organic compounds
5,5′-Diethyl-2,2′-(triazene-1,3-diyl)di-1,3,4-thiadiazole
aCollege of Science, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: wanghaibo@njut.edu.cn
In the molecule of the title compound, C8H11N7S2, the conformation about the N=N bond is trans and the thiadiazole rings are oriented at a dihedral angle of 2.92 (3)°. In the intermolecular N—H⋯S hydrogen bonds link the molecules into chains. There are π–π contacts between the thiadiazole rings [centroid-to-centroid distances = 3.699 (3) and 3.720 (2) Å].
Related literature
For general background, see: Bach et al. (1996); Clark & Hester (1991); Taniike et al. (1996). For bond-length data, see: Allen et al. (1987).
Experimental
Crystal data
|
Refinement
|
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
10.1107/S1600536808033941/hk2554sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808033941/hk2554Isup2.hkl
For the preparation of the title compound, 5-amino-l,3,4-thiadiazole (5 mmol) was dissolved by heating in concentrated HCl (50 ml) in a water bath, after which the solution was cooled to 268 K and a solution of sodium nitrite (2.5 mmol) in water (3.5 ml) was added dropwise with stirring. The resulting bright-yellow diazonium solution was allowed to stand in ice for 30 min, after which a
of sodium acetate (100 ml, pH = 5) was added. The precipitate was removed by filtration, and purified by crystallization from toluene. Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.H atoms were positioned geometrically, with N—H = 0.86 Å (for NH) and C—H = 0.97 and 0.96 Å for methylene and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell
CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C8H11N7S2 | F(000) = 560 |
Mr = 269.36 | Dx = 1.344 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 25 reflections |
a = 12.188 (2) Å | θ = 9–12° |
b = 9.1460 (18) Å | µ = 0.39 mm−1 |
c = 12.790 (3) Å | T = 294 K |
β = 110.99 (3)° | Block, yellow |
V = 1331.1 (5) Å3 | 0.20 × 0.10 × 0.10 mm |
Z = 4 |
Enraf–Nonius CAD-4 diffractometer | 1468 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.005 |
Graphite monochromator | θmax = 25.3°, θmin = 1.8° |
ω/2θ scans | h = −14→13 |
Absorption correction: ψ scan (North et al., 1968) | k = 0→10 |
Tmin = 0.926, Tmax = 0.962 | l = 0→14 |
2431 measured reflections | 3 standard reflections every 120 min |
2320 independent reflections | intensity decay: none |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.072 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.178 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.06P)2 + 3.61P] where P = (Fo2 + 2Fc2)/3 |
2320 reflections | (Δ/σ)max < 0.001 |
142 parameters | Δρmax = 0.62 e Å−3 |
0 restraints | Δρmin = −1.06 e Å−3 |
C8H11N7S2 | V = 1331.1 (5) Å3 |
