organic compounds
1-Ethyl-3-methylquinoxalin-2(1H)-one
aUniversité Mohamed V, Département de Chimie, Laboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, BP 1014, Avenue Ibn Batouta, Rabat, Morocco, bLaboratoire de Chimie de Coordination, 205 Route de Narbonne, 3, 1077, Toulouse Cedex 04, France, and cUniversité Paul Sabatier, Hétérochimie Fondamentale et Appliquée, UMR 5069, 118 Route de Narbonne, 31062 Toulouse Cedex, France
*Correspondence e-mail: benzeid_hanane@yahoo.fr
The 11H12N2O, contains two independent molecules. In the intermolecular C—H⋯O hydrogen bonds link the molecules. There are π–π contacts between the quinoxaline rings [centroid–centroid distances = 3.446 (2), 3.665 (2), 3.645 (3) and 3.815 (3) Å]. There also exist C—H⋯π contacts between the methyl groups and the quinoxaline rings.
of the title compound, CRelated literature
For general background, see: Amin (2003); Boutti & Lecolier (1975); Milos & John (1981); Rose et al. (1990); Salman et al. (2007); Kotharkar & Shinde (2006); Vishnu et al. (2006). For related literature, see: Nikolaenko & Munro (2004). For bond-length data, see: Allen et al. (1987).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.
Supporting information
10.1107/S1600536808033989/hk2546sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808033989/hk2546Isup2.hkl
To a solution of 3-methylquinoxalin-2(1H)-one (Nikolaenko & Munro, 2004) (1 g, 6.22 mmol) in dimethylformamide (20 ml), was added ethylbromide (0.67 ml, 6.22 mmol), K2CO3 (1 g, 7.46 mmol) and a catalytic quantity of tetrabutylammoniumbromide. The mixture was stirred at room temperature for 24 h. The solution was filtered to remove the salts. The solvent was removed under reduced pressure. The residue was crystallized in ethanol to afford the title compound as yellow crystals.
H atoms were positioned geometrically, with C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.
Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell
CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).C11H12N2O | Z = 4 |
Mr = 188.23 | F(000) = 400 |
Triclinic, P1 | Dx = 1.322 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.4101 (6) Å | Cell parameters from 4794 reflections |
b = 9.1405 (8) Å | θ = 2.8–31.9° |
c = 14.2960 (12) Å | µ = 0.09 mm−1 |
α = 84.976 (7)° | T = 180 K |
β = 78.717 (7)° | Block, colorless |
γ = 88.137 (7)° | 0.18 × 0.13 × 0.07 mm |
V = 945.82 (14) Å3 |
Oxford Diffraction Xcalibur diffractometer | 3865 independent reflections |
Radiation source: fine-focus sealed tube | 2874 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.021 |
ϕ and ω scans | θmax = 26.4°, θmin = 2.8° |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) | h = −9→8 |
Tmin = 0.988, Tmax = 0.991 | k = −11→11 |
7441 measured reflections | l = −14→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.111 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0636P)2 + 0.0861P] where P = (Fo2 + 2Fc2)/3 |
3865 reflections | (Δ/σ)max < 0.001 |
257 parameters | Δρmax = 0.17 e Å−3 |
0 restraints | Δρmin = −0.25 e Å−3 |
C11H12N2O | γ = 88.137 (7)° |
Mr = 188.23 | V = 945.82 (14) Å3 |
Triclinic, P1 | Z = 4 |
a = 7.4101 (6) Å | Mo Kα radiation |
b = 9.1405 (8) Å | µ = 0.09 mm−1 |
c = 14.2960 (12) Å | T = 180 K |
α = 84.976 (7)° | 0.18 × 0.13 × 0.07 mm |
β = 78.717 (7)° |
Oxford Diffraction Xcalibur diffractometer | 3865 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) | 2874 reflections with I > 2σ(I) |
Tmin = 0.988, Tmax = 0.991 | Rint = 0.021 |
7441 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.111 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.17 e Å−3 |
3865 reflections | Δρmin = −0.25 e Å−3 |
257 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.46438 (13) | 0.21858 (11) | 0.37756 (7) | 0.0375 (3) | |
O2 | 0.28053 (14) | 0.17912 (12) | −0.17004 (7) | 0.0438 (3) | |
N1 | 0.33532 (14) | 0.31106 (11) | 0.51763 (7) | 0.0244 (2) | |
N2 | 0.28293 (14) | 0.57622 (11) | 0.41274 (8) | 0.0279 (3) | |
N3 | 0.30886 (13) | 0.14773 (11) | −0.01436 (7) | 0.0258 (2) | |
N4 | 0.19176 (14) | −0.14053 (12) | −0.01083 (8) | 0.0274 (3) | |
C1 | 0.39293 (17) | 0.32233 (14) | 0.42044 (9) | 0.0267 (3) | |
C2 | 0.36552 (17) | 0.46723 (14) | 0.37053 (9) | 0.0274 (3) | |
C3 | 0.21391 (16) | 0.55680 (13) | 0.51001 (9) | 0.0237 (3) | |
C4 | 0.11835 (18) | 0.67263 (14) | 0.55460 (10) | 0.0300 (3) | |
H4 | 0.1021 | 0.7601 | 0.5186 | 0.036* | |
C5 | 0.04770 (19) | 0.66048 (15) | 0.65059 (10) | 0.0342 (3) | |
H5 | −0.0161 | 0.7388 | 0.6799 | 0.041* | |
C6 | 0.07254 (19) | 0.52952 (16) | 0.70377 (10) | 0.0344 (3) | |
H6 | 0.0251 | 0.521 | 0.7692 | 0.041* | |
C7 | 0.16544 (18) | 0.41247 (15) | 0.66197 (9) | 0.0296 (3) | |
H7 | 0.1795 | 0.3253 | 0.6987 | 0.036* | |
C8 | 0.23840 (16) | 0.42472 (13) | 0.56451 (9) | 0.0228 (3) | |
C9 | 0.37008 (19) | 0.16990 (14) | 0.56915 (10) | 0.0311 (3) | |
H9A | 0.3822 | 0.1864 | 0.6337 | 0.037* | |
H9B | 0.4852 | 0.1276 | 0.5373 | 0.037* | |
C10 | 0.2174 (2) | 0.06358 (15) | 0.57337 (11) | 0.0386 (3) | |
H10A | 0.1059 | 0.1005 | 0.6106 | 0.058* | |
H10B | 0.2494 | −0.0298 | 0.6025 | 0.058* | |
H10C | 0.1995 | 0.0522 | 0.5097 | 0.058* | |
C11 | 0.4365 (2) | 0.48358 (17) | 0.26554 (10) | 0.0396 (3) | |
H11A | 0.3503 | 0.4428 | 0.2332 | 0.059* | |
H11B | 0.5527 | 0.4326 | 0.251 | 0.059* | |
H11C | 0.4525 | 0.5858 | 0.2446 | 0.059* | |
C12 | 0.26924 (17) | 0.09898 (15) | −0.09593 (9) | 0.0287 (3) | |
C13 | 0.21489 (17) | −0.05575 (15) | −0.08903 (9) | 0.0279 (3) | |
C14 | 0.22409 (16) | −0.08415 (13) | 0.07134 (9) | 0.0236 (3) | |
C15 | 0.19919 (18) | −0.17617 (15) | 0.15556 (9) | 0.0306 (3) | |
H15 | 0.157 | −0.2709 | 0.1556 | 0.037* | |
C16 | 0.23571 (19) | −0.12955 (17) | 0.23841 (10) | 0.0361 (3) | |
H16 | 0.2194 | −0.1921 | 0.2942 | 0.043* | |
C17 | 0.29710 (19) | 0.01175 (17) | 0.23769 (10) | 0.0358 (3) | |
H17 | 0.3223 | 0.044 | 0.2936 | 0.043* | |
C18 | 0.32169 (17) | 0.10564 (15) | 0.15571 (10) | 0.0308 (3) | |
H18 | 0.3624 | 0.2006 | 0.1567 | 0.037* | |
C19 | 0.28562 (16) | 0.05865 (13) | 0.07122 (8) | 0.0232 (3) | |
C20 | 0.37012 (19) | 0.29997 (14) | −0.01979 (11) | 0.0359 (3) | |
H20A | 0.432 | 0.3291 | −0.0847 | 0.043* | |
H20B | 0.4577 | 0.3061 | 0.022 | 0.043* | |
C21 | 0.2105 (2) | 0.40401 (17) | 0.00908 (14) | 0.0525 (4) | |
H21A | 0.1243 | 0.399 | −0.0326 | 0.079* | |
H21B | 0.2549 | 0.5024 | 0.0044 | 0.079* | |
H21C | 0.1508 | 0.3768 | 0.0739 | 0.079* | |
C22 | 0.1875 (2) | −0.11426 (18) | −0.17904 (10) | 0.0399 (4) | |
H22A | 0.1497 | −0.2146 | −0.166 | 0.06* | |
H22B | 0.3009 | −0.109 | −0.2251 | 0.06* | |
H22C | 0.0943 | −0.0569 | −0.2042 | 0.06* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0409 (6) | 0.0364 (5) | 0.0342 (5) | 0.0068 (4) | −0.0026 (4) | −0.0111 (4) |
O2 | 0.0460 (6) | 0.0514 (6) | 0.0287 (5) | 0.0052 (5) | −0.0026 (4) | 0.0131 (5) |
N1 | 0.0263 (5) | 0.0214 (5) | 0.0260 (6) | 0.0021 (4) | −0.0066 (4) | −0.0019 (4) |
N2 | 0.0302 (6) | 0.0253 (6) | 0.0291 (6) | −0.0059 (4) | −0.0083 (5) | 0.0009 (4) |
N3 | 0.0222 (5) | 0.0247 (5) | 0.0273 (6) | 0.0021 (4) | 0.0011 (4) | 0.0009 (4) |
N4 | 0.0246 (6) | 0.0304 (6) | 0.0266 (6) | 0.0030 (4) | −0.0023 (4) | −0.0061 (5) |
C1 | 0.0221 (6) | 0.0302 (7) | 0.0285 (7) | −0.0015 (5) | −0.0051 (5) | −0.0058 (5) |
C2 | 0.0257 (6) | 0.0310 (7) | 0.0263 (7) | −0.0063 (5) | −0.0065 (5) | −0.0013 (5) |
C3 | 0.0219 (6) | 0.0229 (6) | 0.0283 (6) | −0.0039 (5) | −0.0086 (5) | −0.0024 (5) |
C4 | 0.0321 (7) | 0.0212 (6) | 0.0396 (8) | −0.0005 (5) | −0.0136 (6) | −0.0036 (5) |
C5 | 0.0326 (7) | 0.0302 (7) | 0.0419 (8) | 0.0034 (6) | −0.0077 (6) | −0.0154 (6) |
C6 | 0.0359 (8) | 0.0396 (8) | 0.0277 (7) | −0.0012 (6) | −0.0033 (6) | −0.0094 (6) |
C7 | 0.0331 (7) | 0.0295 (7) | 0.0265 (7) | 0.0001 (6) | −0.0071 (5) | −0.0006 (5) |
C8 | 0.0212 (6) | 0.0223 (6) | 0.0268 (6) | −0.0013 (5) | −0.0075 (5) | −0.0046 (5) |
C9 | 0.0369 (8) | 0.0251 (7) | 0.0312 (7) | 0.0088 (6) | −0.0081 (6) | −0.0015 (5) |
C10 | 0.0475 (9) | 0.0257 (7) | 0.0394 (8) | 0.0006 (6) | −0.0026 (7) | 0.0013 (6) |
C11 | 0.0436 (8) | 0.0447 (8) | 0.0284 (7) | −0.0039 (7) | −0.0023 (6) | 0.0003 (6) |
C12 | 0.0216 (6) | 0.0377 (7) | 0.0234 (7) | 0.0069 (5) | 0.0010 (5) | 0.0014 (6) |
C13 | 0.0202 (6) | 0.0381 (7) | 0.0242 (7) | 0.0066 (5) | −0.0014 (5) | −0.0060 (5) |
C14 | 0.0193 (6) | 0.0268 (6) | 0.0235 (6) | 0.0041 (5) | −0.0010 (5) | −0.0041 (5) |
C15 | 0.0295 (7) | 0.0287 (7) | 0.0301 (7) | 0.0041 (5) | −0.0002 (5) | 0.0028 (5) |
C16 | 0.0351 (8) | 0.0462 (9) | 0.0235 (7) | 0.0105 (6) | −0.0019 (6) | 0.0039 (6) |
C17 | 0.0319 (7) | 0.0518 (9) | 0.0251 (7) | 0.0110 (6) | −0.0078 (5) | −0.0102 (6) |
C18 | 0.0263 (7) | 0.0332 (7) | 0.0341 (7) | 0.0034 (5) | −0.0058 (5) | −0.0117 (6) |
C19 | 0.0171 (6) | 0.0265 (6) | 0.0238 (6) | 0.0054 (5) | 0.0001 (5) | −0.0017 (5) |
C20 | 0.0325 (7) | 0.0263 (7) | 0.0445 (8) | −0.0010 (6) | 0.0015 (6) | 0.0022 (6) |
C21 | 0.0460 (9) | 0.0285 (8) | 0.0800 (13) | 0.0068 (7) | −0.0047 (8) | −0.0070 (8) |
C22 | 0.0340 (8) | 0.0588 (10) | 0.0284 (7) | 0.0060 (7) | −0.0064 (6) | −0.0136 (7) |
C1—O1 | 1.2238 (15) | C12—O2 | 1.2245 (15) |
C1—N1 | 1.3671 (16) | C12—N3 | 1.3705 (17) |
C1—C2 | 1.4759 (18) | C12—C13 | 1.473 (2) |
C2—N2 | 1.2854 (16) | C13—N4 | 1.2891 (17) |
C2—C11 | 1.4862 (18) | C13—C22 | 1.4876 (19) |
C3—N2 | 1.3825 (17) | C14—N4 | 1.3882 (16) |
C3—C4 | 1.3862 (17) | C14—C15 | 1.3918 (18) |
C3—C8 | 1.4049 (17) | C14—C19 | 1.3963 (18) |
C4—C5 | 1.366 (2) | C15—C16 | 1.371 (2) |
C4—H4 | 0.93 | C15—H15 | 0.93 |
C5—C6 | 1.388 (2) | C16—C17 | 1.382 (2) |
C5—H5 | 0.93 | C16—H16 | 0.93 |
C6—C7 | 1.3707 (19) | C17—C18 | 1.3761 (19) |
C6—H6 | 0.93 | C17—H17 | 0.93 |
C7—C8 | 1.3885 (18) | C18—C19 | 1.3926 (18) |
C7—H7 | 0.93 | C18—H18 | 0.93 |
C8—N1 | 1.3891 (15) | C19—N3 | 1.3934 (16) |
C9—N1 | 1.4696 (15) | C20—N3 | 1.4687 (17) |
C9—H9A | 0.97 | C20—H20A | 0.97 |
C9—H9B | 0.97 | C20—H20B | 0.97 |
C10—C9 | 1.5041 (19) | C21—C20 | 1.509 (2) |
C10—H10A | 0.96 | C21—H21A | 0.96 |
C10—H10B | 0.96 | C21—H21B | 0.96 |
C10—H10C | 0.96 | C21—H21C | 0.96 |
C11—H11A | 0.96 | C22—H22A | 0.96 |
C11—H11B | 0.96 | C22—H22B | 0.96 |
C11—H11C | 0.96 | C22—H22C | 0.96 |
O1—C1—N1 | 121.88 (12) | N4—C13—C22 | 119.61 (13) |
O1—C1—C2 | 122.05 (12) | C12—C13—C22 | 116.56 (12) |
N1—C1—C2 | 116.07 (11) | N4—C14—C15 | 118.06 (12) |
N2—C2—C1 | 123.59 (11) | N4—C14—C19 | 122.33 (11) |
N2—C2—C11 | 119.68 (12) | C15—C14—C19 | 119.57 (12) |
C1—C2—C11 | 116.73 (12) | C16—C15—C14 | 121.14 (13) |
N2—C3—C4 | 118.34 (11) | C16—C15—H15 | 119.4 |
N2—C3—C8 | 122.24 (11) | C14—C15—H15 | 119.4 |
C4—C3—C8 | 119.42 (12) | C15—C16—C17 | 118.97 (13) |
C5—C4—C3 | 121.10 (12) | C15—C16—H16 | 120.5 |
C5—C4—H4 | 119.5 | C17—C16—H16 | 120.5 |
C3—C4—H4 | 119.5 | C18—C17—C16 | 121.23 (13) |
C4—C5—C6 | 119.04 (12) | C18—C17—H17 | 119.4 |
C4—C5—H5 | 120.5 | C16—C17—H17 | 119.4 |
C6—C5—H5 | 120.5 | C17—C18—C19 | 120.05 (13) |
C7—C6—C5 | 121.44 (13) | C17—C18—H18 | 120 |
C7—C6—H6 | 119.3 | C19—C18—H18 | 120 |
C5—C6—H6 | 119.3 | C18—C19—N3 | 122.96 (12) |
C6—C7—C8 | 119.68 (12) | C18—C19—C14 | 119.04 (12) |
C6—C7—H7 | 120.2 | N3—C19—C14 | 118.00 (11) |
C8—C7—H7 | 120.2 | N3—C20—C21 | 111.52 (11) |
C7—C8—N1 | 122.76 (11) | N3—C20—H20A | 109.3 |
C7—C8—C3 | 119.32 (11) | C21—C20—H20A | 109.3 |
N1—C8—C3 | 117.92 (11) | N3—C20—H20B | 109.3 |
N1—C9—C10 | 111.68 (11) | C21—C20—H20B | 109.3 |
N1—C9—H9A | 109.3 | H20A—C20—H20B | 108 |
C10—C9—H9A | 109.3 | C20—C21—H21A | 109.5 |
N1—C9—H9B | 109.3 | C20—C21—H21B | 109.5 |
C10—C9—H9B | 109.3 | H21A—C21—H21B | 109.5 |
H9A—C9—H9B | 107.9 | C20—C21—H21C | 109.5 |
C9—C10—H10A | 109.5 | H21A—C21—H21C | 109.5 |
C9—C10—H10B | 109.5 | H21B—C21—H21C | 109.5 |
H10A—C10—H10B | 109.5 | C13—C22—H22A | 109.5 |
C9—C10—H10C | 109.5 | C13—C22—H22B | 109.5 |
H10A—C10—H10C | 109.5 | H22A—C22—H22B | 109.5 |
H10B—C10—H10C | 109.5 | C13—C22—H22C | 109.5 |
C2—C11—H11A | 109.5 | H22A—C22—H22C | 109.5 |
C2—C11—H11B | 109.5 | H22B—C22—H22C | 109.5 |
H11A—C11—H11B | 109.5 | C1—N1—C8 | 121.35 (10) |
C2—C11—H11C | 109.5 | C1—N1—C9 | 116.87 (10) |
H11A—C11—H11C | 109.5 | C8—N1—C9 | 121.66 (10) |
H11B—C11—H11C | 109.5 | C2—N2—C3 | 118.47 (11) |
O2—C12—N3 | 121.81 (13) | C12—N3—C19 | 121.53 (11) |
O2—C12—C13 | 122.35 (13) | C12—N3—C20 | 117.23 (11) |
N3—C12—C13 | 115.83 (11) | C19—N3—C20 | 121.20 (11) |
N4—C13—C12 | 123.82 (12) | C13—N4—C14 | 118.27 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7···O2i | 0.93 | 2.43 | 3.291 (3) | 154 |
C17—H17···O1 | 0.93 | 2.46 | 3.301 (3) | 151 |
C11—H11B···Cg3ii | 0.96 | 3.34 | 3.893 (3) | 119 |
C22—H22C···Cg4iii | 0.96 | 2.71 | 3.516 (3) | 142 |
Symmetry codes: (i) x, y, z+1; (ii) −x+1, −y+1, −z+1; (iii) −x, −y, −z. |
Experimental details
Crystal data | |
Chemical formula | C11H12N2O |
Mr | 188.23 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 180 |
a, b, c (Å) | 7.4101 (6), 9.1405 (8), 14.2960 (12) |
α, β, γ (°) | 84.976 (7), 78.717 (7), 88.137 (7) |
V (Å3) | 945.82 (14) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.18 × 0.13 × 0.07 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur diffractometer |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2007) |
Tmin, Tmax | 0.988, 0.991 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7441, 3865, 2874 |
Rint | 0.021 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.111, 1.06 |
No. of reflections | 3865 |
No. of parameters | 257 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.17, −0.25 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), WinGX (Farrugia, 1999) and PLATON (Spek, 2003).
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7···O2i | 0.93 | 2.43 | 3.291 (3) | 154.00 |
C17—H17···O1 | 0.93 | 2.46 | 3.301 (3) | 151.00 |
C22—H22C···Cg4ii | 0.96 | 2.71 | 3.516 (3) | 142 |
Symmetry codes: (i) x, y, z+1; (ii) −x, −y, −z. |
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Amin, A. S. (2003). Spectrochim. Acta Part A, 59, 1025–1033. CrossRef Google Scholar
Boutti, D. & Lecolier, S. (1975). Fr. Patent 2 249 879. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Kotharkar, S. A. & Shinde, D. B. (2006). Bioorg. Med. Chem. Lett. 16, 6181–6184. Web of Science CrossRef PubMed CAS Google Scholar
Milos, B. & John, F. C. (1981). Dyes Pigm. 2, 215–217. Google Scholar
Nikolaenko, I. V. & Munro, O. Q. (2004). Acta Cryst. E60, o92–o94. Web of Science CSD CrossRef IUCr Journals Google Scholar
Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England. Google Scholar
Rose, D., Lieske, E., Hoeffkes, H. & Henkel, K.-Ga. (1990). German Offen. DE 3 212 825. Google Scholar
Salman, A. K., Kishwar, S. & Zaheer, K. (2007). Eur. J. Med. Chem. 42, 103–108. Web of Science PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vishnu, K. T., Dharmendra, B. Y., Hardesh, K. M., Ashok, K. C. & Praveen, K. S. (2006). Bioorg. Med. Chem. Lett. 14, 6120–6126. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The quinoxaline derivatives have great importance in scientific research for their biological properties. It is well known that quinoxaline have antibacterial (Kotharkar & Shinde, 2006; Salman et al., 2007) and antifungal (Vishnu et al., 2006) activities. They are also used for colorimetry metal detection (Amin, 2003) and as oil stabilizant (Boutti & Lecolier, 1975). Likewise several patents describe them as hair azo dyes (Rose et al., 1990) and pigments (Milos & John, 1981). We report herein, the synthesis and crystal structure of the title compound.
The asymmetric unit of the title compound (Fig. 1), contains two independent molecules. The bond lengths (Allen et al., 1987) and angles are within normal ranges. The intramolecular C—H···O hydrogen bond (Table 1) links the molecules.
In the crystal structure, intra- and intermolecular C-H···O hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure. The π—π contacts between the quinoxaline rings, Cg1···Cg1i, Cg1···Cg3ii, Cg2···Cg2iii and Cg2···Cg4iv [symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) -x, 1 - y, 1 - z; (iii) -x, -y, -z; (iv) 1 - x, -y, -z, where Cg1, Cg2, Cg3 and Cg4 are the centroids of the rings A (N1/N2/C1-C3/C8), B (N3/N4/C12-C14/C19), C (C3-C8) and D (C14-C19), respectively] may further stabilize the structure, with centroid-centroid distances of 3.446 (2), 3.665 (2), 3.645 (3) and 3.815 (3) Å, respectively. There also exist C—H···π contacts (Table 1) between the methyl groups and rings C and D.