organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(3-Meth­oxy­pheneth­yl)-4-(2-meth­oxy­phen­yl)-4H-1,2,4-triazol-3-ol

aDepartment of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan, and bDepartment of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, Hong Kong
*Correspondence e-mail: nasimhrama@yahoo.com

(Received 6 October 2008; accepted 17 October 2008; online 25 October 2008)

In the mol­ecule of the title compound, C18H19N3O3, the triazole ring is oriented with respect to the 3-methoxy­phenyl and 2-methoxy­phenyl rings at dihedral angles of 11.79 (3) and 89.22 (3)°, respectively. The dihedral angle between the two benzene rings is 85.95 (3)°. In the crystal structure, inter­molecular O—H⋯N and C—H⋯O hydrogen bonds link the mol­ecules. There is a ππ contact between the triazole and 3-methoxy­phenyl rings [centroid–centroid distance = 3.916 (3) Å]. There is a ππ contact between the triazole and one of the 3-methoxy­phenyl rings [centroid–centroid distance = 3.916 (3) Å ]. C—H⋯π contacts are also found between the benzene ring and the methyl groups of their 3-methoxy-substituents.

Related literature

For general background, see: Demirbas et al. (2002[Demirbas, N., Ugurluoglu, R. & Demirbas, A. (2002). Bioorg. Med. Chem. 10, 3717-3723.]); Holla et al. (1998[Holla, B. S., Gonsalves, R. & Shenoy, S. (1998). Il Farmaco, 53, 574-578.]); Kritsanida et al. (2002[Kritsanida, M., Mouroutsou, A., Marakos, P., Pouli, N., Papakonstantinou-Garoufalias, S., Pannecouque, C., Witvrouw, M. & Clercq, E. D. (2002). Il Farmaco, 57, 253-257.]); Omar et al. (1986[Omar, A., Mohsen, M. E. & Wafa, O. A. (1986). Heterocycl. Chem. 23, 1339-1341.]); Paulvannan et al. (2000[Paulvannan, K., Chen, T. & Hale, R. (2000). Tetrahedron, 56, 8071-8076.]); Turan-Zitouni et al. (1999[Turan-Zitouni, G., Kaplancikli, Z. A., Erol, K. & Kilic, F. S. (1999). Il Farmaco, 54, 218-223.]). For related structures, see: Öztürk et al. (2004a[Öztürk, S., Akkurt, M., Cansız, A., Koparır, M., Şekerci, M. & Heinemann, F. W. (2004a). Acta Cryst. E60, o425-o427.],b[Öztürk, S., Akkurt, M., Cansız, A., Koparır, M., Şekerci, M. & Heinemann, F. W. (2004b). Acta Cryst. E60, o642-o644.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C18H19N3O3

  • Mr = 325.36

  • Monoclinic, P 21 /n

  • a = 10.5030 (11) Å

  • b = 14.1172 (14) Å

  • c = 11.3226 (11) Å

  • β = 98.192 (2)°

  • V = 1661.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 294 (2) K

  • 0.32 × 0.24 × 0.22 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.902, Tmax = 1.000 (expected range = 0.884–0.980)

  • 9949 measured reflections

  • 4026 independent reflections

  • 3212 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.146

  • S = 1.02

  • 4026 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯N3i 0.82 1.94 2.7569 (15) 173
C5—H5A⋯O1ii 0.93 2.59 3.406 (2) 147
C8—H8A⋯O2 0.97 2.57 3.485 (2) 157
C4—H4ACg3iii 0.93 3.25 4.004 (3) 140
C7—H7ACg3 0.93 3.16 4.067 (3) 165
C18—H18ACg2iv 0.96 3.03 3.400 (3) 105
C18—H18BCg2iv 0.96 3.08 3.400 (3) 101
Symmetry codes: (i) -x+2, -y, -z+2; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) x-1, y, z; (iv) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, z-{\script{3\over 2}}]. Cg2 and Cg3 are the centroids of the C2–C7 and C C12–C17 rings, respectively.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON.

Supporting information


Comment top

Substituted triazole derivatives display significant biological activities including antimicrobial (Holla et al., 1998), analgesic (Turan-Zitouni et al., 1999), antitumor (Demirbas et al., 2002), antihypertensive (Paulvannan et al., 2000) and antiviral (Kritsanida et al., 2002) activities. The biological activity is closely related to the structure, possibly being due to the presence of the —N—C—S unit (Omar et al., 1986). We are interested in the syntheses and biological activities of the aryloxyacetyl hydrazide derivatives and report herein the synthesis (Fig. 1) and crystal structure of the title compound.

In the molecule of the title compound (Fig. 2), the bond lengths (Allen et al., 1987) and angles are within normal ranges, and they are comparable with those observed in related structures (Öztürk et al., 2004a, 2004b). In the triazole ring, the N3=C11 [1.3459 (17) Å] bond has double bond character. Rings A (C2-C7), B (N1/N2/N3/C10/C11) and C (C12-C17) are, of course, planar and the dihedral angles between them are A/B = 11.79 (3)°, A/C = 89.22 (3)° and B/C = 85.95 (3)°.

In the crystal structure, intramolecular C-H···O and intermolecular O-H···N and C-H···O hydrogen bonds (Table 1) link the molecules (Fig. 3), in which they may be effective in the stabilization of the structure. The ππ contact between the triazole and 3-methoxyphenyl rings, Cg1···Cg2i [symmetry code: (i) 1/2 + x, 1/2 - y, 1/2 + z, where Cg1 and Cg2 are the centroids of the rings B (N1/N2/N3/C10/C11) and A (C2-C7), respectively] may further stabilize the structure, with centroid-centroid distance of 3.916 (3) Å. There also exist C—H···π contacts (Table 1) between the phenyl rings and the methyl group and the 3-methoxyphenyl ring.

Related literature top

For general background, see: Demirbas et al. (2002); Holla et al. (1998); Kritsanida et al. (2002); Omar et al. (1986); Paulvannan et al. (2000); Turan-Zitouni et al. (1999). For related literature, see: Öztürk et al. (2004a, 2004b). For bond-length data, see: Allen et al. (1987).

Experimental top

The synthesis of the title compound (Fig. 1) was carried out by refluxing a solution of 4-(2-methoxyphenyl)-1-(3-(3-methoxyphenyl)propanoyl)semicarbazide (3.43 g, 10 mmol) in NaOH (2M) for 5 h. Single crystals suitable for X-ray analysis were obtained by recrystallization from an aqeous ethanol solution at room temperature (yield; 71%, m.p. 454-455 K).

Refinement top

H atoms were positioned geometrically, with O-H = 0.82 Å (for OH) and C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C,O), where x = 1.2 for aromatic and methylene H and x = 1.5 for all other H atoms.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The formation of the title compound.
[Figure 2] Fig. 2. The molecular structure of the title molecule, with the atom-numbering scheme.
[Figure 3] Fig. 3. A partial packing diagram. Hydrogen bonds are shown as dashed lines.
5-(3-Methoxyphenethyl)-4-(2-methoxyphenyl)-4H-1,2,4-triazol-3-ol top
Crystal data top
C18H19N3O3F(000) = 688
Mr = 325.36Dx = 1.301 Mg m3
Monoclinic, P21/nMelting point: 454(1) K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 10.5030 (11) ÅCell parameters from 9949 reflections
b = 14.1172 (14) Åθ = 2.4–28.3°
c = 11.3226 (11) ŵ = 0.09 mm1
β = 98.192 (2)°T = 294 K
V = 1661.7 (3) Å3Block, yellow
Z = 40.32 × 0.24 × 0.22 mm
Data collection top
Bruker SMART CCD
diffractometer
4026 independent reflections
Radiation source: fine-focus sealed tube3212 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 28.3°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 814
Tmin = 0.902, Tmax = 1.000k = 1818
9949 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0854P)2 + 0.2782P]
where P = (Fo2 + 2Fc2)/3
4026 reflections(Δ/σ)max < 0.001
218 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C18H19N3O3V = 1661.7 (3) Å3
Mr = 325.36Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.5030 (11) ŵ = 0.09 mm1
b = 14.1172 (14) ÅT = 294 K
c = 11.3226 (11) Å0.32 × 0.24 × 0.22 mm
β = 98.192 (2)°
Data collection top
Bruker SMART CCD
diffractometer
4026 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3212 reflections with I > 2σ(I)
Tmin = 0.902, Tmax = 1.000Rint = 0.018
9949 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.02Δρmax = 0.56 e Å3
4026 reflectionsΔρmin = 0.40 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.34683 (13)0.50242 (9)0.80167 (14)0.0726 (4)
O20.76819 (12)0.19899 (8)0.72362 (9)0.0538 (3)
O30.99935 (9)0.12807 (7)0.96442 (12)0.0554 (3)
H31.04360.08000.97200.083*
N10.78261 (10)0.16861 (7)0.95758 (10)0.0367 (2)
N20.70357 (11)0.02988 (8)1.00087 (11)0.0439 (3)
N30.83555 (11)0.02434 (8)0.99977 (11)0.0439 (3)
C10.4774 (2)0.53003 (16)0.8160 (3)0.0908 (8)
H1A0.48290.59790.81330.136*
H1B0.51800.50330.75290.136*
H1C0.52000.50770.89150.136*
C20.31961 (15)0.40769 (11)0.80274 (13)0.0485 (3)
C30.18992 (15)0.38405 (12)0.79300 (14)0.0525 (4)
H3A0.12770.43130.78370.063*
C40.15417 (14)0.29079 (12)0.79721 (14)0.0512 (4)
H4A0.06750.27510.79090.061*
C50.24656 (13)0.21925 (11)0.81085 (13)0.0447 (3)
H5A0.22160.15630.81510.054*
C60.37517 (13)0.24212 (10)0.81805 (12)0.0401 (3)
C70.41200 (14)0.33670 (11)0.81434 (13)0.0463 (3)
H7A0.49860.35230.81960.056*
C80.47827 (14)0.16657 (11)0.83435 (14)0.0480 (3)
H8A0.54240.18070.78310.058*
H8B0.44000.10590.81000.058*
C90.54420 (13)0.15956 (10)0.96390 (13)0.0440 (3)
H9A0.55050.22250.99870.053*
H9B0.49130.12141.00900.053*
C100.67491 (12)0.11732 (9)0.97478 (11)0.0378 (3)
C110.88697 (13)0.10760 (9)0.97304 (12)0.0390 (3)
C120.79093 (12)0.26338 (9)0.91477 (12)0.0374 (3)
C130.80818 (19)0.33857 (12)0.99299 (15)0.0583 (4)
H13A0.81170.32841.07460.070*
C140.8202 (2)0.42943 (12)0.94939 (19)0.0751 (6)
H14A0.83230.48051.00170.090*
C150.8143 (2)0.44367 (11)0.82921 (18)0.0652 (5)
H15A0.82260.50480.80060.078*
C160.79629 (15)0.36961 (11)0.74987 (14)0.0504 (4)
H16A0.79180.38060.66840.061*
C170.78478 (12)0.27786 (9)0.79249 (12)0.0386 (3)
C180.7433 (3)0.21156 (16)0.59719 (16)0.0767 (6)
H18A0.73350.15080.55900.115*
H18B0.81400.24470.57080.115*
H18C0.66590.24770.57690.115*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0682 (8)0.0439 (6)0.1023 (10)0.0042 (5)0.0004 (7)0.0152 (6)
O20.0795 (8)0.0433 (5)0.0401 (5)0.0046 (5)0.0140 (5)0.0015 (4)
O30.0367 (5)0.0395 (5)0.0911 (8)0.0079 (4)0.0121 (5)0.0164 (5)
N10.0359 (5)0.0333 (5)0.0410 (5)0.0062 (4)0.0063 (4)0.0081 (4)
N20.0369 (6)0.0378 (6)0.0574 (7)0.0038 (5)0.0083 (5)0.0089 (5)
N30.0366 (6)0.0354 (6)0.0596 (7)0.0049 (4)0.0067 (5)0.0105 (5)
C10.0816 (15)0.0595 (11)0.1215 (19)0.0176 (10)0.0199 (13)0.0270 (12)
C20.0502 (8)0.0443 (7)0.0498 (8)0.0048 (6)0.0030 (6)0.0096 (6)
C30.0448 (8)0.0574 (9)0.0541 (8)0.0171 (7)0.0023 (6)0.0060 (7)
C40.0336 (7)0.0659 (10)0.0532 (8)0.0044 (6)0.0030 (6)0.0014 (7)
C50.0388 (7)0.0483 (7)0.0459 (7)0.0014 (6)0.0020 (5)0.0004 (6)
C60.0360 (6)0.0455 (7)0.0381 (6)0.0050 (5)0.0025 (5)0.0013 (5)
C70.0360 (7)0.0498 (8)0.0527 (8)0.0015 (6)0.0055 (6)0.0075 (6)
C80.0408 (7)0.0482 (8)0.0536 (8)0.0086 (6)0.0022 (6)0.0071 (6)
C90.0372 (7)0.0454 (7)0.0508 (7)0.0086 (5)0.0106 (6)0.0068 (6)
C100.0355 (6)0.0390 (6)0.0392 (6)0.0041 (5)0.0066 (5)0.0066 (5)
C110.0361 (6)0.0347 (6)0.0461 (7)0.0064 (5)0.0053 (5)0.0075 (5)
C120.0374 (6)0.0317 (6)0.0435 (7)0.0055 (5)0.0070 (5)0.0069 (5)
C130.0829 (12)0.0440 (8)0.0467 (8)0.0023 (8)0.0046 (8)0.0013 (6)
C140.1112 (16)0.0392 (8)0.0729 (12)0.0050 (9)0.0063 (11)0.0075 (8)
C150.0784 (12)0.0353 (7)0.0836 (12)0.0019 (7)0.0172 (9)0.0135 (8)
C160.0552 (8)0.0438 (7)0.0547 (8)0.0058 (6)0.0159 (7)0.0167 (6)
C170.0380 (6)0.0356 (6)0.0435 (7)0.0057 (5)0.0102 (5)0.0057 (5)
C180.1174 (18)0.0713 (12)0.0423 (9)0.0071 (12)0.0147 (10)0.0014 (8)
Geometric parameters (Å, º) top
O3—H30.8200C9—H9B0.9700
N2—N31.3902 (16)C10—N21.2946 (17)
C1—O11.413 (3)C10—N11.3801 (17)
C1—H1A0.9600C11—O31.2325 (16)
C1—H1B0.9600C11—N31.3459 (17)
C1—H1C0.9600C11—N11.3854 (16)
C2—O11.3680 (19)C12—C131.378 (2)
C2—C71.388 (2)C12—C171.3919 (18)
C2—C31.391 (2)C12—N11.4299 (15)
C3—C41.372 (2)C13—C141.387 (2)
C3—H3A0.9300C13—H13A0.9300
C4—C51.394 (2)C14—C151.368 (3)
C4—H4A0.9300C14—H14A0.9300
C5—C61.3798 (19)C15—C161.374 (3)
C5—H5A0.9300C15—H15A0.9300
C6—C71.393 (2)C16—C171.3934 (19)
C6—C81.5123 (19)C16—H16A0.9300
C7—H7A0.9300C17—O21.3563 (17)
C8—C91.533 (2)C18—O21.429 (2)
C8—H8A0.9700C18—H18A0.9600
C8—H8B0.9700C18—H18B0.9600
C9—C101.4857 (18)C18—H18C0.9600
C9—H9A0.9700
C2—O1—C1118.00 (14)H8A—C8—H8B107.9
C17—O2—C18117.66 (13)C10—C9—C8113.03 (11)
C11—O3—H3109.5C10—C9—H9A109.0
C10—N1—C11107.79 (10)C8—C9—H9A109.0
C10—N1—C12129.03 (10)C10—C9—H9B109.0
C11—N1—C12122.62 (11)C8—C9—H9B109.0
C10—N2—N3104.56 (11)H9A—C9—H9B107.8
C11—N3—N2112.67 (11)N2—C10—N1111.34 (11)
O1—C1—H1A109.5N2—C10—C9125.71 (12)
O1—C1—H1B109.5N1—C10—C9122.95 (11)
H1A—C1—H1B109.5O3—C11—N3129.95 (12)
O1—C1—H1C109.5O3—C11—N1126.41 (12)
H1A—C1—H1C109.5N3—C11—N1103.64 (11)
H1B—C1—H1C109.5C13—C12—C17120.63 (12)
O1—C2—C7124.22 (15)C13—C12—N1120.78 (13)
O1—C2—C3115.93 (14)C17—C12—N1118.57 (12)
C7—C2—C3119.85 (14)C12—C13—C14119.61 (16)
C4—C3—C2119.81 (14)C12—C13—H13A120.2
C4—C3—H3A120.1C14—C13—H13A120.2
C2—C3—H3A120.1C15—C14—C13119.77 (17)
C3—C4—C5120.63 (14)C15—C14—H14A120.1
C3—C4—H4A119.7C13—C14—H14A120.1
C5—C4—H4A119.7C14—C15—C16121.40 (15)
C6—C5—C4119.82 (14)C14—C15—H15A119.3
C6—C5—H5A120.1C16—C15—H15A119.3
C4—C5—H5A120.1C15—C16—C17119.44 (15)
C5—C6—C7119.76 (13)C15—C16—H16A120.3
C5—C6—C8121.34 (13)C17—C16—H16A120.3
C7—C6—C8118.86 (13)O2—C17—C12115.80 (11)
C2—C7—C6120.11 (13)O2—C17—C16125.05 (13)
C2—C7—H7A119.9C12—C17—C16119.14 (13)
C6—C7—H7A119.9O2—C18—H18A109.5
C6—C8—C9112.34 (11)O2—C18—H18B109.5
C6—C8—H8A109.1H18A—C18—H18B109.5
C9—C8—H8A109.1O2—C18—H18C109.5
C6—C8—H8B109.1H18A—C18—H18C109.5
C9—C8—H8B109.1H18B—C18—H18C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N3i0.821.942.7569 (15)173
C5—H5A···O1ii0.932.593.406 (2)147
C8—H8A···O20.972.573.485 (2)157
C4—H4A···Cg3iii0.933.254.004 (3)140
C7—H7A···Cg30.933.164.067 (3)165
C18—H18A···Cg2iv0.963.033.400 (3)105
C18—H18B···Cg2iv0.963.083.400 (3)101
Symmetry codes: (i) x+2, y, z+2; (ii) x+1/2, y1/2, z+3/2; (iii) x1, y, z; (iv) x1/2, y1/2, z3/2.

Experimental details

Crystal data
Chemical formulaC18H19N3O3
Mr325.36
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)10.5030 (11), 14.1172 (14), 11.3226 (11)
β (°) 98.192 (2)
V3)1661.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.32 × 0.24 × 0.22
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.902, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9949, 4026, 3212
Rint0.018
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.146, 1.02
No. of reflections4026
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.40

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N3i0.821.942.7569 (15)173
C5—H5A···O1ii0.932.593.406 (2)147
C8—H8A···O20.972.573.485 (2)157
C4—H4A···Cg3iii0.933.254.004 (3)140
C7—H7A···Cg30.933.164.067 (3)165
C18—H18A···Cg2iv0.963.033.400 (3)105
C18—H18B···Cg2iv0.963.083.400 (3)101
Symmetry codes: (i) x+2, y, z+2; (ii) x+1/2, y1/2, z+3/2; (iii) x1, y, z; (iv) x1/2, y1/2, z3/2.
 

Acknowledgements

The authors gratefully acknowledge funds from the Higher Education Commission, Islamabad, Pakistan.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDemirbas, N., Ugurluoglu, R. & Demirbas, A. (2002). Bioorg. Med. Chem. 10, 3717–3723.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHolla, B. S., Gonsalves, R. & Shenoy, S. (1998). Il Farmaco, 53, 574–578.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKritsanida, M., Mouroutsou, A., Marakos, P., Pouli, N., Papakonstantinou-Garoufalias, S., Pannecouque, C., Witvrouw, M. & Clercq, E. D. (2002). Il Farmaco, 57, 253–257.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOmar, A., Mohsen, M. E. & Wafa, O. A. (1986). Heterocycl. Chem. 23, 1339–1341.  CrossRef CAS Google Scholar
First citationÖztürk, S., Akkurt, M., Cansız, A., Koparır, M., Şekerci, M. & Heinemann, F. W. (2004a). Acta Cryst. E60, o425–o427.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÖztürk, S., Akkurt, M., Cansız, A., Koparır, M., Şekerci, M. & Heinemann, F. W. (2004b). Acta Cryst. E60, o642–o644.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPaulvannan, K., Chen, T. & Hale, R. (2000). Tetrahedron, 56, 8071–8076.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTuran-Zitouni, G., Kaplancikli, Z. A., Erol, K. & Kilic, F. S. (1999). Il Farmaco, 54, 218–223.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds