organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Cyano­meth­yl)tri­phenyl­phospho­nium chloride

aGovernment College University, Department of Chemistry, Lahore, Pakistan, and bUniversity of Sargodha, Department of Physics, Sagrodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 21 October 2008; accepted 23 October 2008; online 31 October 2008)

In the mol­ecule of the title compound, C20H17NP+·Cl, the coordination around the P atom is slightly distorted tetra­hedral. In the crystal structure, inter­molecular C—H⋯N and C—H⋯Cl hydrogen bonds link the mol­ecules. There is a ππ contact between the phenyl rings [centroid–centroid distance = 3.702 (3) Å].

Related literature

For related structures, see: Czerwinski (2004[Czerwinski, E. W. (2004). Acta Cryst. E60, o1442-o1443.]); Czerwinski & Ponnuswamy (1988[Czerwinski, E. W. & Ponnuswamy, M. N. (1988). Acta Cryst. C44, 862-865.]); de Dubourg et al. (1986[Dubourg, A., De Castro Dantas, T. N., Klaébé, A. & Declercq, J.-P. (1986). Acta Cryst. C42, 112-114.]); Fischer & Wiebelhaus (1997[Fischer, A. & Wiebelhaus, D. (1997). Z. Kristallogr. New Cryst. Struct. 212, 335-336.]); Shafiq et al. (2008[Shafiq, M., Khan, I. U., Tahir, M. N. & Siddiqui, W. A. (2008). Acta Cryst. E64, o558.]); Skapski & Stephens (1974[Skapski, A. C. & Stephens, F. A. (1974). J. Cryst. Mol. Struct. 4, 77-85.]); Tahir et al. (2008[Tahir, M. N., Shafiq, M., Khan, I. U., Siddiqui, W. A. & Arshad, M. N. (2008). Acta Cryst. E64, o557.]).

[Scheme 1]

Experimental

Crystal data
  • C20H17NP+·Cl

  • Mr = 337.77

  • Monoclinic, P 21 /n

  • a = 11.8269 (5) Å

  • b = 11.8130 (4) Å

  • c = 12.8918 (5) Å

  • β = 92.213 (2)°

  • V = 1799.79 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 296 (2) K

  • 0.26 × 0.20 × 0.16 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.928, Tmax = 0.950

  • 19927 measured reflections

  • 4465 independent reflections

  • 3145 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.111

  • S = 1.03

  • 4465 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Selected geometric parameters (Å, °)

P1—C1 1.7923 (18)
P1—C7 1.7845 (18)
P1—C13 1.7851 (17)
P1—C19 1.8046 (17)
C1—P1—C7 111.03 (8)
C1—P1—C13 109.26 (8)
C1—P1—C19 108.56 (8)
C7—P1—C13 110.71 (8)
C7—P1—C19 106.81 (8)
C13—P1—C19 110.43 (8)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯Cl1 0.93 2.66 3.479 (2) 147
C17—H17⋯N1i 0.93 2.61 3.530 (3) 171
C19—H19A⋯Cl1ii 0.97 2.34 3.3076 (17) 173
C19—H19B⋯Cl1iii 0.97 2.46 3.3830 (19) 160
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Triphenyl phosphonium compounds are key reagents in the Wittig reactions, used to convert aldehydes and ketones into alkenes. The Wittig reaction has seen use in applications ranging from the synthesis of simple alkenes to the construction of complex biologically active molecules for the pharmaceutical industry.The title compound is synthesized for the derivatization of our already published structures (Shafiq et al., 2008; Tahir et al., 2008) using this particular reaction. Various structures have been published having the similar geometry around P atom (Skapski & Stephens, 1974; de Dubourg et al., 1986; Czerwinski & Ponnuswamy, 1988; Fischer & Wiebelhaus, 1997; Czerwinski, 2004).

In the molecule of the title compound (Fig 1), the geometry around P atom is slightly distorted tetrahedral (Table 1). Rings A (C1-C6), B (C7-C12) and C (C13-C18) are of course planar. The dihedral angles between them are A/B = 86.10 (11)°, A/C = 89.78 (10)° and B/C = 76.23 (12)°.

In the crystal structure, intramolecular C-H···Cl and intermolecular C-H···N and C-H···Cl hydrogen bonds (Table 2) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure. The ππ contact between the phenyl rings, Cg3···Cg3i [symmetry code: (i) 2 - x, -y, 1 - z, where Cg3 is the centroid of the ring C (C13-C18)] may further stabilize the structure, with centroid-centroid distance of 3.702 (3) Å. There also exist a C—H···π contact (Table 2) between the phenyl rings.

Related literature top

For related structures, see: Czerwinski (2004); Czerwinski & Ponnuswamy (1988); de Dubourg et al. (1986); Fischer & Wiebelhaus (1997); Shafiq et al. (2008); Skapski & Stephens (1974); Tahir et al. (2008). Cg1 is the centroid of the C1–C6 ring.

Experimental top

Triphenylphosphine (10 g, 0.038 mol) was dissolved in benzene (20 ml) under stirring at room temperature. To this solution, chloroacetonitrile (4 g, 0.0514 mole) was added dropwise. After complete addition, clear solution formed was left in the darkness for 2-3 d. Colorless crystals formed were separated for X-ray diffraction studies.

Refinement top

H-atoms were positioned geometrically, with C-H = 0.93 and 0.97 Å for aromatic and methylene H, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing diagram. Hydrogen bonds are shown as dashed lines.
(Cyanomethyl)triphenylphosphonium chloride top
Crystal data top
C20H17NP+·ClF(000) = 704
Mr = 337.77Dx = 1.247 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4467 reflections
a = 11.8269 (5) Åθ = 2.3–28.3°
b = 11.8130 (4) ŵ = 0.30 mm1
c = 12.8918 (5) ÅT = 296 K
β = 92.213 (2)°Prismatic, colorless
V = 1799.79 (12) Å30.26 × 0.20 × 0.16 mm
Z = 4
Data collection top
Bruker KappaAPEXII CCD
diffractometer
4465 independent reflections
Radiation source: fine-focus sealed tube3145 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 7.40 pixels mm-1θmax = 28.3°, θmin = 2.3°
ω scansh = 1515
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1015
Tmin = 0.928, Tmax = 0.950l = 1714
19927 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0464P)2 + 0.4839P]
where P = (Fo2 + 2Fc2)/3
4465 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C20H17NP+·ClV = 1799.79 (12) Å3
Mr = 337.77Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.8269 (5) ŵ = 0.30 mm1
b = 11.8130 (4) ÅT = 296 K
c = 12.8918 (5) Å0.26 × 0.20 × 0.16 mm
β = 92.213 (2)°
Data collection top
Bruker KappaAPEXII CCD
diffractometer
4465 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3145 reflections with I > 2σ(I)
Tmin = 0.928, Tmax = 0.950Rint = 0.034
19927 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.03Δρmax = 0.37 e Å3
4465 reflectionsΔρmin = 0.31 e Å3
208 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.64049 (5)0.13296 (4)0.08789 (5)0.0652 (2)
P10.81585 (4)0.28430 (4)0.41401 (3)0.0347 (1)
N10.7328 (2)0.38278 (18)0.67432 (16)0.0773 (8)
C10.66854 (15)0.30928 (15)0.38497 (13)0.0396 (5)
C20.59647 (17)0.22052 (19)0.35858 (15)0.0539 (7)
C30.48330 (19)0.2418 (3)0.33767 (18)0.0708 (9)
C40.4421 (2)0.3502 (3)0.34392 (19)0.0758 (9)
C50.51305 (19)0.4389 (2)0.36860 (17)0.0674 (8)
C60.62701 (17)0.41952 (18)0.38895 (15)0.0530 (7)
C70.89873 (15)0.31735 (14)0.30527 (13)0.0392 (5)
C81.00699 (17)0.36037 (18)0.31824 (15)0.0537 (7)
C91.06821 (19)0.3851 (2)0.23237 (18)0.0710 (9)
C101.0223 (2)0.3654 (3)0.13446 (19)0.0809 (10)
C110.9166 (2)0.3196 (3)0.12143 (17)0.0825 (12)
C120.85329 (18)0.2966 (2)0.20620 (15)0.0620 (8)
C130.83557 (14)0.14007 (14)0.45185 (14)0.0386 (5)
C140.86489 (19)0.05919 (17)0.37959 (17)0.0576 (7)
C150.8752 (2)0.05313 (17)0.40849 (19)0.0640 (8)
C160.85644 (18)0.08481 (17)0.50791 (19)0.0611 (8)
C170.8289 (2)0.00608 (19)0.58004 (18)0.0663 (8)
C180.81820 (19)0.10688 (17)0.55274 (16)0.0552 (7)
C190.86206 (15)0.37784 (14)0.51789 (13)0.0404 (5)
C200.78895 (19)0.37952 (16)0.60511 (16)0.0501 (7)
H20.624260.147040.355000.0647*
H30.434710.182640.319270.0849*
H40.365300.363620.331290.0908*
H50.484440.512060.371640.0809*
H60.675490.479490.405130.0636*
H81.038340.372590.384560.0644*
H91.140700.415040.240660.0853*
H101.063470.383490.076680.0970*
H110.887400.303820.054980.0990*
H120.780550.267420.197210.0744*
H140.877640.080590.311610.0690*
H150.894940.107150.359940.0767*
H160.862460.160630.526740.0733*
H170.817220.028390.647980.0795*
H180.799370.160270.602200.0662*
H19A0.867390.454050.490480.0485*
H19B0.937300.355220.542330.0485*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0647 (3)0.0431 (3)0.0854 (4)0.0019 (2)0.0289 (3)0.0085 (2)
P10.0349 (2)0.0353 (2)0.0335 (2)0.0008 (2)0.0029 (2)0.0028 (2)
N10.0872 (15)0.0903 (16)0.0549 (12)0.0070 (12)0.0102 (11)0.0203 (11)
C10.0354 (9)0.0521 (10)0.0312 (9)0.0023 (8)0.0011 (7)0.0010 (7)
C20.0478 (11)0.0621 (12)0.0512 (12)0.0067 (10)0.0057 (9)0.0032 (10)
C30.0468 (13)0.0974 (19)0.0669 (15)0.0187 (12)0.0128 (11)0.0019 (13)
C40.0408 (12)0.122 (2)0.0638 (15)0.0114 (14)0.0064 (10)0.0088 (15)
C50.0521 (13)0.0833 (16)0.0662 (14)0.0248 (12)0.0052 (11)0.0011 (12)
C60.0466 (11)0.0597 (12)0.0522 (12)0.0102 (9)0.0052 (9)0.0023 (10)
C70.0379 (9)0.0427 (9)0.0367 (9)0.0010 (7)0.0009 (7)0.0030 (7)
C80.0439 (11)0.0720 (14)0.0451 (11)0.0083 (10)0.0007 (9)0.0115 (10)
C90.0478 (12)0.103 (2)0.0630 (15)0.0196 (12)0.0138 (11)0.0119 (13)
C100.0630 (16)0.129 (2)0.0521 (14)0.0080 (15)0.0210 (12)0.0016 (14)
C110.0623 (16)0.148 (3)0.0372 (12)0.0081 (16)0.0014 (10)0.0048 (14)
C120.0448 (11)0.1007 (18)0.0402 (11)0.0116 (11)0.0036 (9)0.0066 (11)
C130.0354 (9)0.0345 (8)0.0458 (10)0.0013 (7)0.0001 (7)0.0017 (7)
C140.0790 (15)0.0447 (11)0.0492 (12)0.0012 (10)0.0054 (10)0.0090 (9)
C150.0814 (16)0.0399 (10)0.0704 (15)0.0028 (10)0.0010 (12)0.0138 (10)
C160.0608 (13)0.0360 (10)0.0862 (17)0.0014 (9)0.0024 (12)0.0041 (10)
C170.0838 (16)0.0533 (12)0.0625 (14)0.0078 (12)0.0131 (12)0.0171 (11)
C180.0703 (14)0.0457 (10)0.0505 (12)0.0111 (10)0.0143 (10)0.0026 (9)
C190.0452 (10)0.0372 (9)0.0382 (9)0.0018 (7)0.0078 (8)0.0047 (7)
C200.0595 (12)0.0485 (11)0.0418 (11)0.0057 (9)0.0060 (10)0.0116 (8)
Geometric parameters (Å, º) top
P1—C11.7923 (18)C16—C171.364 (3)
P1—C71.7845 (18)C17—C181.385 (3)
P1—C131.7851 (17)C19—C201.445 (3)
P1—C191.8046 (17)C2—H20.9300
N1—C201.133 (3)C3—H30.9300
C1—C21.385 (3)C4—H40.9300
C1—C61.394 (3)C5—H50.9300
C2—C31.378 (3)C6—H60.9300
C3—C41.374 (5)C8—H80.9300
C4—C51.372 (4)C9—H90.9300
C5—C61.382 (3)C10—H100.9300
C7—C81.382 (3)C11—H110.9300
C7—C121.388 (3)C12—H120.9300
C8—C91.377 (3)C14—H140.9300
C9—C101.375 (3)C15—H150.9300
C10—C111.367 (4)C16—H160.9300
C11—C121.376 (3)C17—H170.9300
C13—C141.388 (3)C18—H180.9300
C13—C181.381 (3)C19—H19A0.9700
C14—C151.382 (3)C19—H19B0.9700
C15—C161.362 (3)
Cl1···C19i3.3076 (17)C14···H23.0300
Cl1···C16ii3.556 (2)C15···H12i3.0900
Cl1···C19iii3.3830 (19)C18···H10viii3.0400
Cl1···C123.479 (2)C19···H182.9000
Cl1···H16ii2.8500C19···H82.7500
Cl1···H19Ai2.3400C19···H62.8600
Cl1···H8iii2.8400C20···H63.0900
Cl1···H19Biii2.4600C20···H182.5900
Cl1···H122.6600H2···C143.0300
Cl1···H6i2.8300H2···C132.7500
N1···H182.9100H5···N1v2.8900
N1···H17iv2.6100H6···Cl1ii2.8300
N1···H5v2.8900H6···H19A2.5000
C6···C203.353 (3)H6···C192.8600
C12···C143.586 (3)H6···C203.0900
C12···Cl13.479 (2)H8···H19B2.4100
C12···C15ii3.512 (3)H8···C192.7500
C14···C123.586 (3)H8···Cl1vii2.8400
C14···C16vi3.562 (3)H10···C18ix3.0400
C15···C17vi3.566 (3)H12···Cl12.6600
C15···C12i3.512 (3)H12···C15ii3.0900
C16···Cl1i3.556 (2)H12···C12.8500
C16···C14vi3.562 (3)H14···C122.9000
C17···C15vi3.566 (3)H14···C72.8100
C18···C203.312 (3)H16···Cl1i2.8500
C19···Cl1vii3.3830 (19)H17···N1x2.6100
C19···Cl1ii3.3076 (17)H18···N12.9100
C20···C63.353 (3)H18···C202.5900
C20···C183.312 (3)H18···C192.9000
C1···H122.8500H19A···Cl1ii2.3400
C7···H142.8100H19A···H62.5000
C8···H19A3.0300H19A···C83.0300
C8···H19B3.0400H19B···C83.0400
C12···H142.9000H19B···H82.4100
C13···H22.7500H19B···Cl1vii2.4600
C1—P1—C7111.03 (8)C2—C3—H3120.00
C1—P1—C13109.26 (8)C4—C3—H3120.00
C1—P1—C19108.56 (8)C3—C4—H4120.00
C7—P1—C13110.71 (8)C5—C4—H4120.00
C7—P1—C19106.81 (8)C4—C5—H5120.00
C13—P1—C19110.43 (8)C6—C5—H5120.00
P1—C1—C2120.70 (14)C1—C6—H6120.00
P1—C1—C6119.17 (14)C5—C6—H6120.00
C2—C1—C6120.13 (17)C7—C8—H8120.00
C1—C2—C3119.6 (2)C9—C8—H8120.00
C2—C3—C4120.2 (3)C8—C9—H9120.00
C3—C4—C5120.7 (2)C10—C9—H9120.00
C4—C5—C6120.0 (2)C9—C10—H10120.00
C1—C6—C5119.36 (19)C11—C10—H10120.00
P1—C7—C8121.33 (14)C10—C11—H11120.00
P1—C7—C12118.64 (14)C12—C11—H11120.00
C8—C7—C12120.02 (17)C7—C12—H12120.00
C7—C8—C9119.62 (18)C11—C12—H12120.00
C8—C9—C10120.1 (2)C13—C14—H14120.00
C9—C10—C11120.5 (2)C15—C14—H14120.00
C10—C11—C12120.3 (2)C14—C15—H15120.00
C7—C12—C11119.5 (2)C16—C15—H15120.00
P1—C13—C14120.47 (14)C15—C16—H16120.00
P1—C13—C18120.37 (14)C17—C16—H16120.00
C14—C13—C18119.13 (17)C16—C17—H17120.00
C13—C14—C15120.1 (2)C18—C17—H17120.00
C14—C15—C16120.1 (2)C13—C18—H18120.00
C15—C16—C17120.4 (2)C17—C18—H18120.00
C16—C17—C18120.4 (2)P1—C19—H19A109.00
C13—C18—C17119.83 (19)P1—C19—H19B109.00
P1—C19—C20114.38 (13)C20—C19—H19A109.00
N1—C20—C19178.6 (2)C20—C19—H19B109.00
C1—C2—H2120.00H19A—C19—H19B108.00
C3—C2—H2120.00
C7—P1—C1—C2100.11 (16)P1—C1—C6—C5178.74 (15)
C7—P1—C1—C679.73 (16)C2—C1—C6—C51.4 (3)
C13—P1—C1—C222.28 (17)C1—C2—C3—C40.6 (3)
C13—P1—C1—C6157.89 (14)C2—C3—C4—C51.5 (4)
C19—P1—C1—C2142.77 (15)C3—C4—C5—C60.9 (4)
C19—P1—C1—C637.40 (17)C4—C5—C6—C10.5 (3)
C1—P1—C7—C8146.77 (15)P1—C7—C8—C9179.84 (17)
C1—P1—C7—C1234.67 (18)C12—C7—C8—C91.6 (3)
C13—P1—C7—C891.68 (17)P1—C7—C12—C11178.8 (2)
C13—P1—C7—C1286.88 (17)C8—C7—C12—C110.3 (3)
C19—P1—C7—C828.58 (18)C7—C8—C9—C101.0 (4)
C19—P1—C7—C12152.86 (16)C8—C9—C10—C111.0 (4)
C1—P1—C13—C1495.07 (17)C9—C10—C11—C122.4 (5)
C1—P1—C13—C1882.80 (17)C10—C11—C12—C71.8 (4)
C7—P1—C13—C1427.51 (18)P1—C13—C14—C15177.19 (17)
C7—P1—C13—C18154.62 (15)C18—C13—C14—C150.7 (3)
C19—P1—C13—C14145.59 (16)P1—C13—C18—C17177.16 (17)
C19—P1—C13—C1836.54 (18)C14—C13—C18—C170.7 (3)
C1—P1—C19—C2048.05 (15)C13—C14—C15—C160.1 (3)
C7—P1—C19—C20167.85 (13)C14—C15—C16—C170.9 (3)
C13—P1—C19—C2071.71 (15)C15—C16—C17—C180.9 (3)
P1—C1—C2—C3179.31 (16)C16—C17—C18—C130.0 (3)
C6—C1—C2—C30.9 (3)
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+3/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z1/2; (iv) x+3/2, y+1/2, z+3/2; (v) x+1, y+1, z+1; (vi) x+2, y, z+1; (vii) x+1/2, y+1/2, z+1/2; (viii) x1/2, y+1/2, z+1/2; (ix) x+1/2, y+1/2, z1/2; (x) x+3/2, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···Cl10.932.663.479 (2)147
C17—H17···N1x0.932.613.530 (3)171
C19—H19A···Cl1ii0.972.343.3076 (17)173
C19—H19B···Cl1vii0.972.463.3830 (19)160
C15—H15···Cg1i0.933.063.890 (3)150
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+3/2, y+1/2, z+1/2; (vii) x+1/2, y+1/2, z+1/2; (x) x+3/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC20H17NP+·Cl
Mr337.77
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)11.8269 (5), 11.8130 (4), 12.8918 (5)
β (°) 92.213 (2)
V3)1799.79 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.26 × 0.20 × 0.16
Data collection
DiffractometerBruker KappaAPEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.928, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
19927, 4465, 3145
Rint0.034
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.111, 1.03
No. of reflections4465
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.31

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
P1—C11.7923 (18)P1—C131.7851 (17)
P1—C71.7845 (18)P1—C191.8046 (17)
C1—P1—C7111.03 (8)C7—P1—C13110.71 (8)
C1—P1—C13109.26 (8)C7—P1—C19106.81 (8)
C1—P1—C19108.56 (8)C13—P1—C19110.43 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···Cl10.932.663.479 (2)147
C17—H17···N1i0.932.613.530 (3)171
C19—H19A···Cl1ii0.972.343.3076 (17)173
C19—H19B···Cl1iii0.972.463.3830 (19)160
C15—H15···Cg1iv0.933.063.890 (3)150
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x+3/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x+3/2, y1/2, z+1/2.
 

Acknowledgements

MS greatfully acknowledges the Higher Education Com­mis­sion, Islamabad, Pakistan, for providing his Scholarship under the Indigenous PhD Program (PIN 042–120567-PS2–276).

References

First citationBruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationCzerwinski, E. W. (2004). Acta Cryst. E60, o1442–o1443.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCzerwinski, E. W. & Ponnuswamy, M. N. (1988). Acta Cryst. C44, 862–865.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDubourg, A., De Castro Dantas, T. N., Klaébé, A. & Declercq, J.-P. (1986). Acta Cryst. C42, 112–114.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFischer, A. & Wiebelhaus, D. (1997). Z. Kristallogr. New Cryst. Struct. 212, 335–336.  CAS Google Scholar
First citationShafiq, M., Khan, I. U., Tahir, M. N. & Siddiqui, W. A. (2008). Acta Cryst. E64, o558.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSkapski, A. C. & Stephens, F. A. (1974). J. Cryst. Mol. Struct. 4, 77–85.  CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTahir, M. N., Shafiq, M., Khan, I. U., Siddiqui, W. A. & Arshad, M. N. (2008). Acta Cryst. E64, o557.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds