khalighi et al., 2008), [Zn(6-mbpy)Cl2], (III), (Ahmadi, Kalateh, Ebadi et al., 2008), [HgI2(4,4'-dmbpy)], (IV), (Yousefi, Tadayon Pour et al., 2008), [Cd(5,5'-dmbpy)(µ-Cl)2]n, (V), (Ahmadi, Khalighi et al., 2008), [Hg(5,5'-dmbpy)I2], (VI), (Tadayon Pour et al., 2008), [Cu(5,5'-dcbpy)(en)(H2O)2].2.5H2O, (VII), (Yousefi, Khalighi et al., 2008), [Hg(dmphen)I2], (VIII), (Yousefi, Rashidi Vahid et al., 2008), [In(4,4'-dmbpy)Cl3(DMSO)], (IX), (Ahmadi, Kalateh, Abedi et al., 2008), [In(5,5'-dmbpy)Cl3(MeOH)], (X), (Kalateh et al., 2008) and {[HgCl(dm4bt)]2(µ-Cl)2}, (XI), (Khavasi et al., 2008) [where 5,5'-dmbpy is 5,5'-dimethyl-2,2'-bipyridine, 6-mbpy is 6-methyl-2,2'-bipyridine, 4,4'-dmbpy is 4,4'-dimethyl-2,2'-bipyridine, 5,5'-dcbpy is 2,2'-bipyridine-5,5'-dicarboxylate, en is ethylenediamine, dmphen is 4,7-diphenyl-1,10-phenanthroline, DMSO is dimethyl sulfoxide and dm4bt is 2,2'-dimethyl-4,4'-bithiazole]. There are two HgII dimer complexes, with formula, [{HgBr(N—N)}2(µ-Br)2], such as [{HgBr(bipy)}2(µ-Br)2], (XII), (Craig et al., 1974) and [{HgBr(pquin)}2(µ-Br)2], (XIII), (Perlepes et al., 1995) [where bipy is 2,2'-bipyridine and pquin is 2-(2'-pyridyl)quinoxaline] have been synthesized and characterized by single-crystal X-ray diffraction methods. We report herein the synthesis and crystal structure of the title compound, (I).

The asymmetric unit of the title compound, (I), contains one half-molecule (Fig. 1). The HgII atom is five-coordinated in a trigonal–bipyramidal configuration by two N atoms from the chelating 4,4'-dimethyl-2,2'-bipyridine ligand, two bridging Br and one terminal Br atoms. The Hg—Br and Hg—N bond lengths and angles (Table 1) are within normal ranges, as in (XII) and (XIII).

In the crystal structure, the ππ contact (Fig. 2) between the pyridine rings, Cg3–Cg4i [symmetry code: (i) 2 - x, 2 - y, -z, where Cg3 and Cg4 are centroids of the rings (N1/C1–C3/C5–C6) and (N2/C7–C9/C11–C12), respectively] may stabilize the structure, with centroid–centroid distance of 3.756 (5) Å.

Related literature top

For related literature, see: Ahmadi, Kalateh, Ebadi et al. (2008); Ahmadi, Khalighi et al. (2008); Ahmadi, Kalateh, Abedi et al. (2008); Kalateh et al. (2008); Khalighi et al. (2008); Khavasi et al. (2008); Tadayon Pour et al. (2008); Yousefi, Rashidi Vahid et al. (2008); Yousefi, Tadayon Pour et al. (2008); Yousefi, Khalighi et al. (2008). For related structures, see: Craig et al. (1974); Perlepes et al. (1995).

Experimental top

For the preparation of the title compound, (I), a solution of 4,4'-dimethyl-2,2'-bipyridine (0.20 g, 1.10 mmol) in methanol (5 ml) was added to a solution of HgBr2 (0.40 g, 1.10 mmol) in methanol (5 ml) at room temperature. The suitable crystals for X-ray analysis were obtained by methanol diffusion to a colorless solution in DMSO. Suitable crystals were isolated after one week (yield; 0.44 g, 73.4%).

Refinement top

H atoms were positioned geometrically, with C—H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound.
Di-µ-bromido-bis[bromido(4,4'-dimethyl-2,2'-bipyridine-κ2N,N')mercury(II)] top
Crystal data top
[Hg2Br4(C12H12N2)2]Z = 1
Mr = 1089.25F(000) = 496
Triclinic, P1Dx = 2.665 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3187 (15) ÅCell parameters from 1005 reflections
b = 9.2647 (19) Åθ = 1.9–29.2°
c = 11.345 (2) ŵ = 17.21 mm1
α = 103.50 (3)°T = 120 K
β = 102.02 (3)°Block, colourless
γ = 107.87 (3)°0.45 × 0.25 × 0.10 mm
V = 678.6 (3) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3632 independent reflections
Radiation source: fine-focus sealed tube3504 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
ϕ and ω scansθmax = 29.2°, θmin = 1.9°
Absorption correction: numerical
shape of crystal determined optically (X-SHAPE and X-RED; Stoe & Cie, 2005)
h = 910
Tmin = 0.008, Tmax = 0.180k = 1212
8289 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.165 w = 1/[σ2(Fo2) + (0.2P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.037
3632 reflectionsΔρmax = 2.11 e Å3
155 parametersΔρmin = 1.85 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 1998), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.025 (3)
Crystal data top
[Hg2Br4(C12H12N2)2]γ = 107.87 (3)°
Mr = 1089.25V = 678.6 (3) Å3
Triclinic, P1Z = 1
a = 7.3187 (15) ÅMo Kα radiation
b = 9.2647 (19) ŵ = 17.21 mm1
c = 11.345 (2) ÅT = 120 K
α = 103.50 (3)°0.45 × 0.25 × 0.10 mm
β = 102.02 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3632 independent reflections
Absorption correction: numerical
shape of crystal determined optically (X-SHAPE and X-RED; Stoe & Cie, 2005)
3504 reflections with I > 2σ(I)
Tmin = 0.008, Tmax = 0.180Rint = 0.073
8289 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.165H-atom parameters constrained
S = 1.07Δρmax = 2.11 e Å3
3632 reflectionsΔρmin = 1.85 e Å3
155 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.53006 (3)0.61812 (3)0.12572 (2)0.0245 (2)
Br10.40249 (13)0.40548 (9)0.34549 (8)0.0325 (2)
Br20.23799 (9)0.50603 (8)0.01775 (7)0.0255 (2)
N10.6268 (10)0.8331 (7)0.2132 (6)0.0274 (12)
N20.6826 (10)0.8668 (7)0.0356 (7)0.0259 (13)
C10.5951 (13)0.8128 (9)0.3382 (7)0.0315 (15)
H10.52670.70960.39510.038*
C20.6580 (13)0.9356 (10)0.3863 (7)0.0293 (15)
H20.63410.91440.47350.035*
C30.7570 (11)1.0912 (8)0.3051 (7)0.0241 (12)
C40.8350 (13)1.2322 (10)0.3489 (8)0.0309 (15)
H4A0.97881.28150.31260.037*
H4B0.77551.30820.32210.037*
H4C0.80091.19720.43990.037*
C50.7909 (11)1.1122 (9)0.1742 (7)0.0242 (13)
H50.85911.21420.11540.029*
C60.7238 (10)0.9826 (8)0.1321 (7)0.0228 (12)
C70.7541 (9)0.9998 (8)0.0047 (7)0.0224 (12)
C80.8549 (10)1.1479 (8)0.0993 (7)0.0237 (13)
H80.90951.23900.07740.028*
C90.8745 (11)1.1602 (8)0.2269 (7)0.0252 (13)
C100.9781 (15)1.3215 (9)0.3311 (9)0.0369 (18)
H10A0.90881.39110.31530.044*
H10B1.11521.36820.33190.044*
H10C0.97571.30710.41190.044*
C110.8008 (11)1.0223 (8)0.2559 (7)0.0272 (14)
H110.81581.02560.34000.033*
C120.7042 (12)0.8786 (9)0.1588 (9)0.0300 (14)
H120.65160.78600.17920.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.0272 (3)0.0176 (2)0.0256 (3)0.00731 (15)0.00742 (15)0.00320 (15)
Br10.0424 (4)0.0215 (4)0.0268 (4)0.0077 (3)0.0097 (3)0.0018 (3)
Br20.0214 (4)0.0225 (4)0.0329 (4)0.0098 (3)0.0094 (3)0.0064 (3)
N10.032 (3)0.018 (3)0.021 (3)0.005 (2)0.001 (2)0.002 (2)
N20.028 (3)0.019 (2)0.028 (3)0.006 (2)0.010 (2)0.005 (2)
C10.043 (4)0.023 (3)0.019 (3)0.006 (3)0.005 (3)0.002 (2)
C20.036 (4)0.026 (4)0.025 (3)0.011 (3)0.009 (3)0.007 (3)
C30.026 (3)0.016 (3)0.031 (3)0.010 (2)0.011 (3)0.005 (2)
C40.037 (4)0.025 (3)0.031 (4)0.009 (3)0.013 (3)0.010 (3)
C50.029 (3)0.021 (3)0.023 (3)0.010 (2)0.010 (3)0.005 (3)
C60.025 (3)0.014 (3)0.024 (3)0.007 (2)0.002 (2)0.002 (2)
C70.016 (2)0.018 (3)0.024 (3)0.006 (2)0.003 (2)0.001 (2)
C80.023 (3)0.020 (3)0.021 (3)0.007 (2)0.002 (2)0.001 (2)
C90.030 (3)0.025 (3)0.023 (3)0.015 (2)0.007 (2)0.005 (2)
C100.052 (5)0.021 (3)0.033 (4)0.017 (3)0.007 (3)0.000 (3)
C110.028 (3)0.024 (3)0.025 (3)0.012 (3)0.005 (3)0.001 (3)
C120.030 (3)0.025 (3)0.030 (4)0.008 (3)0.009 (3)0.004 (3)
Geometric parameters (Å, º) top
Hg1—Br2i2.7884 (11)C5—H50.9300
Br1—Hg12.5645 (15)C6—N11.341 (8)
Br2—Hg12.7331 (11)C6—C71.484 (10)
Br2—Hg1i2.7884 (11)C7—N21.341 (10)
N1—Hg12.409 (7)C7—C81.393 (9)
N2—Hg12.346 (6)C8—C91.399 (10)
C1—C21.370 (11)C8—H80.9300
C1—N11.347 (10)C9—C111.371 (10)
C1—H10.9300C9—C101.520 (10)
C2—C31.383 (10)C10—H10A0.9600
C2—H20.9300C10—H10B0.9600
C3—C51.410 (11)C10—H10C0.9600
C3—C41.497 (10)C11—C121.377 (10)
C4—H4A0.9600C11—H110.9300
C4—H4B0.9600C12—N21.348 (11)
C4—H4C0.9600C12—H120.9300
C5—C61.383 (10)
Br1—Hg1—Br2102.48 (4)H4A—C4—H4C109.5
Br1—Hg1—Br2i101.32 (4)H4B—C4—H4C109.5
Br2—Hg1—Br2i87.29 (3)C6—C5—C3120.7 (7)
N1—Hg1—Br192.18 (15)C6—C5—H5119.9
N1—Hg1—Br2135.51 (16)C3—C5—H5119.4
N1—Hg1—Br2i130.97 (16)N1—C6—C5121.7 (7)
N2—Hg1—Br1161.0 (2)N1—C6—C7115.9 (6)
N2—Hg1—Br293.17 (18)C5—C6—C7122.4 (6)
N2—Hg1—Br2i89.92 (18)N2—C7—C8120.3 (7)
N2—Hg1—N169.0 (2)N2—C7—C6117.8 (6)
Hg1—Br2—Hg1i92.71 (3)C8—C7—C6121.9 (6)
C1—N1—Hg1124.3 (5)C7—C8—C9120.3 (7)
C6—N1—Hg1118.0 (5)C7—C8—H8119.8
C6—N1—C1117.6 (7)C9—C8—H8119.9
C7—N2—Hg1119.1 (5)C11—C9—C8118.1 (7)
C12—N2—Hg1121.6 (5)C11—C9—C10120.8 (7)
C12—N2—C7119.3 (6)C8—C9—C10121.1 (7)
C2—C1—N1123.7 (7)C9—C10—H10A109.4
C2—C1—H1117.9C9—C10—H10B109.3
N1—C1—H1118.4H10A—C10—H10B109.5
C1—C2—C3120.0 (7)C9—C10—H10C109.7
C1—C2—H2120.2H10A—C10—H10C109.5
C3—C2—H2119.8H10B—C10—H10C109.5
C2—C3—C5116.2 (7)C9—C11—C12119.2 (7)
C2—C3—C4123.6 (7)C9—C11—H11120.9
C5—C3—C4120.1 (6)C12—C11—H11119.9
C3—C4—H4A109.7N2—C12—C11122.7 (7)
C3—C4—H4B109.0N2—C12—H12118.6
H4A—C4—H4B109.5C11—C12—H12118.7
C3—C4—H4C109.7
Hg1i—Br2—Hg1—Br1101.00 (4)C3—C5—C6—N10.8 (11)
Hg1i—Br2—Hg1—Br2i0.0C3—C5—C6—C7179.2 (6)
Hg1i—Br2—Hg1—N1152.7 (2)N1—C6—C7—N20.2 (9)
Hg1i—Br2—Hg1—N289.77 (18)C5—C6—C7—N2179.7 (7)
C1—N1—Hg1—Br13.2 (7)N1—C6—C7—C8179.1 (6)
C6—N1—Hg1—Br1174.7 (5)C5—C6—C7—C80.9 (10)
C1—N1—Hg1—Br2107.1 (6)N2—C7—C8—C92.9 (10)
C1—N1—Hg1—Br2i110.3 (6)C6—C7—C8—C9177.8 (6)
C6—N1—Hg1—Br274.9 (6)C7—C8—C9—C113.2 (10)
C6—N1—Hg1—Br2i67.7 (6)C7—C8—C9—C10178.0 (6)
C6—N1—Hg1—N22.7 (5)C8—C9—C11—C122.5 (10)
C1—N1—Hg1—N2179.3 (7)C10—C9—C11—C12178.7 (7)
C7—N2—Hg1—Br14.9 (9)C9—C11—C12—N21.6 (11)
C12—N2—Hg1—Br1173.5 (4)C5—C6—N1—C10.4 (11)
C7—N2—Hg1—Br2140.9 (5)C7—C6—N1—C1179.5 (6)
C7—N2—Hg1—Br2i131.8 (5)C5—C6—N1—Hg1177.7 (5)
C12—N2—Hg1—Br240.6 (6)C7—C6—N1—Hg12.4 (8)
C12—N2—Hg1—Br2i46.7 (6)C2—C1—N1—C60.6 (13)
C7—N2—Hg1—N12.9 (5)C2—C1—N1—Hg1177.3 (7)
C12—N2—Hg1—N1178.7 (6)C11—C12—N2—C71.3 (11)
N1—C1—C2—C31.2 (13)C11—C12—N2—Hg1177.1 (5)
C1—C2—C3—C51.4 (12)C8—C7—N2—C121.9 (10)
C1—C2—C3—C4178.6 (8)C6—C7—N2—C12178.7 (6)
C2—C3—C5—C61.2 (11)C8—C7—N2—Hg1176.5 (5)
C4—C3—C5—C6178.5 (7)C6—C7—N2—Hg12.8 (8)
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Hg2Br4(C12H12N2)2]
Mr1089.25
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)7.3187 (15), 9.2647 (19), 11.345 (2)
α, β, γ (°)103.50 (3), 102.02 (3), 107.87 (3)
V3)678.6 (3)
Z1
Radiation typeMo Kα
µ (mm1)17.21
Crystal size (mm)0.45 × 0.25 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionNumerical
shape of crystal determined optically (X-SHAPE and X-RED; Stoe & Cie, 2005)
Tmin, Tmax0.008, 0.180
No. of measured, independent and
observed [I > 2σ(I)] reflections
8289, 3632, 3504
Rint0.073
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.165, 1.07
No. of reflections3632
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.11, 1.85

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Br1—Hg12.5645 (15)N1—Hg12.409 (7)
Br2—Hg12.7331 (11)N2—Hg12.346 (6)
Br2—Hg1i2.7884 (11)
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

We are grateful to the Islamic Azad University, Shahr-e-Rey Branch, for financial support.

References

First citationAhmadi, R., Kalateh, K., Abedi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1306–m1307.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAhmadi, R., Kalateh, K., Ebadi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1266.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAhmadi, R., Khalighi, A., Kalateh, K., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1233.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCraig, D. C., Farhangi, Y., Graddon, D. P. & Stephenson, N. C. (1974). Cryst. Struct. Commun. 3, 155–158.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKalateh, K., Ahmadi, R., Ebadi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1353–m1354.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhalighi, A., Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1211–m1212.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKhavasi, H. R., Abedi, A., Amani, V., Notash, B. & Safari, N. (2008). Polyhedron, 27, 1848–1854.  Web of Science CSD CrossRef CAS Google Scholar
First citationPerlepes, S. P., Kasselouri, S., Garoufis, A., Lutz, F., Bau, R. & Hadjiliadis, N. (1995). Polyhedron, 14, 1461–1470.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-SHAPE and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTadayon Pour, N., Ebadi, A., Abedi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1305.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYousefi, M., Khalighi, A., Tadayon Pour, N., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1284–m1285.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYousefi, M., Rashidi Vahid, R., Amani, V., Arab Chamjangali, M. & Khavasi, H. R. (2008). Acta Cryst. E64, m1339–m1340.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYousefi, M., Tadayon Pour, N., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1259.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 11| November 2008| Pages m1397-m1398
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds