organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(3-Chloro­benz­yl)-5-iodo­indoline-2,3-dione

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bDepartment of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii' 565, 53210 Pardubice, Czech Republic
*Correspondence e-mail: qadeerqau@yahoo.com

(Received 22 October 2008; accepted 23 October 2008; online 31 October 2008)

In the title compound, C15H9ClINO2, which possesses anticonvulsant activity, the iodo­indoline ring system is essentially planar (maximum deviation 1.245 Å) and is oriented with respect to the 3-chloro­benzyl ring at a dihedral angle of 76.59 (3)°. In the crystal, there is a ππ contact between iodo­indoline ring systems [centroid–centroid distance = 3.8188 (4) Å].

Related literature

For general background, see: Hibino & Choshi (2002[Hibino, S. & Choshi, T. (2002). Nat. Prod. Rep. 19, 148-180.]); Somei & Yamada (2003[Somei, M. & Yamada, F. (2003). Nat. Prod. Rep. 20, 216-242.]); Popp (1977[Popp, F. D. (1977). In Anticonvulsants, edited by J. A. Vida. New York: Academic Press.]); Popp (1984[Popp, F. D. (1984). J. Heterocycl. Chem. 21, 1641-1643.]). For related structures, see: Chakraborty & Talapatra (1985[Chakraborty, D. K. & Talapatra, S. K. (1985). Acta Cryst. C41, 1365-1366.]); Chakraborty et al. (1985[Chakraborty, D. K., Talapatra, S. K. & Chatterjee, A. (1985). Acta Cryst. C41, 1363-1364.]); Codding et al. (1984[Codding, P. W., Lee, T. A. & Richardson, J. F. (1984). J. Med. Chem. 27, 649-654.]); De (1992[De, A. (1992). Acta Cryst. C48, 660-662.]); De & Kitagawa (1991a[De, A. & Kitagawa, Y. (1991a). Acta Cryst. C47, 2179-2181.],b[De, A. & Kitagawa, Y. (1991b). Acta Cryst. C47, 2384-2386.]); Itai et al. (1978[Itai, A., Iitaka, Y. & Kubo, A. (1978). Acta Cryst. B34, 3775-3777.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]);

[Scheme 1]

Experimental

Crystal data
  • C15H9ClINO2

  • Mr = 397.58

  • Monoclinic, P 21 /c

  • a = 8.1241 (6) Å

  • b = 11.7930 (8) Å

  • c = 14.7001 (2) Å

  • β = 90.751 (3)°

  • V = 1408.23 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.46 mm−1

  • T = 150 (1) K

  • 0.37 × 0.30 × 0.06 mm

Data collection
  • Bruker–Nonius KappaCCD area-detector diffractometer

  • Absorption correction: integration (Coppens, 1970[Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255-270. Copenhagen: Munksgaard.]) Tmin = 0.473, Tmax = 0.837

  • 12236 measured reflections

  • 3203 independent reflections

  • 2570 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.104

  • S = 1.11

  • 3203 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 1.43 e Å−3

  • Δρmin = −0.79 e Å−3

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: COLLECT and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzimology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: COLLECT and DENZO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Indolinones are a class of heterocyclic compounds found in many natural products and in a number of marketed drugs (Hibino & Choshi, 2002; Somei & Yamada, 2003). They have diverse chemical structures and complex physiological and pharmacological actions. The search for potential drugs and their mechanism of action has been difficult because of their complexity. These compounds contain both oxoindole and dioxolane moieties which have independently been seen in other anticonvulsants (Popp, 1977, 1984). The title compound, a chloro analogue, was found to be most potent in the MES test. Since no common target site has yet been established, X-ray analysis was undertaken to search structural information which may help in the understanding of the mechanism of action at the molecular level.

In the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (N1/C1-C3/C8), B (C3-C8) and C (C10-C15) are, of course, planar and the dihedral angles between them are A/B = 0.83 (3)°, A/C = 77.05 (3)° and B/C = 76.22 (3)°. The C2-C3 [1.463 (5) Å] bond is slightly shorter but closely similar to the values found in other indoline nuclei (Itai et al., 1978; Chakraborty & Talapatra, 1985; Chakraborty et al., 1985; De & Kitagawa, 1991a,b; De, 1992). The lone pair of electrons on N1 atom is involved in conjugation with the carbonyl group. This is also indicated by the slight lengthening of the C1=O1 [1.208 (5) Å] bond and the concomitant shortening of the N1-C1 [1.364 (5) Å] and N1-C8 [1.407 (5) Å] single bonds (Codding et al., 1984).

In the crystal structure, the π-π contact between the iodoindoline rings, Cg2—Cg2i [symmetry code: (i) 1 - x, -y, -z, where Cg2 is centroid of the ring B (C3-C8)] may stabilize the structure, with centroid-centroid distance of 3.8188 (4) Å.

Related literature top

For general background, see: Hibino & Choshi (2002); Somei & Yamada (2003); Popp (1977); Popp (1984). For related structures, see: Chakraborty & Talapatra (1985); Chakraborty et al. (1985); Codding et al. (1984); De (1992); De & Kitagawa (1991a,b); Itai et al. (1978). For bond-length data, see: Allen et al. (1987);

Experimental top

A mixture of 5-iodoisatin (1.8 g, 10 mmol) and 3-chlorobenzyl chloride (1.6 g, 10 mmol) was refluxed in DMF (50 ml) in the precense of potassium carbonate for 6 h. DMF was removed from the reaction mixture by distillation. Ice cold water (20 ml) was added and the reaction mixture was extracted with dichloromethane (3 × 20 ml). The extract was dried and evaporated to yield the crude solid, which was recrystallized from methanol (yield; 74%; m.p. 411-412 K).

Refinement top

H atoms were positioned geometrically, with C-H = 0.93 and 0.97 Å for aromatic and methylene H, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); data reduction: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The formation of the title compound.
1-(3-Chlorobenzyl)-5-iodoindoline-2,3-dione top
Crystal data top
C15H9ClINO2F(000) = 768
Mr = 397.58Dx = 1.875 Mg m3
Monoclinic, P21/cMelting point: 411(1) K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.1241 (6) ÅCell parameters from 12323 reflections
b = 11.7930 (8) Åθ = 1–27.5°
c = 14.7001 (2) ŵ = 2.46 mm1
β = 90.751 (3)°T = 150 K
V = 1408.23 (14) Å3Plate, colorless
Z = 40.37 × 0.30 × 0.06 mm
Data collection top
Bruker–Nonius KappaCCD area-detector
diffractometer
3203 independent reflections
Radiation source: fine-focus sealed tube2570 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.2°
ϕ and ω scansh = 109
Absorption correction: integration
(Coppens, 1970)
k = 1514
Tmin = 0.473, Tmax = 0.837l = 1719
12236 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0373P)2 + 3.1264P]
where P = (Fo2 + 2Fc2)/3
3203 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 1.43 e Å3
0 restraintsΔρmin = 0.79 e Å3
Crystal data top
C15H9ClINO2V = 1408.23 (14) Å3
Mr = 397.58Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.1241 (6) ŵ = 2.46 mm1
b = 11.7930 (8) ÅT = 150 K
c = 14.7001 (2) Å0.37 × 0.30 × 0.06 mm
β = 90.751 (3)°
Data collection top
Bruker–Nonius KappaCCD area-detector
diffractometer
3203 independent reflections
Absorption correction: integration
(Coppens, 1970)
2570 reflections with I > 2σ(I)
Tmin = 0.473, Tmax = 0.837Rint = 0.051
12236 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.11Δρmax = 1.43 e Å3
3203 reflectionsΔρmin = 0.79 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.21126 (4)0.00688 (3)0.168370 (19)0.04622 (13)
Cl10.0801 (2)0.12211 (13)0.61991 (8)0.0713 (5)
N10.3994 (4)0.1400 (3)0.2264 (2)0.0304 (7)
O10.5622 (4)0.2894 (3)0.2730 (2)0.0454 (8)
O20.5749 (4)0.3308 (3)0.0755 (2)0.0472 (8)
C10.4945 (5)0.2340 (3)0.2144 (3)0.0331 (8)
C20.5037 (5)0.2528 (3)0.1103 (3)0.0330 (8)
C30.4080 (5)0.1602 (3)0.0698 (3)0.0286 (8)
C40.3728 (5)0.1328 (3)0.0195 (3)0.0305 (8)
H40.41380.17590.06700.037*
C50.2736 (5)0.0393 (3)0.0354 (3)0.0311 (8)
C60.2127 (5)0.0241 (3)0.0360 (3)0.0360 (9)
H60.14520.08600.02350.043*
C70.2493 (5)0.0025 (3)0.1261 (3)0.0333 (8)
H70.20900.04060.17390.040*
C80.3475 (4)0.0955 (3)0.1419 (2)0.0261 (7)
C90.3778 (5)0.0850 (4)0.3135 (3)0.0354 (9)
H9A0.47250.10160.35210.043*
H9B0.37430.00360.30420.043*
C100.2237 (5)0.1204 (3)0.3623 (3)0.0339 (8)
C110.2173 (6)0.1038 (4)0.4557 (3)0.0385 (9)
H110.30570.07080.48660.046*
C120.0790 (7)0.1355 (4)0.5020 (3)0.0434 (11)
C130.0563 (7)0.1805 (4)0.4584 (4)0.0528 (13)
H130.14910.20100.49100.063*
C140.0506 (6)0.1953 (4)0.3650 (3)0.0449 (11)
H140.14220.22320.33370.054*
C150.0905 (5)0.1688 (3)0.3183 (3)0.0363 (9)
H150.09560.18360.25630.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.03707 (18)0.0640 (2)0.03741 (18)0.01182 (13)0.00630 (12)0.01648 (13)
Cl10.1128 (13)0.0684 (9)0.0331 (6)0.0229 (8)0.0206 (7)0.0073 (6)
N10.0271 (17)0.0358 (17)0.0284 (16)0.0010 (13)0.0047 (12)0.0009 (13)
O10.0425 (18)0.0493 (18)0.0443 (17)0.0059 (14)0.0025 (14)0.0135 (14)
O20.0465 (19)0.0435 (17)0.0519 (19)0.0149 (14)0.0100 (15)0.0029 (14)
C10.029 (2)0.035 (2)0.0356 (19)0.0031 (16)0.0049 (15)0.0059 (16)
C20.027 (2)0.0309 (19)0.041 (2)0.0003 (15)0.0081 (16)0.0015 (16)
C30.0227 (18)0.0307 (18)0.0325 (19)0.0017 (14)0.0062 (14)0.0007 (15)
C40.027 (2)0.0349 (19)0.0302 (18)0.0065 (15)0.0041 (15)0.0003 (15)
C50.027 (2)0.0361 (19)0.0299 (18)0.0080 (16)0.0000 (15)0.0064 (16)
C60.030 (2)0.033 (2)0.045 (2)0.0015 (16)0.0017 (17)0.0033 (17)
C70.029 (2)0.0333 (19)0.038 (2)0.0004 (16)0.0059 (16)0.0052 (16)
C80.0222 (18)0.0304 (17)0.0260 (16)0.0047 (14)0.0038 (13)0.0000 (14)
C90.034 (2)0.045 (2)0.0275 (18)0.0062 (18)0.0030 (16)0.0041 (17)
C100.038 (2)0.0315 (19)0.0318 (19)0.0012 (16)0.0048 (16)0.0026 (15)
C110.048 (3)0.037 (2)0.031 (2)0.0049 (19)0.0024 (18)0.0002 (17)
C120.065 (3)0.037 (2)0.029 (2)0.013 (2)0.0120 (19)0.0039 (17)
C130.054 (3)0.042 (2)0.063 (3)0.009 (2)0.026 (2)0.013 (2)
C140.038 (2)0.046 (2)0.051 (3)0.0084 (19)0.009 (2)0.002 (2)
C150.038 (2)0.040 (2)0.0306 (19)0.0019 (18)0.0019 (16)0.0027 (17)
Geometric parameters (Å, º) top
I1—C52.086 (4)C7—C81.374 (5)
Cl1—C121.740 (4)C7—H70.9301
N1—C11.364 (5)C9—C101.510 (6)
N1—C81.407 (5)C9—H9A0.9700
N1—C91.448 (5)C9—H9B0.9701
O1—C11.208 (5)C11—C101.388 (6)
O2—C21.204 (5)C11—H110.9300
C1—C21.550 (6)C12—C131.372 (8)
C2—C31.463 (5)C12—C111.373 (7)
C3—C81.401 (5)C13—C141.386 (7)
C4—C31.378 (5)C13—H130.9299
C4—H40.9299C14—H140.9300
C5—C41.384 (6)C15—C101.377 (6)
C5—C61.384 (6)C15—C141.379 (6)
C6—H60.9300C15—H150.9299
C7—C61.390 (6)
C1—N1—C8110.7 (3)C3—C8—N1111.1 (3)
C1—N1—C9123.6 (3)N1—C9—C10114.0 (3)
C8—N1—C9125.1 (3)N1—C9—H9A108.8
O1—C1—N1126.9 (4)C10—C9—H9A108.8
O1—C1—C2126.8 (4)N1—C9—H9B108.8
N1—C1—C2106.2 (3)C10—C9—H9B108.5
O2—C2—C3130.8 (4)H9A—C9—H9B107.6
O2—C2—C1124.0 (4)C15—C10—C11118.9 (4)
C3—C2—C1105.2 (3)C15—C10—C9122.9 (4)
C4—C3—C8121.5 (4)C11—C10—C9118.2 (4)
C4—C3—C2131.7 (4)C12—C11—C10119.5 (4)
C8—C3—C2106.8 (3)C12—C11—H11120.2
C3—C4—C5117.4 (4)C10—C11—H11120.3
C3—C4—H4121.1C13—C12—C11122.0 (4)
C5—C4—H4121.5C13—C12—Cl1119.6 (4)
C4—C5—C6121.0 (4)C11—C12—Cl1118.4 (4)
C4—C5—I1120.0 (3)C12—C13—C14118.3 (4)
C6—C5—I1119.0 (3)C12—C13—H13120.7
C5—C6—C7121.7 (4)C14—C13—H13121.0
C5—C6—H6119.3C15—C14—C13120.2 (5)
C7—C6—H6119.0C15—C14—H14119.9
C8—C7—C6117.3 (4)C13—C14—H14119.9
C8—C7—H7121.2C10—C15—C14120.9 (4)
C6—C7—H7121.5C10—C15—H15119.5
C7—C8—C3121.0 (3)C14—C15—H15119.6
C7—C8—N1127.9 (3)

Experimental details

Crystal data
Chemical formulaC15H9ClINO2
Mr397.58
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)8.1241 (6), 11.7930 (8), 14.7001 (2)
β (°) 90.751 (3)
V3)1408.23 (14)
Z4
Radiation typeMo Kα
µ (mm1)2.46
Crystal size (mm)0.37 × 0.30 × 0.06
Data collection
DiffractometerBruker–Nonius KappaCCD area-detector
diffractometer
Absorption correctionIntegration
(Coppens, 1970)
Tmin, Tmax0.473, 0.837
No. of measured, independent and
observed [I > 2σ(I)] reflections
12236, 3203, 2570
Rint0.051
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.104, 1.11
No. of reflections3203
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.43, 0.79

Computer programs: , COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

 

Acknowledgements

The authors gratefully acknowledge the financial support of the Ministry of Education of the Czech Republic (project No. VZ0021627501) and the Higher Education Commission, Islama­bad, Pakistan.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationChakraborty, D. K. & Talapatra, S. K. (1985). Acta Cryst. C41, 1365–1366.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationChakraborty, D. K., Talapatra, S. K. & Chatterjee, A. (1985). Acta Cryst. C41, 1363–1364.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCodding, P. W., Lee, T. A. & Richardson, J. F. (1984). J. Med. Chem. 27, 649–654.  CrossRef CAS PubMed Web of Science Google Scholar
First citationCoppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255–270. Copenhagen: Munksgaard.  Google Scholar
First citationDe, A. (1992). Acta Cryst. C48, 660–662.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDe, A. & Kitagawa, Y. (1991a). Acta Cryst. C47, 2179–2181.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDe, A. & Kitagawa, Y. (1991b). Acta Cryst. C47, 2384–2386.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHibino, S. & Choshi, T. (2002). Nat. Prod. Rep. 19, 148–180.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationItai, A., Iitaka, Y. & Kubo, A. (1978). Acta Cryst. B34, 3775–3777.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzimology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPopp, F. D. (1977). In Anticonvulsants, edited by J. A. Vida. New York: Academic Press.  Google Scholar
First citationPopp, F. D. (1984). J. Heterocycl. Chem. 21, 1641–1643.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSomei, M. & Yamada, F. (2003). Nat. Prod. Rep. 20, 216–242.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds