organic compounds
1-(3-Chlorobenzyl)-5-iodoindoline-2,3-dione
aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bDepartment of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii' 565, 53210 Pardubice, Czech Republic
*Correspondence e-mail: qadeerqau@yahoo.com
In the title compound, C15H9ClINO2, which possesses anticonvulsant activity, the iodoindoline ring system is essentially planar (maximum deviation 1.245 Å) and is oriented with respect to the 3-chlorobenzyl ring at a dihedral angle of 76.59 (3)°. In the crystal, there is a π–π contact between iodoindoline ring systems [centroid–centroid distance = 3.8188 (4) Å].
Related literature
For general background, see: Hibino & Choshi (2002); Somei & Yamada (2003); Popp (1977); Popp (1984). For related structures, see: Chakraborty & Talapatra (1985); Chakraborty et al. (1985); Codding et al. (1984); De (1992); De & Kitagawa (1991a,b); Itai et al. (1978). For bond-length data, see: Allen et al. (1987);
Experimental
Crystal data
|
Data collection: COLLECT (Hooft, 1998); cell COLLECT and DENZO (Otwinowski & Minor, 1997); data reduction: COLLECT and DENZO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808034727/hk2560sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808034727/hk2560Isup2.hkl
A mixture of 5-iodoisatin (1.8 g, 10 mmol) and 3-chlorobenzyl chloride (1.6 g, 10 mmol) was refluxed in DMF (50 ml) in the precense of potassium carbonate for 6 h. DMF was removed from the reaction mixture by distillation. Ice cold water (20 ml) was added and the reaction mixture was extracted with dichloromethane (3 × 20 ml). The extract was dried and evaporated to yield the crude solid, which was recrystallized from methanol (yield; 74%; m.p. 411-412 K).
H atoms were positioned geometrically, with C-H = 0.93 and 0.97 Å for aromatic and methylene H, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).
Data collection: COLLECT (Hooft, 1998); cell
COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); data reduction: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids drawn at the 50% probability level. | |
Fig. 2. The formation of the title compound. |
C15H9ClINO2 | F(000) = 768 |
Mr = 397.58 | Dx = 1.875 Mg m−3 |
Monoclinic, P21/c | Melting point: 411(1) K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 8.1241 (6) Å | Cell parameters from 12323 reflections |
b = 11.7930 (8) Å | θ = 1–27.5° |
c = 14.7001 (2) Å | µ = 2.46 mm−1 |
β = 90.751 (3)° | T = 150 K |
V = 1408.23 (14) Å3 | Plate, colorless |
Z = 4 | 0.37 × 0.30 × 0.06 mm |
Bruker–Nonius KappaCCD area-detector diffractometer | 3203 independent reflections |
Radiation source: fine-focus sealed tube | 2570 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.051 |
Detector resolution: 9.091 pixels mm-1 | θmax = 27.5°, θmin = 2.2° |
ϕ and ω scans | h = −10→9 |
Absorption correction: integration (Coppens, 1970) | k = −15→14 |
Tmin = 0.473, Tmax = 0.837 | l = −17→19 |
12236 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.104 | H-atom parameters constrained |
S = 1.11 | w = 1/[σ2(Fo2) + (0.0373P)2 + 3.1264P] where P = (Fo2 + 2Fc2)/3 |
3203 reflections | (Δ/σ)max < 0.001 |
181 parameters | Δρmax = 1.43 e Å−3 |
0 restraints | Δρmin = −0.79 e Å−3 |
C15H9ClINO2 | V = 1408.23 (14) Å3 |
Mr = 397.58 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.1241 (6) Å | µ = 2.46 mm−1 |
b = 11.7930 (8) Å | T = 150 K |
c = 14.7001 (2) Å | 0.37 × 0.30 × 0.06 mm |
β = 90.751 (3)° |
Bruker–Nonius KappaCCD area-detector diffractometer | 3203 independent reflections |
Absorption correction: integration (Coppens, 1970) | 2570 reflections with I > 2σ(I) |
Tmin = 0.473, Tmax = 0.837 | Rint = 0.051 |
12236 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.104 | H-atom parameters constrained |
S = 1.11 | Δρmax = 1.43 e Å−3 |
3203 reflections | Δρmin = −0.79 e Å−3 |
181 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
I1 | 0.21126 (4) | −0.00688 (3) | −0.168370 (19) | 0.04622 (13) | |
Cl1 | 0.0801 (2) | 0.12211 (13) | 0.61991 (8) | 0.0713 (5) | |
N1 | 0.3994 (4) | 0.1400 (3) | 0.2264 (2) | 0.0304 (7) | |
O1 | 0.5622 (4) | 0.2894 (3) | 0.2730 (2) | 0.0454 (8) | |
O2 | 0.5749 (4) | 0.3308 (3) | 0.0755 (2) | 0.0472 (8) | |
C1 | 0.4945 (5) | 0.2340 (3) | 0.2144 (3) | 0.0331 (8) | |
C2 | 0.5037 (5) | 0.2528 (3) | 0.1103 (3) | 0.0330 (8) | |
C3 | 0.4080 (5) | 0.1602 (3) | 0.0698 (3) | 0.0286 (8) | |
C4 | 0.3728 (5) | 0.1328 (3) | −0.0195 (3) | 0.0305 (8) | |
H4 | 0.4138 | 0.1759 | −0.0670 | 0.037* | |
C5 | 0.2736 (5) | 0.0393 (3) | −0.0354 (3) | 0.0311 (8) | |
C6 | 0.2127 (5) | −0.0241 (3) | 0.0360 (3) | 0.0360 (9) | |
H6 | 0.1452 | −0.0860 | 0.0235 | 0.043* | |
C7 | 0.2493 (5) | 0.0025 (3) | 0.1261 (3) | 0.0333 (8) | |
H7 | 0.2090 | −0.0406 | 0.1739 | 0.040* | |
C8 | 0.3475 (4) | 0.0955 (3) | 0.1419 (2) | 0.0261 (7) | |
C9 | 0.3778 (5) | 0.0850 (4) | 0.3135 (3) | 0.0354 (9) | |
H9A | 0.4725 | 0.1016 | 0.3521 | 0.043* | |
H9B | 0.3743 | 0.0036 | 0.3042 | 0.043* | |
C10 | 0.2237 (5) | 0.1204 (3) | 0.3623 (3) | 0.0339 (8) | |
C11 | 0.2173 (6) | 0.1038 (4) | 0.4557 (3) | 0.0385 (9) | |
H11 | 0.3057 | 0.0708 | 0.4866 | 0.046* | |
C12 | 0.0790 (7) | 0.1355 (4) | 0.5020 (3) | 0.0434 (11) | |
C13 | −0.0563 (7) | 0.1805 (4) | 0.4584 (4) | 0.0528 (13) | |
H13 | −0.1491 | 0.2010 | 0.4910 | 0.063* | |
C14 | −0.0506 (6) | 0.1953 (4) | 0.3650 (3) | 0.0449 (11) | |
H14 | −0.1422 | 0.2232 | 0.3337 | 0.054* | |
C15 | 0.0905 (5) | 0.1688 (3) | 0.3183 (3) | 0.0363 (9) | |
H15 | 0.0956 | 0.1836 | 0.2563 | 0.044* |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.03707 (18) | 0.0640 (2) | 0.03741 (18) | 0.01182 (13) | −0.00630 (12) | −0.01648 (13) |
Cl1 | 0.1128 (13) | 0.0684 (9) | 0.0331 (6) | −0.0229 (8) | 0.0206 (7) | −0.0073 (6) |
N1 | 0.0271 (17) | 0.0358 (17) | 0.0284 (16) | −0.0010 (13) | 0.0047 (12) | −0.0009 (13) |
O1 | 0.0425 (18) | 0.0493 (18) | 0.0443 (17) | −0.0059 (14) | −0.0025 (14) | −0.0135 (14) |
O2 | 0.0465 (19) | 0.0435 (17) | 0.0519 (19) | −0.0149 (14) | 0.0100 (15) | 0.0029 (14) |
C1 | 0.029 (2) | 0.035 (2) | 0.0356 (19) | 0.0031 (16) | 0.0049 (15) | −0.0059 (16) |
C2 | 0.027 (2) | 0.0309 (19) | 0.041 (2) | −0.0003 (15) | 0.0081 (16) | −0.0015 (16) |
C3 | 0.0227 (18) | 0.0307 (18) | 0.0325 (19) | 0.0017 (14) | 0.0062 (14) | 0.0007 (15) |
C4 | 0.027 (2) | 0.0349 (19) | 0.0302 (18) | 0.0065 (15) | 0.0041 (15) | −0.0003 (15) |
C5 | 0.027 (2) | 0.0361 (19) | 0.0299 (18) | 0.0080 (16) | 0.0000 (15) | −0.0064 (16) |
C6 | 0.030 (2) | 0.033 (2) | 0.045 (2) | −0.0015 (16) | −0.0017 (17) | −0.0033 (17) |
C7 | 0.029 (2) | 0.0333 (19) | 0.038 (2) | −0.0004 (16) | 0.0059 (16) | 0.0052 (16) |
C8 | 0.0222 (18) | 0.0304 (17) | 0.0260 (16) | 0.0047 (14) | 0.0038 (13) | 0.0000 (14) |
C9 | 0.034 (2) | 0.045 (2) | 0.0275 (18) | 0.0062 (18) | 0.0030 (16) | 0.0041 (17) |
C10 | 0.038 (2) | 0.0315 (19) | 0.0318 (19) | −0.0012 (16) | 0.0048 (16) | 0.0026 (15) |
C11 | 0.048 (3) | 0.037 (2) | 0.031 (2) | −0.0049 (19) | 0.0024 (18) | −0.0002 (17) |
C12 | 0.065 (3) | 0.037 (2) | 0.029 (2) | −0.013 (2) | 0.0120 (19) | −0.0039 (17) |
C13 | 0.054 (3) | 0.042 (2) | 0.063 (3) | −0.009 (2) | 0.026 (2) | −0.013 (2) |
C14 | 0.038 (2) | 0.046 (2) | 0.051 (3) | 0.0084 (19) | 0.009 (2) | 0.002 (2) |
C15 | 0.038 (2) | 0.040 (2) | 0.0306 (19) | 0.0019 (18) | 0.0019 (16) | 0.0027 (17) |
I1—C5 | 2.086 (4) | C7—C8 | 1.374 (5) |
Cl1—C12 | 1.740 (4) | C7—H7 | 0.9301 |
N1—C1 | 1.364 (5) | C9—C10 | 1.510 (6) |
N1—C8 | 1.407 (5) | C9—H9A | 0.9700 |
N1—C9 | 1.448 (5) | C9—H9B | 0.9701 |
O1—C1 | 1.208 (5) | C11—C10 | 1.388 (6) |
O2—C2 | 1.204 (5) | C11—H11 | 0.9300 |
C1—C2 | 1.550 (6) | C12—C13 | 1.372 (8) |
C2—C3 | 1.463 (5) | C12—C11 | 1.373 (7) |
C3—C8 | 1.401 (5) | C13—C14 | 1.386 (7) |
C4—C3 | 1.378 (5) | C13—H13 | 0.9299 |
C4—H4 | 0.9299 | C14—H14 | 0.9300 |
C5—C4 | 1.384 (6) | C15—C10 | 1.377 (6) |
C5—C6 | 1.384 (6) | C15—C14 | 1.379 (6) |
C6—H6 | 0.9300 | C15—H15 | 0.9299 |
C7—C6 | 1.390 (6) | ||
C1—N1—C8 | 110.7 (3) | C3—C8—N1 | 111.1 (3) |
C1—N1—C9 | 123.6 (3) | N1—C9—C10 | 114.0 (3) |
C8—N1—C9 | 125.1 (3) | N1—C9—H9A | 108.8 |
O1—C1—N1 | 126.9 (4) | C10—C9—H9A | 108.8 |
O1—C1—C2 | 126.8 (4) | N1—C9—H9B | 108.8 |
N1—C1—C2 | 106.2 (3) | C10—C9—H9B | 108.5 |
O2—C2—C3 | 130.8 (4) | H9A—C9—H9B | 107.6 |
O2—C2—C1 | 124.0 (4) | C15—C10—C11 | 118.9 (4) |
C3—C2—C1 | 105.2 (3) | C15—C10—C9 | 122.9 (4) |
C4—C3—C8 | 121.5 (4) | C11—C10—C9 | 118.2 (4) |
C4—C3—C2 | 131.7 (4) | C12—C11—C10 | 119.5 (4) |
C8—C3—C2 | 106.8 (3) | C12—C11—H11 | 120.2 |
C3—C4—C5 | 117.4 (4) | C10—C11—H11 | 120.3 |
C3—C4—H4 | 121.1 | C13—C12—C11 | 122.0 (4) |
C5—C4—H4 | 121.5 | C13—C12—Cl1 | 119.6 (4) |
C4—C5—C6 | 121.0 (4) | C11—C12—Cl1 | 118.4 (4) |
C4—C5—I1 | 120.0 (3) | C12—C13—C14 | 118.3 (4) |
C6—C5—I1 | 119.0 (3) | C12—C13—H13 | 120.7 |
C5—C6—C7 | 121.7 (4) | C14—C13—H13 | 121.0 |
C5—C6—H6 | 119.3 | C15—C14—C13 | 120.2 (5) |
C7—C6—H6 | 119.0 | C15—C14—H14 | 119.9 |
C8—C7—C6 | 117.3 (4) | C13—C14—H14 | 119.9 |
C8—C7—H7 | 121.2 | C10—C15—C14 | 120.9 (4) |
C6—C7—H7 | 121.5 | C10—C15—H15 | 119.5 |
C7—C8—C3 | 121.0 (3) | C14—C15—H15 | 119.6 |
C7—C8—N1 | 127.9 (3) |
Experimental details
Crystal data | |
Chemical formula | C15H9ClINO2 |
Mr | 397.58 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 150 |
a, b, c (Å) | 8.1241 (6), 11.7930 (8), 14.7001 (2) |
β (°) | 90.751 (3) |
V (Å3) | 1408.23 (14) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.46 |
Crystal size (mm) | 0.37 × 0.30 × 0.06 |
Data collection | |
Diffractometer | Bruker–Nonius KappaCCD area-detector diffractometer |
Absorption correction | Integration (Coppens, 1970) |
Tmin, Tmax | 0.473, 0.837 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12236, 3203, 2570 |
Rint | 0.051 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.104, 1.11 |
No. of reflections | 3203 |
No. of parameters | 181 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.43, −0.79 |
Computer programs: , COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).
Acknowledgements
The authors gratefully acknowledge the financial support of the Ministry of Education of the Czech Republic (project No. VZ0021627501) and the Higher Education Commission, Islamabad, Pakistan.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Chakraborty, D. K. & Talapatra, S. K. (1985). Acta Cryst. C41, 1365–1366. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Chakraborty, D. K., Talapatra, S. K. & Chatterjee, A. (1985). Acta Cryst. C41, 1363–1364. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Codding, P. W., Lee, T. A. & Richardson, J. F. (1984). J. Med. Chem. 27, 649–654. CrossRef CAS PubMed Web of Science Google Scholar
Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255–270. Copenhagen: Munksgaard. Google Scholar
De, A. (1992). Acta Cryst. C48, 660–662. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
De, A. & Kitagawa, Y. (1991a). Acta Cryst. C47, 2179–2181. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
De, A. & Kitagawa, Y. (1991b). Acta Cryst. C47, 2384–2386. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Hibino, S. & Choshi, T. (2002). Nat. Prod. Rep. 19, 148–180. Web of Science CrossRef PubMed CAS Google Scholar
Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Itai, A., Iitaka, Y. & Kubo, A. (1978). Acta Cryst. B34, 3775–3777. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzimology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Popp, F. D. (1977). In Anticonvulsants, edited by J. A. Vida. New York: Academic Press. Google Scholar
Popp, F. D. (1984). J. Heterocycl. Chem. 21, 1641–1643. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Somei, M. & Yamada, F. (2003). Nat. Prod. Rep. 20, 216–242. Web of Science CrossRef PubMed CAS Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Indolinones are a class of heterocyclic compounds found in many natural products and in a number of marketed drugs (Hibino & Choshi, 2002; Somei & Yamada, 2003). They have diverse chemical structures and complex physiological and pharmacological actions. The search for potential drugs and their mechanism of action has been difficult because of their complexity. These compounds contain both oxoindole and dioxolane moieties which have independently been seen in other anticonvulsants (Popp, 1977, 1984). The title compound, a chloro analogue, was found to be most potent in the MES test. Since no common target site has yet been established, X-ray analysis was undertaken to search structural information which may help in the understanding of the mechanism of action at the molecular level.
In the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (N1/C1-C3/C8), B (C3-C8) and C (C10-C15) are, of course, planar and the dihedral angles between them are A/B = 0.83 (3)°, A/C = 77.05 (3)° and B/C = 76.22 (3)°. The C2-C3 [1.463 (5) Å] bond is slightly shorter but closely similar to the values found in other indoline nuclei (Itai et al., 1978; Chakraborty & Talapatra, 1985; Chakraborty et al., 1985; De & Kitagawa, 1991a,b; De, 1992). The lone pair of electrons on N1 atom is involved in conjugation with the carbonyl group. This is also indicated by the slight lengthening of the C1=O1 [1.208 (5) Å] bond and the concomitant shortening of the N1-C1 [1.364 (5) Å] and N1-C8 [1.407 (5) Å] single bonds (Codding et al., 1984).
In the crystal structure, the π-π contact between the iodoindoline rings, Cg2—Cg2i [symmetry code: (i) 1 - x, -y, -z, where Cg2 is centroid of the ring B (C3-C8)] may stabilize the structure, with centroid-centroid distance of 3.8188 (4) Å.