Mr = 269.36 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 12.188 (2) Å | µ = 0.39 mm−1 |
b = 9.1460 (18) Å | T = 294 K |
c = 12.790 (3) Å | 0.20 × 0.10 × 0.10 mm |
β = 110.99 (3)° |
Enraf–Nonius CAD-4 diffractometer | 1468 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.005 |
Tmin = 0.926, Tmax = 0.962 | 3 standard reflections every 120 min |
2431 measured reflections | intensity decay: none |
2320 independent reflections |
R[F2 > 2σ(F2)] = 0.072 | 0 restraints |
wR(F2) = 0.178 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.62 e Å−3 |
2320 reflections | Δρmin = −1.06 e Å−3 |
142 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 1.26701 (14) | 0.49714 (19) | 0.57391 (10) | 0.0675 (5) | |
S2 | 0.96258 (11) | 0.18590 (15) | 0.56999 (10) | 0.0488 (4) | |
N1 | 1.3578 (5) | 0.6450 (6) | 0.4508 (4) | 0.0804 (16) | |
N2 | 1.2634 (4) | 0.5731 (5) | 0.3737 (3) | 0.0548 (11) | |
N3 | 0.7840 (4) | 0.0373 (5) | 0.4403 (3) | 0.0554 (12) | |
N4 | 0.8301 (3) | 0.1075 (5) | 0.3694 (3) | 0.0512 (11) | |
N5 | 0.9719 (4) | 0.2610 (5) | 0.3544 (3) | 0.0515 (11) | |
H5A | 0.9482 | 0.2556 | 0.2825 | 0.062* | |
N6 | 1.1099 (3) | 0.4124 (5) | 0.3558 (3) | 0.0463 (10) | |
N7 | 1.0651 (3) | 0.3422 (4) | 0.4200 (3) | 0.0417 (9) | |
C1 | 1.5073 (6) | 0.6346 (8) | 0.7641 (5) | 0.092 | |
H1B | 1.5528 | 0.7039 | 0.8189 | 0.138* | |
H1C | 1.5570 | 0.5558 | 0.7586 | 0.138* | |
H1D | 1.4453 | 0.5968 | 0.7861 | 0.138* | |
C2 | 1.4558 (5) | 0.7082 (7) | 0.6535 (5) | 0.073 | |
H2A | 1.5195 | 0.7411 | 0.6308 | 0.088* | |
H2B | 1.4135 | 0.7943 | 0.6626 | 0.088* | |
C3 | 1.3715 (6) | 0.6141 (9) | 0.5586 (5) | 0.090 (2) | |
C4 | 1.2070 (4) | 0.4920 (6) | 0.4245 (4) | 0.0466 (12) | |
C5 | 0.7047 (6) | −0.0851 (8) | 0.6080 (5) | 0.0790 (19) | |
H5B | 0.6879 | −0.1221 | 0.6709 | 0.119* | |
H5C | 0.7149 | −0.1654 | 0.5640 | 0.119* | |
H5D | 0.6406 | −0.0251 | 0.5629 | 0.119* | |
C6 | 0.8141 (5) | 0.0036 (7) | 0.6486 (4) | 0.0589 (14) | |
H6B | 0.8787 | −0.0567 | 0.6950 | 0.071* | |
H6C | 0.8043 | 0.0837 | 0.6941 | 0.071* | |
C7 | 0.8436 (4) | 0.0651 (6) | 0.5493 (4) | 0.0509 (13) | |
C8 | 0.9231 (4) | 0.1912 (6) | 0.4186 (4) | 0.0465 (12) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0757 (10) | 0.0889 (12) | 0.0315 (7) | −0.0236 (9) | 0.0116 (6) | 0.0029 (7) |
S2 | 0.0510 (7) | 0.0616 (8) | 0.0329 (6) | −0.0063 (7) | 0.0140 (5) | −0.0044 (6) |
N1 | 0.073 (3) | 0.099 (4) | 0.062 (3) | −0.029 (3) | 0.016 (3) | 0.013 (3) |
N2 | 0.053 (3) | 0.066 (3) | 0.043 (2) | −0.006 (2) | 0.015 (2) | 0.011 (2) |
N3 | 0.045 (2) | 0.074 (3) | 0.049 (3) | −0.006 (2) | 0.019 (2) | −0.012 (2) |
N4 | 0.044 (2) | 0.074 (3) | 0.037 (2) | −0.005 (2) | 0.0164 (19) | −0.010 (2) |
N5 | 0.052 (3) | 0.069 (3) | 0.033 (2) | 0.004 (2) | 0.014 (2) | 0.002 (2) |
N6 | 0.049 (2) | 0.057 (3) | 0.032 (2) | −0.002 (2) | 0.0141 (19) | 0.0018 (19) |
N7 | 0.038 (2) | 0.049 (2) | 0.036 (2) | 0.0040 (18) | 0.0114 (18) | −0.0001 (18) |
C1 | 0.092 | 0.092 | 0.092 | 0.000 | 0.033 | 0.000 |
C2 | 0.073 | 0.073 | 0.073 | 0.000 | 0.026 | 0.000 |
C3 | 0.083 (4) | 0.126 (6) | 0.047 (3) | −0.045 (4) | 0.008 (3) | 0.010 (4) |
C4 | 0.047 (3) | 0.059 (3) | 0.034 (2) | 0.007 (3) | 0.015 (2) | 0.005 (2) |
C5 | 0.084 (4) | 0.095 (5) | 0.065 (4) | −0.030 (4) | 0.035 (3) | −0.004 (4) |
C6 | 0.067 (3) | 0.072 (4) | 0.044 (3) | −0.019 (3) | 0.029 (3) | −0.012 (3) |
C7 | 0.048 (3) | 0.061 (3) | 0.043 (3) | −0.004 (3) | 0.015 (2) | −0.010 (2) |
C8 | 0.045 (3) | 0.053 (3) | 0.035 (2) | 0.001 (2) | 0.007 (2) | −0.006 (2) |
S1—C3 | 1.728 (6) | C1—H1B | 0.9600 |
S1—C4 | 1.786 (5) | C1—H1C | 0.9600 |
S2—C7 | 1.766 (5) | C1—H1D | 0.9600 |
S2—C8 | 1.820 (5) | C2—C3 | 1.541 (8) |
N1—N2 | 1.384 (6) | C2—H2A | 0.9700 |
N1—C3 | 1.358 (7) | C2—H2B | 0.9700 |
N2—C4 | 1.328 (6) | C4—N6 | 1.399 (6) |
N3—N4 | 1.384 (6) | C5—C6 | 1.487 (7) |
N3—C7 | 1.346 (6) | C5—H5B | 0.9600 |
N4—C8 | 1.325 (6) | C5—H5C | 0.9600 |
N5—N7 | 1.365 (5) | C5—H5D | 0.9600 |
N5—C8 | 1.338 (6) | C6—C7 | 1.544 (7) |
N5—H5A | 0.8600 | C6—H6B | 0.9700 |
N6—N7 | 1.306 (5) | C6—H6C | 0.9700 |
C1—C2 | 1.486 (7) | ||
C3—S1—C4 | 86.0 (3) | N1—C3—S1 | 114.6 (5) |
C7—S2—C8 | 88.1 (2) | C2—C3—S1 | 124.5 (5) |
C3—N1—N2 | 113.1 (5) | N2—C4—N6 | 116.9 (4) |
C4—N2—N1 | 111.2 (4) | N2—C4—S1 | 115.1 (4) |
C7—N3—N4 | 113.3 (4) | N6—C4—S1 | 128.0 (4) |
C8—N4—N3 | 115.8 (4) | C6—C5—H5B | 109.5 |
N7—N5—H5A | 125.1 | C6—C5—H5C | 109.5 |
C8—N5—N7 | 109.7 (4) | H5B—C5—H5C | 109.5 |
C8—N5—H5A | 125.1 | C6—C5—H5D | 109.5 |
N7—N6—C4 | 108.2 (4) | H5B—C5—H5D | 109.5 |
N6—N7—N5 | 108.9 (4) | H5C—C5—H5D | 109.5 |
C2—C1—H1B | 109.5 | C5—C6—C7 | 110.8 (4) |
C2—C1—H1C | 109.5 | C5—C6—H6B | 109.5 |
H1B—C1—H1C | 109.5 | C7—C6—H6B | 109.5 |
C2—C1—H1D | 109.5 | C5—C6—H6C | 109.5 |
H1B—C1—H1D | 109.5 | C7—C6—H6C | 109.5 |
H1C—C1—H1D | 109.5 | H6B—C6—H6C | 108.1 |
C1—C2—C3 | 115.6 (6) | N3—C7—C6 | 125.8 (5) |
C1—C2—H2A | 108.4 | N3—C7—S2 | 112.5 (4) |
C3—C2—H2A | 108.4 | C6—C7—S2 | 121.7 (4) |
C1—C2—H2B | 108.4 | N4—C8—N5 | 118.5 (4) |
C3—C2—H2B | 108.4 | N4—C8—S2 | 110.2 (4) |
H2A—C2—H2B | 107.4 | N5—C8—S2 | 131.3 (4) |
N1—C3—C2 | 119.3 (6) | ||
C3—N1—N2—C4 | 1.1 (8) | N4—N3—C7—C6 | 179.9 (5) |
N2—N1—C3—C2 | −167.6 (6) | N4—N3—C7—S2 | 0.9 (6) |
N2—N1—C3—S1 | −1.5 (9) | C5—C6—C7—N3 | −3.6 (8) |
C1—C2—C3—N1 | −153.7 (7) | C5—C6—C7—S2 | 175.3 (4) |
C1—C2—C3—S1 | 41.7 (9) | C8—S2—C7—N3 | −0.6 (4) |
C4—S1—C3—N1 | 1.1 (6) | C8—S2—C7—C6 | −179.6 (5) |
C4—S1—C3—C2 | 166.4 (7) | N3—N4—C8—N5 | 179.6 (4) |
C7—N3—N4—C8 | −0.9 (6) | N3—N4—C8—S2 | 0.4 (5) |
N1—N2—C4—N6 | −179.5 (4) | N7—N5—C8—N4 | 179.4 (4) |
N1—N2—C4—S1 | −0.3 (6) | N7—N5—C8—S2 | −1.6 (6) |
C3—S1—C4—N2 | −0.5 (5) | C7—S2—C8—N4 | 0.1 (4) |
C3—S1—C4—N6 | 178.7 (5) | C7—S2—C8—N5 | −178.9 (5) |
N2—C4—N6—N7 | −178.9 (4) | C4—N6—N7—N5 | −178.5 (4) |
S1—C4—N6—N7 | 1.9 (6) | C8—N5—N7—N6 | −178.4 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N5—H5A···S2i | 0.86 | 2.84 | 3.631 (4) | 154 |
Symmetry code: (i) x, −y+1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C8H11N7S2 |
Mr | 269.36 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 294 |
a, b, c (Å) | 12.188 (2), 9.1460 (18), 12.790 (3) |
β (°) | 110.99 (3) |
V (Å3) | 1331.1 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.39 |
Crystal size (mm) | 0.20 × 0.10 × 0.10 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.926, 0.962 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2431, 2320, 1468 |
Rint | 0.005 |
(sin θ/λ)max (Å−1) | 0.601 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.072, 0.178, 1.00 |
No. of reflections | 2320 |
No. of parameters | 142 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.62, −1.06 |
Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N5—H5A···S2i | 0.86 | 2.84 | 3.631 (4) | 154.00 |
Symmetry code: (i) x, −y+1/2, z−1/2. |
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Bach, H., Anderle, K., Fuhrmann, Th. & Wendorff, J. H. (1996). J. Phys. Chem. 100, 4135–4140. CrossRef CAS Web of Science Google Scholar
Clark, R. J. H. & Hester, R. E. (1991). Advances in Materials Science Spectroscopy. New York: John Wiley & Sons. Google Scholar
Enraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Taniike, K., Matsumoto, T., Sato, T., Ozaki, Y., Nakashima, K. & Iriyama, K. (1996). J. Phys. Chem. 100, 15508–15516. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The photophysical properties of azo compounds are of large interest in the development of nonlinear optical and optical data storage materials (Bach et al., 1996; Taniike et al., 1996; Clark & Hester, 1991). As part of our studies in this area, we report herein the synthesis and crystal structure of the title compound.
In the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (S1/N1/N2/C3/C4) and B (S2/N3/N4/C7/C8) are oriented at a dihedral angle of 2.92 (3)°. So, they are nearly coplanar.
In the crystal structure, intermolecular N—H···S hydrogen bonds (Table 1) link the molecules into chains (Fig. 2), in which they may be effective in the stabilization of the structure. The π–π contacts between the thiadiazole rings, Cg2···Cg2i and Cg2···Cg1ii [symmetry codes: (i) -x, 1 - y, -z; (ii) -x, -y, -z, where Cg1 and Cg2 are the centroids of the rings A (S1/N1/N2/C3/C4) and B (S2/N3/N4/C7/C8), respectively] may further stabilize the structure, with centroid–centroid distances of 3.699 (3) and 3.720 (2) Å, respectively.