organic compounds
2-[(4-Chlorobenzyl)carbonylmethyl]benzoic acid
aDepartment of Chemistry, Quaid-i-Azam Univeristy, Islamabad 45320, Pakistan, and bDepartment of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii' 565, 53210 Pardubice, Czech Republic
*Correspondence e-mail: qadeerqau@yahoo.com
The title compound, C16H13ClO3, is an important intermediate in the conversion of isocoumarin to 3,4-dihydroisocoumarin. The two aromatic rings are oriented at a dihedral angle of 67.18 (3)°. In the intermolecular O—H⋯O hydrogen bonds link the molecules into centrosymmetric dimers. There is also a C—H⋯π contact between the benzoic acid and 4-chlorobenzyl rings.
Related literature
For a related structure, see: Abid et al. (2006). For general background, see: Barry (1964); Powers et al. (2002); Rossi et al. (2003); Sturtz et al. (2002); Thomas & Jens (1999). For bond-length data, see: Allen et al. (1987).
Experimental
Crystal data
|
Refinement
|
Data collection: COLLECT (Hooft, 1998); cell COLLECT and DENZO (Otwinowski & Minor, 1997); data reduction: COLLECT and DENZO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S160053680803451X/hk2557sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053680803451X/hk2557Isup2.hkl
A solution of 3-(4-chlorobenzyl)isocoumarin (2.0 g, 7 mmol) in ethanol (50 ml) and potassium hydroxide (100 ml, 5%) were refluxed for 4 h. Ethanol was removed from the reaction mixture by distillation. Ice cold water (20 ml) was added and the reaction mixture was acidified with hydrochloric acid. It was extracted with dichloromethane (3 × 20 ml), and then dried and evaporated to yield the crude solid, which was recrystallized from methanol (yield; 85%; m.p. 414-415 K).
H atoms were positioned geometrically, with O-H = 0.82 Å (for OH) and C-H = 0.93 and 0.97 Å for aromatic and methylene H, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C,O).
Data collection: COLLECT (Hooft, 1998); cell
COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); data reduction: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C16H13ClO3 | F(000) = 600 |
Mr = 288.71 | Dx = 1.401 Mg m−3 |
Monoclinic, P21/c | Melting point: 414(1) K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 5.5000 (4) Å | Cell parameters from 10141 reflections |
b = 13.2720 (6) Å | θ = 1–27.5° |
c = 18.8120 (7) Å | µ = 0.28 mm−1 |
β = 94.371 (4)° | T = 150 K |
V = 1369.21 (13) Å3 | Block, colorless |
Z = 4 | 0.29 × 0.19 × 0.16 mm |
Bruker–Nonius Kappa CCD area-detector diffractometer | 3010 independent reflections |
Radiation source: fine-focus sealed tube | 2284 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.048 |
Detector resolution: 9.091 pixels mm-1 | θmax = 27.5°, θmin = 1.9° |
ϕ and ω scans | h = −6→7 |
Absorption correction: integration (Coppens, 1970) | k = −17→15 |
Tmin = 0.936, Tmax = 0.962 | l = −21→24 |
10076 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.050 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.118 | H-atom parameters constrained |
S = 1.14 | w = 1/[σ2(Fo2) + (0.0291P)2 + 0.9198P] where P = (Fo2 + 2Fc2)/3 |
3010 reflections | (Δ/σ)max < 0.001 |
181 parameters | Δρmax = 0.26 e Å−3 |
0 restraints | Δρmin = −0.42 e Å−3 |
C16H13ClO3 | V = 1369.21 (13) Å3 |
Mr = 288.71 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 5.5000 (4) Å | µ = 0.28 mm−1 |
b = 13.2720 (6) Å | T = 150 K |
c = 18.8120 (7) Å | 0.29 × 0.19 × 0.16 mm |
β = 94.371 (4)° |
Bruker–Nonius Kappa CCD area-detector diffractometer | 3010 independent reflections |
Absorption correction: integration (Coppens, 1970) | 2284 reflections with I > 2σ(I) |
Tmin = 0.936, Tmax = 0.962 | Rint = 0.048 |
10076 measured reflections |
R[F2 > 2σ(F2)] = 0.050 | 0 restraints |
wR(F2) = 0.118 | H-atom parameters constrained |
S = 1.14 | Δρmax = 0.26 e Å−3 |
3010 reflections | Δρmin = −0.42 e Å−3 |
181 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.56140 (14) | 0.35295 (5) | 0.41926 (4) | 0.0597 (2) | |
O1 | 0.1626 (3) | −0.05908 (11) | 0.44337 (9) | 0.0445 (4) | |
O2 | −0.1720 (3) | −0.11437 (12) | 0.48932 (9) | 0.0446 (4) | |
H2 | −0.1636 | −0.0593 | 0.5091 | 0.054* | |
O3 | 0.0425 (3) | −0.11324 (13) | 0.27714 (9) | 0.0487 (4) | |
C1 | 0.0174 (4) | −0.12684 (15) | 0.45249 (11) | 0.0312 (4) | |
C2 | 0.0445 (4) | −0.23057 (15) | 0.42498 (10) | 0.0313 (4) | |
C3 | 0.2232 (4) | −0.25579 (16) | 0.37852 (11) | 0.0338 (5) | |
C4 | 0.2425 (5) | −0.35656 (18) | 0.35955 (13) | 0.0470 (6) | |
H4 | 0.3604 | −0.3753 | 0.3292 | 0.056* | |
C5 | 0.0930 (5) | −0.42938 (18) | 0.38464 (15) | 0.0547 (7) | |
H5 | 0.1120 | −0.4963 | 0.3714 | 0.066* | |
C6 | −0.0840 (5) | −0.40396 (18) | 0.42911 (14) | 0.0512 (6) | |
H6 | −0.1869 | −0.4529 | 0.4456 | 0.061* | |
C7 | −0.1076 (4) | −0.30469 (17) | 0.44895 (12) | 0.0410 (5) | |
H7 | −0.2273 | −0.2869 | 0.4790 | 0.049* | |
C8 | 0.3863 (4) | −0.18048 (17) | 0.34637 (12) | 0.0378 (5) | |
H8A | 0.5133 | −0.2165 | 0.3238 | 0.045* | |
H8B | 0.4648 | −0.1402 | 0.3845 | 0.045* | |
C9 | 0.2595 (4) | −0.11086 (16) | 0.29233 (11) | 0.0354 (5) | |
C10 | 0.4211 (4) | −0.03623 (19) | 0.25726 (13) | 0.0458 (6) | |
H10A | 0.5798 | −0.0665 | 0.2528 | 0.055* | |
H10B | 0.3504 | −0.0211 | 0.2096 | 0.055* | |
C11 | 0.4526 (4) | 0.06038 (17) | 0.29935 (11) | 0.0363 (5) | |
C12 | 0.6641 (4) | 0.07862 (19) | 0.34231 (13) | 0.0437 (6) | |
H12 | 0.7855 | 0.0297 | 0.3464 | 0.052* | |
C13 | 0.6968 (4) | 0.16829 (19) | 0.37871 (13) | 0.0459 (6) | |
H13 | 0.8396 | 0.1800 | 0.4072 | 0.055* | |
C14 | 0.5170 (4) | 0.23985 (16) | 0.37280 (11) | 0.0391 (5) | |
C15 | 0.3062 (4) | 0.22462 (18) | 0.33044 (13) | 0.0432 (5) | |
H15 | 0.1860 | 0.2740 | 0.3262 | 0.052* | |
C16 | 0.2761 (4) | 0.13451 (18) | 0.29391 (13) | 0.0430 (5) | |
H16 | 0.1334 | 0.1235 | 0.2652 | 0.052* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0813 (5) | 0.0436 (4) | 0.0545 (4) | −0.0193 (3) | 0.0070 (3) | −0.0008 (3) |
O1 | 0.0533 (10) | 0.0334 (8) | 0.0491 (10) | −0.0093 (7) | 0.0181 (8) | −0.0123 (7) |
O2 | 0.0431 (9) | 0.0377 (9) | 0.0549 (10) | −0.0034 (7) | 0.0157 (8) | −0.0169 (7) |
O3 | 0.0400 (9) | 0.0498 (10) | 0.0547 (10) | 0.0010 (8) | −0.0064 (7) | 0.0059 (8) |
C1 | 0.0330 (11) | 0.0308 (10) | 0.0297 (10) | 0.0027 (9) | 0.0012 (8) | −0.0025 (8) |
C2 | 0.0362 (11) | 0.0269 (10) | 0.0300 (10) | 0.0030 (9) | −0.0028 (8) | −0.0027 (8) |
C3 | 0.0365 (11) | 0.0342 (11) | 0.0297 (10) | 0.0071 (9) | −0.0045 (8) | −0.0057 (9) |
C4 | 0.0560 (15) | 0.0397 (13) | 0.0446 (13) | 0.0147 (11) | −0.0015 (11) | −0.0126 (11) |
C5 | 0.0716 (18) | 0.0266 (11) | 0.0633 (17) | 0.0077 (12) | −0.0123 (14) | −0.0102 (11) |
C6 | 0.0652 (17) | 0.0299 (12) | 0.0567 (16) | −0.0076 (12) | −0.0075 (13) | 0.0017 (11) |
C7 | 0.0470 (13) | 0.0343 (12) | 0.0409 (12) | −0.0043 (10) | −0.0009 (10) | −0.0001 (9) |
C8 | 0.0331 (11) | 0.0430 (12) | 0.0375 (11) | 0.0079 (10) | 0.0042 (9) | −0.0073 (10) |
C9 | 0.0386 (12) | 0.0345 (11) | 0.0334 (11) | 0.0041 (9) | 0.0046 (9) | −0.0085 (9) |
C10 | 0.0484 (14) | 0.0492 (14) | 0.0414 (13) | 0.0000 (11) | 0.0139 (10) | −0.0019 (11) |
C11 | 0.0353 (11) | 0.0410 (12) | 0.0337 (11) | −0.0017 (9) | 0.0096 (9) | 0.0053 (9) |
C12 | 0.0346 (12) | 0.0512 (14) | 0.0449 (13) | 0.0089 (10) | 0.0005 (10) | 0.0104 (11) |
C13 | 0.0394 (13) | 0.0566 (15) | 0.0404 (12) | −0.0076 (11) | −0.0067 (10) | 0.0060 (11) |
C14 | 0.0453 (13) | 0.0351 (11) | 0.0371 (12) | −0.0104 (10) | 0.0052 (10) | 0.0075 (9) |
C15 | 0.0388 (12) | 0.0393 (12) | 0.0515 (14) | 0.0029 (10) | 0.0025 (10) | 0.0069 (11) |
C16 | 0.0324 (11) | 0.0496 (14) | 0.0463 (13) | −0.0025 (10) | −0.0024 (9) | 0.0028 (11) |
Cl1—C14 | 1.745 (2) | C8—C9 | 1.505 (3) |
O2—H2 | 0.8200 | C8—H8A | 0.9700 |
O3—C9 | 1.207 (3) | C8—H8B | 0.9700 |
C1—O1 | 1.223 (2) | C9—C10 | 1.515 (3) |
C1—O2 | 1.305 (2) | C10—H10A | 0.9700 |
C1—C2 | 1.482 (3) | C10—H10B | 0.9701 |
C3—C4 | 1.390 (3) | C11—C10 | 1.510 (3) |
C3—C2 | 1.404 (3) | C11—C12 | 1.386 (3) |
C4—H4 | 0.9300 | C11—C16 | 1.381 (3) |
C5—C4 | 1.376 (4) | C12—H12 | 0.9300 |
C5—C6 | 1.373 (4) | C13—C12 | 1.378 (4) |
C5—H5 | 0.9300 | C13—C14 | 1.369 (3) |
C6—H6 | 0.9299 | C13—H13 | 0.9300 |
C7—C2 | 1.389 (3) | C15—C14 | 1.371 (3) |
C7—C6 | 1.378 (3) | C15—C16 | 1.383 (3) |
C7—H7 | 0.9299 | C15—H15 | 0.9299 |
C8—C3 | 1.501 (3) | C16—H16 | 0.9299 |
C1—O2—H2 | 109.6 | O3—C9—C8 | 122.9 (2) |
O1—C1—O2 | 122.49 (19) | O3—C9—C10 | 121.1 (2) |
O1—C1—C2 | 123.35 (18) | C8—C9—C10 | 116.01 (19) |
O2—C1—C2 | 114.13 (18) | C11—C10—C9 | 111.99 (18) |
C7—C2—C3 | 120.05 (19) | C11—C10—H10A | 109.2 |
C7—C2—C1 | 117.74 (19) | C9—C10—H10A | 109.2 |
C3—C2—C1 | 122.16 (18) | C11—C10—H10B | 109.3 |
C4—C3—C2 | 117.4 (2) | C9—C10—H10B | 109.3 |
C4—C3—C8 | 118.5 (2) | H10A—C10—H10B | 107.9 |
C2—C3—C8 | 124.08 (18) | C16—C11—C12 | 118.2 (2) |
C5—C4—C3 | 121.9 (2) | C16—C11—C10 | 120.9 (2) |
C5—C4—H4 | 119.1 | C12—C11—C10 | 120.8 (2) |
C3—C4—H4 | 119.1 | C13—C12—C11 | 120.8 (2) |
C6—C5—C4 | 120.4 (2) | C13—C12—H12 | 119.7 |
C6—C5—H5 | 119.8 | C11—C12—H12 | 119.5 |
C4—C5—H5 | 119.7 | C14—C13—C12 | 119.5 (2) |
C5—C6—C7 | 119.1 (2) | C14—C13—H13 | 120.2 |
C5—C6—H6 | 120.6 | C12—C13—H13 | 120.2 |
C7—C6—H6 | 120.3 | C13—C14—C15 | 121.2 (2) |
C6—C7—C2 | 121.2 (2) | C13—C14—Cl1 | 118.91 (18) |
C6—C7—H7 | 119.5 | C15—C14—Cl1 | 119.86 (18) |
C2—C7—H7 | 119.3 | C14—C15—C16 | 118.7 (2) |
C3—C8—C9 | 114.86 (18) | C14—C15—H15 | 120.7 |
C3—C8—H8A | 108.7 | C16—C15—H15 | 120.6 |
C9—C8—H8A | 108.6 | C11—C16—C15 | 121.5 (2) |
C3—C8—H8B | 108.4 | C11—C16—H16 | 119.3 |
C9—C8—H8B | 108.6 | C15—C16—H16 | 119.2 |
H8A—C8—H8B | 107.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O1i | 0.82 | 1.81 | 2.626 (3) | 176 |
C7—H7···O2 | 0.93 | 2.32 | 2.669 (3) | 102 |
C8—H8B···O1 | 0.97 | 2.33 | 2.790 (3) | 108 |
C16—H16···Cg1ii | 0.93 | 3.35 | 4.079 (3) | 137 |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x+2, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C16H13ClO3 |
Mr | 288.71 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 150 |
a, b, c (Å) | 5.5000 (4), 13.2720 (6), 18.8120 (7) |
β (°) | 94.371 (4) |
V (Å3) | 1369.21 (13) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.28 |
Crystal size (mm) | 0.29 × 0.19 × 0.16 |
Data collection | |
Diffractometer | Bruker–Nonius Kappa CCD area-detector diffractometer |
Absorption correction | Integration (Coppens, 1970) |
Tmin, Tmax | 0.936, 0.962 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10076, 3010, 2284 |
Rint | 0.048 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.050, 0.118, 1.14 |
No. of reflections | 3010 |
No. of parameters | 181 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.26, −0.42 |
Computer programs: , COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O1i | 0.82 | 1.81 | 2.626 (3) | 176 |
C7—H7···O2 | 0.93 | 2.32 | 2.669 (3) | 102 |
C8—H8B···O1 | 0.97 | 2.33 | 2.790 (3) | 108 |
C16—H16···Cg1ii | 0.93 | 3.35 | 4.079 (3) | 137 |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x+2, y+1/2, −z+1/2. |
Acknowledgements
The authors gratefully acknowledge the financial support of the Ministry of Education of the Czech Republic (project No. VZ0021627501) and Higher Education Commission, Islamabad, Pakistan.
References
Abid, O., Rama, N. H., Qadeer, G., Khan, G. S. & Lu, X.-M. (2006). Acta Cryst. E62, o2895–o2896. Web of Science CSD CrossRef IUCr Journals Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Barry, R. D. (1964). Chem. Rev. 64, 239–241. CrossRef Web of Science Google Scholar
Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255–270. Copenhagen: Munksgaard. Google Scholar
Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzimology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Powers, J. C., Asgian, J. L., Ekici, D. & James, K. E. (2002). Chem. Rev. 102, 4639–4643. Web of Science CrossRef PubMed CAS Google Scholar
Rossi, R., Carpita, A., Bellina, F., Stabile, P. & Mannina, L. (2003). Tetrahedron, 59, 2067–2081. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sturtz, G., Meepagala, K. & Wedge, D. (2002). J. Agric. Food Chem. 50, 6979–6984. Google Scholar
Thomas, L. & Jens, B. (1999). J. Nat. Prod. 62, 1182–1187. Web of Science CrossRef PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The isocoumarin nucleus is an abundant structural motif in natural products (Barry, 1964). Many constituents of the steadily growing class of known isocoumarins exhibit valuable biological properties such as antifungal (Sturtz et al., 2002), antitumor or cytotoxic, anti-inflammatory, anti-allergic (Rossi et al., 2003) and enzyme inhibitory activity (Powers et al., 2002). Naturally occurring haloisocoumarins and their halogeno-3,4-dihydroisocoumarin derivatives are very rare. However, a few examples of naturally occurring chlorine containing isocoumarins are known (Thomas & Jens, 1999). In view of the importance of this class of compounds, the title compound, an intermediate during the conversion of isocoumarin to 3,4-dihydroisocoumarin, has been synthesized, and we report herein its crystal structure.
In the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges, and comparable with the corresponding values in 3-(2-chlorobenzyl)isocoumarin (Abid et al., 2006). Rings A (C2-C7) and B (C11-C16) are, of course, planar and the dihedral angle between them is A/B = 67.18 (3)°. The intramolecular C-H···O hydrogen bonds (Table 1) result in the formation of nonplanar five- and six-membered rings C (O2/C1/C2/C7/H7) and D (O1/C1-C3/C8/H8B). Ring C adopts envelope conformation with C1 atom displaced by -0.108 (3) Å from the plane of the other ring atoms, while ring D has twisted conformation.
In the crystal structure, intermolecular O-H···O hydrogen bonds (Table 1) link the molecules into centrosymmetric dimers (Fig. 2), in which they may be effective in the stabilization of the structure. There also exist a C—H···π contact (Table 1) between the benzoic acid and 4-chlorobenzyl rings.