organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5,5′-Di­ethyl-2,2′-(triazene-1,3-di­yl)di-1,3,4-thia­diazole

aCollege of Science, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: wanghaibo@njut.edu.cn

(Received 14 October 2008; accepted 17 October 2008; online 22 October 2008)

In the mol­ecule of the title compound, C8H11N7S2, the conformation about the N=N bond is trans and the thia­diazole rings are oriented at a dihedral angle of 2.92 (3)°. In the crystal structure, inter­molecular N—H⋯S hydrogen bonds link the mol­ecules into chains. There are ππ contacts between the thia­diazole rings [centroid-to-centroid distances = 3.699 (3) and 3.720 (2) Å].

Related literature

For general background, see: Bach et al. (1996[Bach, H., Anderle, K., Fuhrmann, Th. & Wendorff, J. H. (1996). J. Phys. Chem. 100, 4135-4140.]); Clark & Hester (1991[Clark, R. J. H. & Hester, R. E. (1991). Advances in Materials Science Spectroscopy. New York: John Wiley & Sons.]); Taniike et al. (1996[Taniike, K., Matsumoto, T., Sato, T., Ozaki, Y., Nakashima, K. & Iriyama, K. (1996). J. Phys. Chem. 100, 15508-15516.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C8H11N7S2

  • Mr = 269.36

  • Monoclinic, P 21 /c

  • a = 12.188 (2) Å

  • b = 9.1460 (18) Å

  • c = 12.790 (3) Å

  • β = 110.99 (3)°

  • V = 1331.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 294 (2) K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.926, Tmax = 0.962

  • 2431 measured reflections

  • 2320 independent reflections

  • 1468 reflections with I > 2σ(I)

  • Rint = 0.0047

  • 3 standard reflections frequency: 120 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.072

  • wR(F2) = 0.178

  • S = 1.00

  • 2320 reflections

  • 142 parameters

  • H-atom parameters constrained

  • Δρmax = 0.62 e Å−3

  • Δρmin = −1.06 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5A⋯S2i 0.86 2.84 3.631 (4) 154
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The photophysical properties of azo compounds are of large interest in the development of nonlinear optical and optical data storage materials (Bach et al., 1996; Taniike et al., 1996; Clark & Hester, 1991). As part of our studies in this area, we report herein the synthesis and crystal structure of the title compound.

In the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (S1/N1/N2/C3/C4) and B (S2/N3/N4/C7/C8) are oriented at a dihedral angle of 2.92 (3)°. So, they are nearly coplanar.

In the crystal structure, intermolecular N—H···S hydrogen bonds (Table 1) link the molecules into chains (Fig. 2), in which they may be effective in the stabilization of the structure. The ππ contacts between the thiadiazole rings, Cg2···Cg2i and Cg2···Cg1ii [symmetry codes: (i) -x, 1 - y, -z; (ii) -x, -y, -z, where Cg1 and Cg2 are the centroids of the rings A (S1/N1/N2/C3/C4) and B (S2/N3/N4/C7/C8), respectively] may further stabilize the structure, with centroid–centroid distances of 3.699 (3) and 3.720 (2) Å, respectively.

Related literature top

For general background, see: Bach et al. (1996); Clark & Hester (1991); Taniike et al. (1996). For bond-length data, see: Allen et al. (1987).

Experimental top

For the preparation of the title compound, 5-amino-l,3,4-thiadiazole (5 mmol) was dissolved by heating in concentrated HCl (50 ml) in a water bath, after which the solution was cooled to 268 K and a solution of sodium nitrite (2.5 mmol) in water (3.5 ml) was added dropwise with stirring. The resulting bright-yellow diazonium solution was allowed to stand in ice for 30 min, after which a saturated solution of sodium acetate (100 ml, pH = 5) was added. The precipitate was removed by filtration, and purified by crystallization from toluene. Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

Refinement top

H atoms were positioned geometrically, with N—H = 0.86 Å (for NH) and C—H = 0.97 and 0.96 Å for methylene and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound.
5,5'-Diethyl-2,2'-(triazene-1,3-diyl)di-1,3,4-thiadiazole top
Crystal data top
C8H11N7S2F(000) = 560
Mr = 269.36Dx = 1.344 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 12.188 (2) Åθ = 9–12°
b = 9.1460 (18) ŵ = 0.39 mm1
c = 12.790 (3) ÅT = 294 K
β = 110.99 (3)°Block, yellow
V = 1331.1 (5) Å30.20 × 0.10 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1468 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.005
Graphite monochromatorθmax = 25.3°, θmin = 1.8°
ω/2θ scansh = 1413
Absorption correction: ψ scan
(North et al., 1968)
k = 010
Tmin = 0.926, Tmax = 0.962l = 014
2431 measured reflections3 standard reflections every 120 min
2320 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.178H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.06P)2 + 3.61P]
where P = (Fo2 + 2Fc2)/3
2320 reflections(Δ/σ)max < 0.001
142 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = 1.06 e Å3
Crystal data top
C8H11N7S2V = 1331.1 (5) Å3
Mr = 269.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.188 (2) ŵ = 0.39 mm1
b = 9.1460 (18) ÅT = 294 K
c = 12.790 (3) Å0.20 × 0.10 × 0.10 mm
β = 110.99 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1468 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.005
Tmin = 0.926, Tmax = 0.9623 standard reflections every 120 min
2431 measured reflections intensity decay: none
2320 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0720 restraints
wR(F2) = 0.178H-atom parameters constrained
S = 1.00Δρmax = 0.62 e Å3
2320 reflectionsΔρmin = 1.06 e Å3
142 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.26701 (14)0.49714 (19)0.57391 (10)0.0675 (5)
S20.96258 (11)0.18590 (15)0.56999 (10)0.0488 (4)
N11.3578 (5)0.6450 (6)0.4508 (4)0.0804 (16)
N21.2634 (4)0.5731 (5)0.3737 (3)0.0548 (11)
N30.7840 (4)0.0373 (5)0.4403 (3)0.0554 (12)
N40.8301 (3)0.1075 (5)0.3694 (3)0.0512 (11)
N50.9719 (4)0.2610 (5)0.3544 (3)0.0515 (11)
H5A0.94820.25560.28250.062*
N61.1099 (3)0.4124 (5)0.3558 (3)0.0463 (10)
N71.0651 (3)0.3422 (4)0.4200 (3)0.0417 (9)
C11.5073 (6)0.6346 (8)0.7641 (5)0.092
H1B1.55280.70390.81890.138*
H1C1.55700.55580.75860.138*
H1D1.44530.59680.78610.138*
C21.4558 (5)0.7082 (7)0.6535 (5)0.073
H2A1.51950.74110.63080.088*
H2B1.41350.79430.66260.088*
C31.3715 (6)0.6141 (9)0.5586 (5)0.090 (2)
C41.2070 (4)0.4920 (6)0.4245 (4)0.0466 (12)
C50.7047 (6)0.0851 (8)0.6080 (5)0.0790 (19)
H5B0.68790.12210.67090.119*
H5C0.71490.16540.56400.119*
H5D0.64060.02510.56290.119*
C60.8141 (5)0.0036 (7)0.6486 (4)0.0589 (14)
H6B0.87870.05670.69500.071*
H6C0.80430.08370.69410.071*
C70.8436 (4)0.0651 (6)0.5493 (4)0.0509 (13)
C80.9231 (4)0.1912 (6)0.4186 (4)0.0465 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0757 (10)0.0889 (12)0.0315 (7)0.0236 (9)0.0116 (6)0.0029 (7)
S20.0510 (7)0.0616 (8)0.0329 (6)0.0063 (7)0.0140 (5)0.0044 (6)
N10.073 (3)0.099 (4)0.062 (3)0.029 (3)0.016 (3)0.013 (3)
N20.053 (3)0.066 (3)0.043 (2)0.006 (2)0.015 (2)0.011 (2)
N30.045 (2)0.074 (3)0.049 (3)0.006 (2)0.019 (2)0.012 (2)
N40.044 (2)0.074 (3)0.037 (2)0.005 (2)0.0164 (19)0.010 (2)
N50.052 (3)0.069 (3)0.033 (2)0.004 (2)0.014 (2)0.002 (2)
N60.049 (2)0.057 (3)0.032 (2)0.002 (2)0.0141 (19)0.0018 (19)
N70.038 (2)0.049 (2)0.036 (2)0.0040 (18)0.0114 (18)0.0001 (18)
C10.0920.0920.0920.0000.0330.000
C20.0730.0730.0730.0000.0260.000
C30.083 (4)0.126 (6)0.047 (3)0.045 (4)0.008 (3)0.010 (4)
C40.047 (3)0.059 (3)0.034 (2)0.007 (3)0.015 (2)0.005 (2)
C50.084 (4)0.095 (5)0.065 (4)0.030 (4)0.035 (3)0.004 (4)
C60.067 (3)0.072 (4)0.044 (3)0.019 (3)0.029 (3)0.012 (3)
C70.048 (3)0.061 (3)0.043 (3)0.004 (3)0.015 (2)0.010 (2)
C80.045 (3)0.053 (3)0.035 (2)0.001 (2)0.007 (2)0.006 (2)
Geometric parameters (Å, º) top
S1—C31.728 (6)C1—H1B0.9600
S1—C41.786 (5)C1—H1C0.9600
S2—C71.766 (5)C1—H1D0.9600
S2—C81.820 (5)C2—C31.541 (8)
N1—N21.384 (6)C2—H2A0.9700
N1—C31.358 (7)C2—H2B0.9700
N2—C41.328 (6)C4—N61.399 (6)
N3—N41.384 (6)C5—C61.487 (7)
N3—C71.346 (6)C5—H5B0.9600
N4—C81.325 (6)C5—H5C0.9600
N5—N71.365 (5)C5—H5D0.9600
N5—C81.338 (6)C6—C71.544 (7)
N5—H5A0.8600C6—H6B0.9700
N6—N71.306 (5)C6—H6C0.9700
C1—C21.486 (7)
C3—S1—C486.0 (3)N1—C3—S1114.6 (5)
C7—S2—C888.1 (2)C2—C3—S1124.5 (5)
C3—N1—N2113.1 (5)N2—C4—N6116.9 (4)
C4—N2—N1111.2 (4)N2—C4—S1115.1 (4)
C7—N3—N4113.3 (4)N6—C4—S1128.0 (4)
C8—N4—N3115.8 (4)C6—C5—H5B109.5
N7—N5—H5A125.1C6—C5—H5C109.5
C8—N5—N7109.7 (4)H5B—C5—H5C109.5
C8—N5—H5A125.1C6—C5—H5D109.5
N7—N6—C4108.2 (4)H5B—C5—H5D109.5
N6—N7—N5108.9 (4)H5C—C5—H5D109.5
C2—C1—H1B109.5C5—C6—C7110.8 (4)
C2—C1—H1C109.5C5—C6—H6B109.5
H1B—C1—H1C109.5C7—C6—H6B109.5
C2—C1—H1D109.5C5—C6—H6C109.5
H1B—C1—H1D109.5C7—C6—H6C109.5
H1C—C1—H1D109.5H6B—C6—H6C108.1
C1—C2—C3115.6 (6)N3—C7—C6125.8 (5)
C1—C2—H2A108.4N3—C7—S2112.5 (4)
C3—C2—H2A108.4C6—C7—S2121.7 (4)
C1—C2—H2B108.4N4—C8—N5118.5 (4)
C3—C2—H2B108.4N4—C8—S2110.2 (4)
H2A—C2—H2B107.4N5—C8—S2131.3 (4)
N1—C3—C2119.3 (6)
C3—N1—N2—C41.1 (8)N4—N3—C7—C6179.9 (5)
N2—N1—C3—C2167.6 (6)N4—N3—C7—S20.9 (6)
N2—N1—C3—S11.5 (9)C5—C6—C7—N33.6 (8)
C1—C2—C3—N1153.7 (7)C5—C6—C7—S2175.3 (4)
C1—C2—C3—S141.7 (9)C8—S2—C7—N30.6 (4)
C4—S1—C3—N11.1 (6)C8—S2—C7—C6179.6 (5)
C4—S1—C3—C2166.4 (7)N3—N4—C8—N5179.6 (4)
C7—N3—N4—C80.9 (6)N3—N4—C8—S20.4 (5)
N1—N2—C4—N6179.5 (4)N7—N5—C8—N4179.4 (4)
N1—N2—C4—S10.3 (6)N7—N5—C8—S21.6 (6)
C3—S1—C4—N20.5 (5)C7—S2—C8—N40.1 (4)
C3—S1—C4—N6178.7 (5)C7—S2—C8—N5178.9 (5)
N2—C4—N6—N7178.9 (4)C4—N6—N7—N5178.5 (4)
S1—C4—N6—N71.9 (6)C8—N5—N7—N6178.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···S2i0.862.843.631 (4)154
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC8H11N7S2
Mr269.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)12.188 (2), 9.1460 (18), 12.790 (3)
β (°) 110.99 (3)
V3)1331.1 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.39
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.926, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
2431, 2320, 1468
Rint0.005
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.178, 1.00
No. of reflections2320
No. of parameters142
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.62, 1.06

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···S2i0.862.843.631 (4)154.00
Symmetry code: (i) x, y+1/2, z1/2.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBach, H., Anderle, K., Fuhrmann, Th. & Wendorff, J. H. (1996). J. Phys. Chem. 100, 4135–4140.  CrossRef CAS Web of Science Google Scholar
First citationClark, R. J. H. & Hester, R. E. (1991). Advances in Materials Science Spectroscopy. New York: John Wiley & Sons.  Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaniike, K., Matsumoto, T., Sato, T., Ozaki, Y., Nakashima, K. & Iriyama, K. (1996). J. Phys. Chem. 100, 15508–15516.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds