organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-(4-Amino­phen­yl)ethanone oxime

aDepartment of Chemistry, BZU, Multan, Pakistan, bDepartment of Chemistry, Quaid-i-Azam Univeristy, Islamabad 45320, Pakistan, and cDepartment of Chemistry, University of Oulu, PO Box 3000, 90014 Finland
*Correspondence e-mail: qadeerqau@yahoo.com

(Received 13 October 2008; accepted 18 October 2008; online 22 October 2008)

In the mol­ecule of the title compound, C8H10N2O, the oxime group is oriented at a dihedral angle of 5.58 (3)° with respect to the benzene ring. In the crystal structure, inter­molecular O—H⋯N and N—H⋯O hydrogen bonds link the mol­ecules, forming a three-dimensional network.

Related literature

For general background, see: Bertolasi et al. (1982[Bertolasi, V., Gilli, G. & Veronese, A. C. (1982). Acta Cryst. B38, 502-511.]); Degorre et al. (1998[Degorre, F., Kiffer, D. & Terrie, F. (1998). J. Med. Chem. 31, 757-761.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C8H10N2O

  • Mr = 150.18

  • Monoclinic, P 21 /n

  • a = 4.8641 (2) Å

  • b = 9.2016 (3) Å

  • c = 17.1447 (7) Å

  • β = 95.535 (2)°

  • V = 763.78 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 (2) K

  • 0.34 × 0.28 × 0.26 mm

Data collection
  • Enraf–Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (DENZO; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzimology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.972, Tmax = 0.979

  • 6132 measured reflections

  • 1761 independent reflections

  • 1483 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.107

  • S = 1.04

  • 1761 reflections

  • 113 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯N2i 0.92 (2) 1.88 (2) 2.7919 (14) 169.8 (18)
N2—H2N⋯O1ii 0.916 (18) 2.165 (18) 3.0790 (13) 175.7 (15)
N2—H2M⋯N1iii 0.929 (19) 2.525 (19) 3.3000 (14) 141.0 (14)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzimology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2007[Brandenburg, K. (2007). DIAMOND. Crystal Impact Gbr, Bonn, Germany.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

One of the richest sources of diversity for the medicinal chemist is small heterocyclic rings, which in addition to often exhibiting biological activity, may serve as rigid scaffolds for a further display of functionalities. Oximes are among those, that have been reported to posses a wide range of biological activities including anti-oxidants, anti-inflammatory and as reactivators of organophosphate inhibited acetylcholine esterases (Degorre et al., 1998). The oxime moiety can both donate and accept hydrogen bonds, which makes it a very interesting building block in supramolecular chemistry (Bertolasi et al., 1982). It is also a key intermediate, which undergoes the 1,3-dipolar cycloaddition reaction with mono substituted alkenes to form isoxazolines.Due to importance of these compounds, we decided to synthesize the title compound and report herein its crystal structure.

In the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges . The phenyl ring A (C1-C6) is oriented with respect to the planar (O1/N1/C1/C7/C8) moiety at a dihedral angle of 5.46 (3)°. N2 atom is -0.014 (3) Å away from the phenyl plane.

In the crystal structure, intermolecular O-H···N and N-H···O hydrogen bonds (Table 1) link the molecules to form a supramolecular structure (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For general background, see: Bertolasi et al. (1982); Degorre et al. (1998). For bond-length data, see: Allen et al. (1987).

Experimental top

For the preparation of the title compound, a solution of 1-(4-aminophenyl)- ethanone (1.35 g, 10 mmol) in methanol (15 ml) was added to a mixture of hydroxylamine sulfate (1.31 g, 10 mmol) and sodium acetate (2.0 g, 25 mmol). The reaction mass was refluxed for 4-5 h, until the reaction completed. The solvent was evaporated under vacuo and demineralized water (40 ml) was added, cooled to 268-265 K and filtered to obtain crystalline solid (yield; 1.11 g, 75%; m.p. 401-402 K).

Refinement top

H atoms (for OH and NH2) were located in difference syntheses and refined isotropically [O-H = 0.92 (2) Å; Uiso(H) = 0.049 (5) Å2 and N-H = 0.916 (18) and 0.929 (19) Å; Uiso(H) = 0.035 (4) and 0.039 (4) Å2]. The remaining H atoms were positioned geometrically, with C-H = 0.95 and 0.98 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for aromatic H atoms.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2007) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing diagram. Hydrogen bonds are shown as dashed lines.
(E)-1-(4-Aminophenyl)ethanone oxime top
Crystal data top
C8H10N2OF(000) = 320
Mr = 150.18Dx = 1.306 Mg m3
Monoclinic, P21/nMelting point: 401(1) K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 4.8641 (2) ÅCell parameters from 3781 reflections
b = 9.2016 (3) Åθ = 1.0–30.0°
c = 17.1447 (7) ŵ = 0.09 mm1
β = 95.535 (2)°T = 100 K
V = 763.78 (5) Å3Block, pale yellow
Z = 40.34 × 0.28 × 0.26 mm
Data collection top
Enraf–Nonius KappaCCD
diffractometer
1761 independent reflections
Radiation source: fine-focus sealed tube1483 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.026
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 4.2°
ϕ and ω scansh = 66
Absorption correction: multi-scan
(DENZO; Otwinowski & Minor, 1997)
k = 1111
Tmin = 0.972, Tmax = 0.979l = 2222
6132 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: mixed
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0554P)2 + 0.2855P]
where P = (Fo2 + 2Fc2)/3
1761 reflections(Δ/σ)max < 0.001
113 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C8H10N2OV = 763.78 (5) Å3
Mr = 150.18Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.8641 (2) ŵ = 0.09 mm1
b = 9.2016 (3) ÅT = 100 K
c = 17.1447 (7) Å0.34 × 0.28 × 0.26 mm
β = 95.535 (2)°
Data collection top
Enraf–Nonius KappaCCD
diffractometer
1761 independent reflections
Absorption correction: multi-scan
(DENZO; Otwinowski & Minor, 1997)
1483 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.979Rint = 0.026
6132 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.24 e Å3
1761 reflectionsΔρmin = 0.28 e Å3
113 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.42570 (18)0.21270 (10)0.47528 (5)0.0203 (2)
H1O0.273 (4)0.158 (2)0.4589 (11)0.049 (5)*
N10.38949 (19)0.23108 (10)0.55574 (5)0.0168 (2)
N20.4407 (2)0.42572 (11)0.91465 (6)0.0186 (2)
H2N0.288 (4)0.3807 (18)0.9308 (10)0.035 (4)*
H2M0.440 (4)0.525 (2)0.9257 (10)0.039 (4)*
C10.5281 (2)0.34967 (12)0.67458 (6)0.0147 (2)
C20.3462 (2)0.26638 (12)0.71490 (7)0.0179 (3)
H20.24210.19140.68780.021*
C30.3148 (2)0.29074 (13)0.79324 (7)0.0177 (3)
H30.19030.23270.81920.021*
C40.4655 (2)0.40050 (12)0.83408 (6)0.0156 (2)
C50.6512 (2)0.48187 (13)0.79535 (7)0.0187 (3)
H50.75880.55500.82300.022*
C60.6810 (2)0.45726 (13)0.71660 (7)0.0178 (3)
H60.80750.51460.69100.021*
C70.5571 (2)0.32441 (12)0.59009 (6)0.0149 (2)
C80.7713 (2)0.40782 (13)0.55104 (7)0.0195 (3)
H8A0.76060.38150.49540.029*
H8B0.95530.38410.57620.029*
H8C0.73770.51230.55600.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0222 (5)0.0272 (5)0.0121 (4)0.0020 (4)0.0043 (3)0.0033 (3)
N10.0190 (5)0.0200 (5)0.0118 (5)0.0020 (4)0.0038 (4)0.0010 (4)
N20.0230 (5)0.0190 (5)0.0141 (5)0.0005 (4)0.0032 (4)0.0012 (4)
C10.0144 (5)0.0144 (5)0.0156 (5)0.0029 (4)0.0024 (4)0.0005 (4)
C20.0191 (6)0.0168 (5)0.0178 (5)0.0026 (4)0.0018 (4)0.0015 (4)
C30.0172 (5)0.0182 (6)0.0181 (6)0.0017 (4)0.0042 (4)0.0018 (4)
C40.0168 (5)0.0160 (5)0.0138 (5)0.0042 (4)0.0012 (4)0.0003 (4)
C50.0200 (6)0.0173 (6)0.0187 (6)0.0025 (4)0.0017 (4)0.0036 (4)
C60.0179 (5)0.0176 (5)0.0185 (6)0.0017 (4)0.0041 (4)0.0006 (4)
C70.0139 (5)0.0158 (5)0.0153 (5)0.0039 (4)0.0027 (4)0.0019 (4)
C80.0177 (5)0.0231 (6)0.0182 (5)0.0019 (4)0.0045 (4)0.0010 (4)
Geometric parameters (Å, º) top
O1—N11.4175 (11)C3—C41.3961 (16)
O1—H1O0.92 (2)C3—H30.9500
N1—C71.2869 (15)C4—C51.3905 (16)
N2—C41.4173 (14)C5—C61.3903 (15)
N2—H2N0.916 (18)C5—H50.9500
N2—H2M0.929 (19)C6—H60.9500
C1—C61.3961 (16)C7—C81.5026 (15)
C1—C21.4020 (16)C8—H8A0.9800
C1—C71.4872 (14)C8—H8B0.9800
C2—C31.3846 (15)C8—H8C0.9800
C2—H20.9500
N1—O1—H1O100.9 (11)C3—C4—N2121.15 (10)
C7—N1—O1113.10 (9)C6—C5—C4120.63 (10)
C4—N2—H2N111.6 (10)C6—C5—H5119.7
C4—N2—H2M111.1 (11)C4—C5—H5119.7
H2N—N2—H2M111.2 (15)C5—C6—C1121.09 (10)
C6—C1—C2117.60 (10)C5—C6—H6119.5
C6—C1—C7121.17 (10)C1—C6—H6119.5
C2—C1—C7121.23 (10)N1—C7—C1115.76 (9)
C3—C2—C1121.59 (11)N1—C7—C8124.95 (10)
C3—C2—H2119.2C1—C7—C8119.29 (10)
C1—C2—H2119.2C7—C8—H8A109.5
C2—C3—C4120.12 (10)C7—C8—H8B109.5
C2—C3—H3119.9H8A—C8—H8B109.5
C4—C3—H3119.9C7—C8—H8C109.5
C5—C4—C3118.94 (10)H8A—C8—H8C109.5
C5—C4—N2119.85 (10)H8B—C8—H8C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N2i0.92 (2)1.88 (2)2.7919 (14)169.8 (18)
N2—H2N···O1ii0.916 (18)2.165 (18)3.0790 (13)175.7 (15)
N2—H2M···N1iii0.929 (19)2.525 (19)3.3000 (14)141.0 (14)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x1/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC8H10N2O
Mr150.18
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)4.8641 (2), 9.2016 (3), 17.1447 (7)
β (°) 95.535 (2)
V3)763.78 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.34 × 0.28 × 0.26
Data collection
DiffractometerEnraf–Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(DENZO; Otwinowski & Minor, 1997)
Tmin, Tmax0.972, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
6132, 1761, 1483
Rint0.026
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.108, 1.04
No. of reflections1761
No. of parameters113
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.28

Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2007) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N2i0.92 (2)1.88 (2)2.7919 (14)169.8 (18)
N2—H2N···O1ii0.916 (18)2.165 (18)3.0790 (13)175.7 (15)
N2—H2M···N1iii0.929 (19)2.525 (19)3.3000 (14)141.0 (14)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x1/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z+3/2.
 

Acknowledgements

The authors gratefully acknowledge funds from the Higher Education Commission, Islamabad, Pakistan.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBertolasi, V., Gilli, G. & Veronese, A. C. (1982). Acta Cryst. B38, 502–511.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. (2007). DIAMOND. Crystal Impact Gbr, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDegorre, F., Kiffer, D. & Terrie, F. (1998). J. Med. Chem. 31, 757-761.  CrossRef Web of Science Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzimology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds