organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(4-Meth­oxy­benzo­yl)propionic acid

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bDepartment of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii' 565, 53210 Pardubice, Czech Republic
*Correspondence e-mail: qadeerqau@yahoo.com

(Received 18 October 2008; accepted 22 October 2008; online 25 October 2008)

In the crystal of the title compound, C11H12O4, inversion dimers arise from pairs of intermolecular O—H⋯O hydrogen bonds and C—H⋯O bonds further consolidate the packing. There is also a C—H⋯π contact between the benzene ring and the methyl­ene group.

Related literature

For general background, see: Hashem et al. (2007[Hashem, A. I., Youssef, A. S. A., Kandeel, K. A. & Abou-Elmangd, W. S. I. (2007). Eur. J. Med. Chem. 42, 934-939.]); Husain et al. (2005[Husain, A., Khan, M. S. Y., Hasan, S. M. & Alam, M. M. (2005). Eur. J. Med. Chem. 40, 1394-1404.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C11H12O4

  • Mr = 208.21

  • Monoclinic, P 21 /c

  • a = 5.0511 (3) Å

  • b = 10.0219 (7) Å

  • c = 20.0840 (12) Å

  • β = 90.107 (6)°

  • V = 1016.67 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 150 (1) K

  • 0.20 × 0.18 × 0.13 mm

Data collection
  • Bruker–Nonius KappaCCD area-detector diffractometer

  • Absorption correction: integration (Coppens, 1970[Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255-270. Copenhagen: Munksgaard.]) Tmin = 0.979, Tmax = 0.987

  • 8320 measured reflections

  • 2236 independent reflections

  • 1662 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.112

  • S = 1.13

  • 2236 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.82 1.81 2.628 (3) 173
C6—H6⋯O3ii 0.93 2.34 3.247 (3) 164
C11—H11B⋯O4iii 0.96 2.60 3.328 (3) 133
C3—H3BCg1iv 0.97 2.74 3.591 (3) 146
Symmetry codes: (i) -x, -y, -z; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+2, -y, -z+1; (iv) x+1, y, z. Cg1 is the centroid of the phenyl ring.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: COLLECT and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzimology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: COLLECT and DENZO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Benzoyl propionic acids are important intermediates in heterocyclic chemistry and have been used for the synthesis of various biologically active five -membered heterocyles such as butenolides, pyrrolones (Husain et al., 2005), oxadiazoles and triazoles (Hashem et al., 2007). In view of the versatility of these compounds, we synthesized the title compound and reported herein its crystal structure.

In the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. O3, O4, C2, C3 and C4 atoms are 0.067 (3), -0.003 (3), -0.163 (4), -0.013 (3) and 0.016 (3) Å away from the phenyl plane, respectively.

In the crystal structure, intermolecular O-H···O and C-H···O hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure. There also exist a C—H···π contact (Table 1) between the phenyl ring and the methylene group.

Related literature top

For general background, see: Hashem et al. (2007); Husain et al. (2005). For bond-length data, see: Allen et al. (1987). Cg1 is the centroid of the phenyl ring.

Experimental top

The title compound was synthesized by the condensation of succinic anhydride (2 g, 20 mmol) with anisol (10 ml) in the presence of alumium chloride (6 g, 42 mmol). The reaction mixture was refluxed for 4 h. After completion of the reaction, excess solvent (anisol) was removed by steam distillation. The resultant solid product was purified by dissolving it in sodium hydroxide solution (5%, w/v), filtering followed by addition of hydrochloric acid. The obtained solid mass was filtered, washed with cold water, dried and crystallized from methanol (yield; 55%, m.p. 419-420 K)

Refinement top

H atoms were positioned geometrically, with O-H = 0.82 Å (for OH) and C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C,O).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); data reduction: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme.
[Figure 2] Fig. 2. A partial packing diagram. Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. The formation of the title compound.
3-(4-Methoxybenzoyl)propionic acid top
Crystal data top
C11H12O4F(000) = 440
Mr = 208.21Dx = 1.360 Mg m3
Monoclinic, P21/cMelting point: 419(1) K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 5.0511 (3) ÅCell parameters from 8408 reflections
b = 10.0219 (7) Åθ = 1–27.5°
c = 20.0840 (12) ŵ = 0.10 mm1
β = 90.107 (6)°T = 150 K
V = 1016.67 (11) Å3Block, colorless
Z = 40.20 × 0.18 × 0.13 mm
Data collection top
Bruker–Nonius KappaCCD area-detector
diffractometer
2236 independent reflections
Radiation source: fine-focus sealed tube1662 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.0°
ϕ and ω scansh = 66
Absorption correction: integration
(Coppens, 1970)
k = 1313
Tmin = 0.979, Tmax = 0.987l = 2622
8320 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0363P)2 + 0.36P]
where P = (Fo2 + 2Fc2)/3
2236 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C11H12O4V = 1016.67 (11) Å3
Mr = 208.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.0511 (3) ŵ = 0.10 mm1
b = 10.0219 (7) ÅT = 150 K
c = 20.0840 (12) Å0.20 × 0.18 × 0.13 mm
β = 90.107 (6)°
Data collection top
Bruker–Nonius KappaCCD area-detector
diffractometer
2236 independent reflections
Absorption correction: integration
(Coppens, 1970)
1662 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.987Rint = 0.048
8320 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.13Δρmax = 0.18 e Å3
2236 reflectionsΔρmin = 0.20 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0482 (3)0.08173 (13)0.07156 (6)0.0440 (4)
O20.2693 (3)0.06464 (14)0.04647 (6)0.0443 (4)
H20.19150.06540.01070.053*
O30.1138 (2)0.13027 (12)0.19230 (6)0.0398 (3)
O40.7706 (3)0.03563 (14)0.44558 (7)0.0477 (4)
C10.1507 (3)0.01793 (17)0.08665 (8)0.0323 (4)
C20.2850 (3)0.03301 (19)0.15227 (8)0.0355 (4)
H2A0.42670.09770.14780.043*
H2B0.36450.05170.16440.043*
C30.1025 (3)0.07690 (17)0.20779 (8)0.0317 (4)
H3A0.00910.15690.19410.038*
H3B0.20750.09890.24670.038*
C40.0958 (3)0.02952 (16)0.22605 (8)0.0297 (4)
C50.2686 (3)0.00865 (16)0.28458 (8)0.0287 (4)
C60.2583 (3)0.10711 (17)0.32209 (8)0.0333 (4)
H60.13670.17300.31080.040*
C70.4243 (3)0.12673 (18)0.37606 (9)0.0363 (4)
H70.41690.20590.40020.044*
C80.6011 (3)0.02784 (18)0.39356 (8)0.0343 (4)
C90.6134 (4)0.09014 (18)0.35680 (9)0.0365 (4)
H90.73190.15700.36880.044*
C100.4502 (3)0.10717 (17)0.30291 (9)0.0339 (4)
H100.46050.18550.27820.041*
C110.7813 (5)0.1587 (2)0.48107 (11)0.0561 (6)
H11A0.61270.17580.50130.067*
H11B0.91510.15350.51500.067*
H11C0.82330.22970.45080.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0500 (8)0.0510 (8)0.0311 (7)0.0157 (7)0.0057 (6)0.0004 (6)
O20.0502 (8)0.0558 (8)0.0268 (6)0.0147 (7)0.0026 (6)0.0017 (6)
O30.0442 (7)0.0337 (7)0.0413 (7)0.0016 (6)0.0026 (6)0.0066 (6)
O40.0528 (8)0.0466 (8)0.0436 (8)0.0063 (7)0.0184 (6)0.0049 (6)
C10.0358 (9)0.0341 (9)0.0268 (8)0.0008 (8)0.0027 (7)0.0039 (7)
C20.0317 (8)0.0441 (10)0.0307 (9)0.0015 (8)0.0018 (7)0.0002 (8)
C30.0323 (8)0.0360 (9)0.0267 (8)0.0005 (7)0.0022 (7)0.0010 (7)
C40.0303 (8)0.0295 (9)0.0293 (8)0.0062 (7)0.0066 (7)0.0007 (7)
C50.0285 (8)0.0288 (8)0.0288 (8)0.0017 (7)0.0039 (6)0.0024 (7)
C60.0355 (9)0.0306 (9)0.0338 (9)0.0057 (7)0.0001 (7)0.0005 (7)
C70.0408 (9)0.0334 (9)0.0348 (9)0.0025 (8)0.0015 (8)0.0046 (7)
C80.0343 (9)0.0381 (10)0.0304 (9)0.0015 (8)0.0025 (7)0.0023 (7)
C90.0372 (9)0.0320 (9)0.0402 (10)0.0068 (8)0.0040 (8)0.0032 (8)
C100.0364 (9)0.0288 (9)0.0364 (9)0.0001 (7)0.0031 (7)0.0006 (7)
C110.0659 (14)0.0541 (13)0.0481 (12)0.0033 (11)0.0225 (10)0.0106 (10)
Geometric parameters (Å, º) top
O1—C11.230 (2)C5—C61.384 (2)
O2—C11.301 (2)C5—C101.396 (2)
O2—H20.8201C6—C71.383 (2)
O3—C41.220 (2)C6—H60.9300
O4—C81.352 (2)C7—H70.9301
O4—C111.425 (2)C8—C71.379 (2)
C1—C21.491 (2)C8—C91.395 (2)
C2—C31.511 (2)C9—H90.9300
C2—H2A0.9700C10—C91.370 (2)
C2—H2B0.9699C10—H100.9299
C3—H3A0.9700C11—H11A0.9600
C3—H3B0.9701C11—H11B0.9600
C4—C31.508 (2)C11—H11C0.9600
C5—C41.478 (2)
C1—O2—H2109.2C10—C5—C4119.76 (15)
C8—O4—C11117.38 (15)C7—C6—C5121.48 (16)
O1—C1—O2123.60 (15)C7—C6—H6119.3
O1—C1—C2122.58 (16)C5—C6—H6119.2
O2—C1—C2113.77 (15)C8—C7—C6119.26 (16)
C1—C2—C3113.83 (14)C8—C7—H7120.4
C1—C2—H2A108.8C6—C7—H7120.3
C3—C2—H2A108.8O4—C8—C7124.36 (17)
C1—C2—H2B108.8O4—C8—C9115.40 (16)
C3—C2—H2B108.7C7—C8—C9120.24 (16)
H2A—C2—H2B107.6C10—C9—C8119.74 (16)
C4—C3—C2112.19 (15)C10—C9—H9120.1
C4—C3—H3A109.3C8—C9—H9120.2
C2—C3—H3A109.2C9—C10—C5120.94 (16)
C4—C3—H3B109.2C9—C10—H10119.5
C2—C3—H3B109.1C5—C10—H10119.6
H3A—C3—H3B107.9O4—C11—H11A109.5
O3—C4—C5120.98 (15)O4—C11—H11B109.5
O3—C4—C3120.04 (15)H11A—C11—H11B109.5
C5—C4—C3118.98 (14)O4—C11—H11C109.4
C6—C5—C10118.33 (15)H11A—C11—H11C109.5
C6—C5—C4121.91 (15)H11B—C11—H11C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.821.812.628 (3)173
C6—H6···O3ii0.932.343.247 (3)164
C11—H11B···O4iii0.962.603.328 (3)133
C3—H3B···Cg1iv0.972.743.591 (3)146
Symmetry codes: (i) x, y, z; (ii) x, y1/2, z+1/2; (iii) x+2, y, z+1; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC11H12O4
Mr208.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)5.0511 (3), 10.0219 (7), 20.0840 (12)
β (°) 90.107 (6)
V3)1016.67 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.18 × 0.13
Data collection
DiffractometerBruker–Nonius KappaCCD area-detector
diffractometer
Absorption correctionIntegration
(Coppens, 1970)
Tmin, Tmax0.979, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
8320, 2236, 1662
Rint0.048
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.112, 1.13
No. of reflections2236
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.20

Computer programs: , COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.821.812.628 (3)173
C6—H6···O3ii0.932.343.247 (3)164
C11—H11B···O4iii0.962.603.328 (3)133
C3—H3B···Cg1iv0.972.743.591 (3)146
Symmetry codes: (i) x, y, z; (ii) x, y1/2, z+1/2; (iii) x+2, y, z+1; (iv) x+1, y, z.
 

Acknowledgements

The authors gratefully acknowledge funds from the Higher Education Commission, Islamabad, Pakistan.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationCoppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255–270. Copenhagen: Munksgaard.  Google Scholar
First citationHashem, A. I., Youssef, A. S. A., Kandeel, K. A. & Abou-Elmangd, W. S. I. (2007). Eur. J. Med. Chem. 42, 934–939.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationHusain, A., Khan, M. S. Y., Hasan, S. M. & Alam, M. M. (2005). Eur. J. Med. Chem. 40, 1394–1404.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzimology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds