organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Ethyl-3-methyl­quinoxalin-2(1H)-one

aUniversité Mohamed V, Département de Chimie, Laboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, BP 1014, Avenue Ibn Batouta, Rabat, Morocco, bLaboratoire de Chimie de Coordination, 205 Route de Narbonne, 3, 1077, Toulouse Cedex 04, France, and cUniversité Paul Sabatier, Hétérochimie Fondamentale et Appliquée, UMR 5069, 118 Route de Narbonne, 31062 Toulouse Cedex, France
*Correspondence e-mail: benzeid_hanane@yahoo.fr

(Received 1 October 2008; accepted 17 October 2008; online 31 October 2008)

The asymmetric unit of the title compound, C11H12N2O, contains two independent mol­ecules. In the crystal structure, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules. There are ππ contacts between the quinoxaline rings [centroid–centroid distances = 3.446 (2), 3.665 (2), 3.645 (3) and 3.815 (3) Å]. There also exist C—H⋯π contacts between the methyl groups and the quinoxaline rings.

Related literature

For general background, see: Amin (2003[Amin, A. S. (2003). Spectrochim. Acta Part A, 59, 1025-1033.]); Boutti & Lecolier (1975[Boutti, D. & Lecolier, S. (1975). Fr. Patent 2 249 879.]); Milos & John (1981[Milos, B. & John, F. C. (1981). Dyes Pigm. 2, 215-217.]); Rose et al. (1990[Rose, D., Lieske, E., Hoeffkes, H. & Henkel, K.-Ga. (1990). German Offen. DE 3 212 825.]); Salman et al. (2007[Salman, A. K., Kishwar, S. & Zaheer, K. (2007). Eur. J. Med. Chem. 42, 103-108.]); Kotharkar & Shinde (2006[Kotharkar, S. A. & Shinde, D. B. (2006). Bioorg. Med. Chem. Lett. 16, 6181-6184.]); Vishnu et al. (2006[Vishnu, K. T., Dharmendra, B. Y., Hardesh, K. M., Ashok, K. C. & Praveen, K. S. (2006). Bioorg. Med. Chem. Lett. 14, 6120-6126.]). For related literature, see: Nikolaenko & Munro (2004[Nikolaenko, I. V. & Munro, O. Q. (2004). Acta Cryst. E60, o92-o94.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C11H12N2O

  • Mr = 188.23

  • Triclinic, [P \overline 1]

  • a = 7.4101 (6) Å

  • b = 9.1405 (8) Å

  • c = 14.2960 (12) Å

  • α = 84.976 (7)°

  • β = 78.717 (7)°

  • γ = 88.137 (7)°

  • V = 945.82 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 180 K

  • 0.18 × 0.13 × 0.07 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.988, Tmax = 0.991

  • 7441 measured reflections

  • 3865 independent reflections

  • 2874 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.111

  • S = 1.06

  • 3865 reflections

  • 257 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O2i 0.93 2.43 3.291 (3) 154
C17—H17⋯O1 0.93 2.46 3.301 (3) 151
C22—H22CCg4ii 0.96 2.71 3.516 (3) 142
Symmetry codes: (i) x, y, z+1; (ii) -x, -y, -z. Cg4 is the centroid of the C14–C19 ring.

Data collection: CrysAlis CCD (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The quinoxaline derivatives have great importance in scientific research for their biological properties. It is well known that quinoxaline have antibacterial (Kotharkar & Shinde, 2006; Salman et al., 2007) and antifungal (Vishnu et al., 2006) activities. They are also used for colorimetry metal detection (Amin, 2003) and as oil stabilizant (Boutti & Lecolier, 1975). Likewise several patents describe them as hair azo dyes (Rose et al., 1990) and pigments (Milos & John, 1981). We report herein, the synthesis and crystal structure of the title compound.

The asymmetric unit of the title compound (Fig. 1), contains two independent molecules. The bond lengths (Allen et al., 1987) and angles are within normal ranges. The intramolecular C—H···O hydrogen bond (Table 1) links the molecules.

In the crystal structure, intra- and intermolecular C-H···O hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure. The ππ contacts between the quinoxaline rings, Cg1···Cg1i, Cg1···Cg3ii, Cg2···Cg2iii and Cg2···Cg4iv [symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) -x, 1 - y, 1 - z; (iii) -x, -y, -z; (iv) 1 - x, -y, -z, where Cg1, Cg2, Cg3 and Cg4 are the centroids of the rings A (N1/N2/C1-C3/C8), B (N3/N4/C12-C14/C19), C (C3-C8) and D (C14-C19), respectively] may further stabilize the structure, with centroid-centroid distances of 3.446 (2), 3.665 (2), 3.645 (3) and 3.815 (3) Å, respectively. There also exist C—H···π contacts (Table 1) between the methyl groups and rings C and D.

Related literature top

For general background, see: Amin (2003); Boutti & Lecolier (1975); Milos & John (1981); Rose et al. (1990); Salman et al. (2007); Kotharkar & Shinde (2006); Vishnu et al. (2006). For related literature, see: Nikolaenko & Munro (2004). For bond-length data, see: Allen et al. (1987).

Experimental top

To a solution of 3-methylquinoxalin-2(1H)-one (Nikolaenko & Munro, 2004) (1 g, 6.22 mmol) in dimethylformamide (20 ml), was added ethylbromide (0.67 ml, 6.22 mmol), K2CO3 (1 g, 7.46 mmol) and a catalytic quantity of tetrabutylammoniumbromide. The mixture was stirred at room temperature for 24 h. The solution was filtered to remove the salts. The solvent was removed under reduced pressure. The residue was crystallized in ethanol to afford the title compound as yellow crystals.

Refinement top

H atoms were positioned geometrically, with C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Hydrogen bond is shown as dashed line.
[Figure 2] Fig. 2. A partial packing diagram. Hydrogen bonds are shown as dashed lines [symmetry code: (') -x, -y, -z].
1-Ethyl-3-methylquinoxalin-2(1H)-one top
Crystal data top
C11H12N2OZ = 4
Mr = 188.23F(000) = 400
Triclinic, P1Dx = 1.322 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4101 (6) ÅCell parameters from 4794 reflections
b = 9.1405 (8) Åθ = 2.8–31.9°
c = 14.2960 (12) ŵ = 0.09 mm1
α = 84.976 (7)°T = 180 K
β = 78.717 (7)°Block, colorless
γ = 88.137 (7)°0.18 × 0.13 × 0.07 mm
V = 945.82 (14) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer
3865 independent reflections
Radiation source: fine-focus sealed tube2874 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 26.4°, θmin = 2.8°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
h = 98
Tmin = 0.988, Tmax = 0.991k = 1111
7441 measured reflectionsl = 1417
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0636P)2 + 0.0861P]
where P = (Fo2 + 2Fc2)/3
3865 reflections(Δ/σ)max < 0.001
257 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C11H12N2Oγ = 88.137 (7)°
Mr = 188.23V = 945.82 (14) Å3
Triclinic, P1Z = 4
a = 7.4101 (6) ÅMo Kα radiation
b = 9.1405 (8) ŵ = 0.09 mm1
c = 14.2960 (12) ÅT = 180 K
α = 84.976 (7)°0.18 × 0.13 × 0.07 mm
β = 78.717 (7)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer
3865 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
2874 reflections with I > 2σ(I)
Tmin = 0.988, Tmax = 0.991Rint = 0.021
7441 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.06Δρmax = 0.17 e Å3
3865 reflectionsΔρmin = 0.25 e Å3
257 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.46438 (13)0.21858 (11)0.37756 (7)0.0375 (3)
O20.28053 (14)0.17912 (12)0.17004 (7)0.0438 (3)
N10.33532 (14)0.31106 (11)0.51763 (7)0.0244 (2)
N20.28293 (14)0.57622 (11)0.41274 (8)0.0279 (3)
N30.30886 (13)0.14773 (11)0.01436 (7)0.0258 (2)
N40.19176 (14)0.14053 (12)0.01083 (8)0.0274 (3)
C10.39293 (17)0.32233 (14)0.42044 (9)0.0267 (3)
C20.36552 (17)0.46723 (14)0.37053 (9)0.0274 (3)
C30.21391 (16)0.55680 (13)0.51001 (9)0.0237 (3)
C40.11835 (18)0.67263 (14)0.55460 (10)0.0300 (3)
H40.10210.76010.51860.036*
C50.04770 (19)0.66048 (15)0.65059 (10)0.0342 (3)
H50.01610.73880.67990.041*
C60.07254 (19)0.52952 (16)0.70377 (10)0.0344 (3)
H60.02510.5210.76920.041*
C70.16544 (18)0.41247 (15)0.66197 (9)0.0296 (3)
H70.17950.32530.69870.036*
C80.23840 (16)0.42472 (13)0.56451 (9)0.0228 (3)
C90.37008 (19)0.16990 (14)0.56915 (10)0.0311 (3)
H9A0.38220.18640.63370.037*
H9B0.48520.12760.53730.037*
C100.2174 (2)0.06358 (15)0.57337 (11)0.0386 (3)
H10A0.10590.10050.61060.058*
H10B0.24940.02980.60250.058*
H10C0.19950.05220.50970.058*
C110.4365 (2)0.48358 (17)0.26554 (10)0.0396 (3)
H11A0.35030.44280.23320.059*
H11B0.55270.43260.2510.059*
H11C0.45250.58580.24460.059*
C120.26924 (17)0.09898 (15)0.09593 (9)0.0287 (3)
C130.21489 (17)0.05575 (15)0.08903 (9)0.0279 (3)
C140.22409 (16)0.08415 (13)0.07134 (9)0.0236 (3)
C150.19919 (18)0.17617 (15)0.15556 (9)0.0306 (3)
H150.1570.27090.15560.037*
C160.23571 (19)0.12955 (17)0.23841 (10)0.0361 (3)
H160.21940.19210.29420.043*
C170.29710 (19)0.01175 (17)0.23769 (10)0.0358 (3)
H170.32230.0440.29360.043*
C180.32169 (17)0.10564 (15)0.15571 (10)0.0308 (3)
H180.36240.20060.15670.037*
C190.28562 (16)0.05865 (13)0.07122 (8)0.0232 (3)
C200.37012 (19)0.29997 (14)0.01979 (11)0.0359 (3)
H20A0.4320.32910.08470.043*
H20B0.45770.30610.0220.043*
C210.2105 (2)0.40401 (17)0.00908 (14)0.0525 (4)
H21A0.12430.3990.03260.079*
H21B0.25490.50240.00440.079*
H21C0.15080.37680.07390.079*
C220.1875 (2)0.11426 (18)0.17904 (10)0.0399 (4)
H22A0.14970.21460.1660.06*
H22B0.30090.1090.22510.06*
H22C0.09430.05690.20420.06*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0409 (6)0.0364 (5)0.0342 (5)0.0068 (4)0.0026 (4)0.0111 (4)
O20.0460 (6)0.0514 (6)0.0287 (5)0.0052 (5)0.0026 (4)0.0131 (5)
N10.0263 (5)0.0214 (5)0.0260 (6)0.0021 (4)0.0066 (4)0.0019 (4)
N20.0302 (6)0.0253 (6)0.0291 (6)0.0059 (4)0.0083 (5)0.0009 (4)
N30.0222 (5)0.0247 (5)0.0273 (6)0.0021 (4)0.0011 (4)0.0009 (4)
N40.0246 (6)0.0304 (6)0.0266 (6)0.0030 (4)0.0023 (4)0.0061 (5)
C10.0221 (6)0.0302 (7)0.0285 (7)0.0015 (5)0.0051 (5)0.0058 (5)
C20.0257 (6)0.0310 (7)0.0263 (7)0.0063 (5)0.0065 (5)0.0013 (5)
C30.0219 (6)0.0229 (6)0.0283 (6)0.0039 (5)0.0086 (5)0.0024 (5)
C40.0321 (7)0.0212 (6)0.0396 (8)0.0005 (5)0.0136 (6)0.0036 (5)
C50.0326 (7)0.0302 (7)0.0419 (8)0.0034 (6)0.0077 (6)0.0154 (6)
C60.0359 (8)0.0396 (8)0.0277 (7)0.0012 (6)0.0033 (6)0.0094 (6)
C70.0331 (7)0.0295 (7)0.0265 (7)0.0001 (6)0.0071 (5)0.0006 (5)
C80.0212 (6)0.0223 (6)0.0268 (6)0.0013 (5)0.0075 (5)0.0046 (5)
C90.0369 (8)0.0251 (7)0.0312 (7)0.0088 (6)0.0081 (6)0.0015 (5)
C100.0475 (9)0.0257 (7)0.0394 (8)0.0006 (6)0.0026 (7)0.0013 (6)
C110.0436 (8)0.0447 (8)0.0284 (7)0.0039 (7)0.0023 (6)0.0003 (6)
C120.0216 (6)0.0377 (7)0.0234 (7)0.0069 (5)0.0010 (5)0.0014 (6)
C130.0202 (6)0.0381 (7)0.0242 (7)0.0066 (5)0.0014 (5)0.0060 (5)
C140.0193 (6)0.0268 (6)0.0235 (6)0.0041 (5)0.0010 (5)0.0041 (5)
C150.0295 (7)0.0287 (7)0.0301 (7)0.0041 (5)0.0002 (5)0.0028 (5)
C160.0351 (8)0.0462 (9)0.0235 (7)0.0105 (6)0.0019 (6)0.0039 (6)
C170.0319 (7)0.0518 (9)0.0251 (7)0.0110 (6)0.0078 (5)0.0102 (6)
C180.0263 (7)0.0332 (7)0.0341 (7)0.0034 (5)0.0058 (5)0.0117 (6)
C190.0171 (6)0.0265 (6)0.0238 (6)0.0054 (5)0.0001 (5)0.0017 (5)
C200.0325 (7)0.0263 (7)0.0445 (8)0.0010 (6)0.0015 (6)0.0022 (6)
C210.0460 (9)0.0285 (8)0.0800 (13)0.0068 (7)0.0047 (8)0.0070 (8)
C220.0340 (8)0.0588 (10)0.0284 (7)0.0060 (7)0.0064 (6)0.0136 (7)
Geometric parameters (Å, º) top
C1—O11.2238 (15)C12—O21.2245 (15)
C1—N11.3671 (16)C12—N31.3705 (17)
C1—C21.4759 (18)C12—C131.473 (2)
C2—N21.2854 (16)C13—N41.2891 (17)
C2—C111.4862 (18)C13—C221.4876 (19)
C3—N21.3825 (17)C14—N41.3882 (16)
C3—C41.3862 (17)C14—C151.3918 (18)
C3—C81.4049 (17)C14—C191.3963 (18)
C4—C51.366 (2)C15—C161.371 (2)
C4—H40.93C15—H150.93
C5—C61.388 (2)C16—C171.382 (2)
C5—H50.93C16—H160.93
C6—C71.3707 (19)C17—C181.3761 (19)
C6—H60.93C17—H170.93
C7—C81.3885 (18)C18—C191.3926 (18)
C7—H70.93C18—H180.93
C8—N11.3891 (15)C19—N31.3934 (16)
C9—N11.4696 (15)C20—N31.4687 (17)
C9—H9A0.97C20—H20A0.97
C9—H9B0.97C20—H20B0.97
C10—C91.5041 (19)C21—C201.509 (2)
C10—H10A0.96C21—H21A0.96
C10—H10B0.96C21—H21B0.96
C10—H10C0.96C21—H21C0.96
C11—H11A0.96C22—H22A0.96
C11—H11B0.96C22—H22B0.96
C11—H11C0.96C22—H22C0.96
O1—C1—N1121.88 (12)N4—C13—C22119.61 (13)
O1—C1—C2122.05 (12)C12—C13—C22116.56 (12)
N1—C1—C2116.07 (11)N4—C14—C15118.06 (12)
N2—C2—C1123.59 (11)N4—C14—C19122.33 (11)
N2—C2—C11119.68 (12)C15—C14—C19119.57 (12)
C1—C2—C11116.73 (12)C16—C15—C14121.14 (13)
N2—C3—C4118.34 (11)C16—C15—H15119.4
N2—C3—C8122.24 (11)C14—C15—H15119.4
C4—C3—C8119.42 (12)C15—C16—C17118.97 (13)
C5—C4—C3121.10 (12)C15—C16—H16120.5
C5—C4—H4119.5C17—C16—H16120.5
C3—C4—H4119.5C18—C17—C16121.23 (13)
C4—C5—C6119.04 (12)C18—C17—H17119.4
C4—C5—H5120.5C16—C17—H17119.4
C6—C5—H5120.5C17—C18—C19120.05 (13)
C7—C6—C5121.44 (13)C17—C18—H18120
C7—C6—H6119.3C19—C18—H18120
C5—C6—H6119.3C18—C19—N3122.96 (12)
C6—C7—C8119.68 (12)C18—C19—C14119.04 (12)
C6—C7—H7120.2N3—C19—C14118.00 (11)
C8—C7—H7120.2N3—C20—C21111.52 (11)
C7—C8—N1122.76 (11)N3—C20—H20A109.3
C7—C8—C3119.32 (11)C21—C20—H20A109.3
N1—C8—C3117.92 (11)N3—C20—H20B109.3
N1—C9—C10111.68 (11)C21—C20—H20B109.3
N1—C9—H9A109.3H20A—C20—H20B108
C10—C9—H9A109.3C20—C21—H21A109.5
N1—C9—H9B109.3C20—C21—H21B109.5
C10—C9—H9B109.3H21A—C21—H21B109.5
H9A—C9—H9B107.9C20—C21—H21C109.5
C9—C10—H10A109.5H21A—C21—H21C109.5
C9—C10—H10B109.5H21B—C21—H21C109.5
H10A—C10—H10B109.5C13—C22—H22A109.5
C9—C10—H10C109.5C13—C22—H22B109.5
H10A—C10—H10C109.5H22A—C22—H22B109.5
H10B—C10—H10C109.5C13—C22—H22C109.5
C2—C11—H11A109.5H22A—C22—H22C109.5
C2—C11—H11B109.5H22B—C22—H22C109.5
H11A—C11—H11B109.5C1—N1—C8121.35 (10)
C2—C11—H11C109.5C1—N1—C9116.87 (10)
H11A—C11—H11C109.5C8—N1—C9121.66 (10)
H11B—C11—H11C109.5C2—N2—C3118.47 (11)
O2—C12—N3121.81 (13)C12—N3—C19121.53 (11)
O2—C12—C13122.35 (13)C12—N3—C20117.23 (11)
N3—C12—C13115.83 (11)C19—N3—C20121.20 (11)
N4—C13—C12123.82 (12)C13—N4—C14118.27 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O2i0.932.433.291 (3)154
C17—H17···O10.932.463.301 (3)151
C11—H11B···Cg3ii0.963.343.893 (3)119
C22—H22C···Cg4iii0.962.713.516 (3)142
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+1; (iii) x, y, z.

Experimental details

Crystal data
Chemical formulaC11H12N2O
Mr188.23
Crystal system, space groupTriclinic, P1
Temperature (K)180
a, b, c (Å)7.4101 (6), 9.1405 (8), 14.2960 (12)
α, β, γ (°)84.976 (7), 78.717 (7), 88.137 (7)
V3)945.82 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.18 × 0.13 × 0.07
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.988, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
7441, 3865, 2874
Rint0.021
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.111, 1.06
No. of reflections3865
No. of parameters257
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.25

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O2i0.932.433.291 (3)154.00
C17—H17···O10.932.463.301 (3)151.00
C22—H22C···Cg4ii0.962.713.516 (3)142
Symmetry codes: (i) x, y, z+1; (ii) x, y, z.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAmin, A. S. (2003). Spectrochim. Acta Part A, 59, 1025–1033.  CrossRef Google Scholar
First citationBoutti, D. & Lecolier, S. (1975). Fr. Patent 2 249 879.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKotharkar, S. A. & Shinde, D. B. (2006). Bioorg. Med. Chem. Lett. 16, 6181–6184.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMilos, B. & John, F. C. (1981). Dyes Pigm. 2, 215–217.  Google Scholar
First citationNikolaenko, I. V. & Munro, O. Q. (2004). Acta Cryst. E60, o92–o94.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationRose, D., Lieske, E., Hoeffkes, H. & Henkel, K.-Ga. (1990). German Offen. DE 3 212 825.  Google Scholar
First citationSalman, A. K., Kishwar, S. & Zaheer, K. (2007). Eur. J. Med. Chem. 42, 103–108.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVishnu, K. T., Dharmendra, B. Y., Hardesh, K. M., Ashok, K. C. & Praveen, K. S. (2006). Bioorg. Med. Chem. Lett. 14, 6120–6126.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds