Experimental
Crystal data
[Ni(C13H11ClN3O2)2] Mr = 612.11 Tetragonal, P 43 21 2 a = 13.5883 (16) Å c = 14.0392 (16) Å V = 2592.2 (5) Å3 Z = 4 Mo Kα radiation μ = 1.00 mm−1 T = 293 (2) K 0.10 × 0.04 × 0.02 mm
|
Data collection
Bruker SMART APEX CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996 ) Tmin = 0.901, Tmax = 0.978 21136 measured reflections 2294 independent reflections 1253 reflections with I > 2σ(I) Rint = 0.154
|
Refinement
R[F2 > 2σ(F2)] = 0.045 wR(F2) = 0.081 S = 0.82 2294 reflections 177 parameters H-atom parameters constrained Δρmax = 0.35 e Å−3 Δρmin = −0.24 e Å−3 Absolute structure: Flack (1983 ), 920 Friedel pairs Flack parameter: 0.02 (3)
|
Ni1—O1 | 2.054 (3) | Ni1—N2 | 2.068 (4) | Ni1—N1 | 2.102 (4) | | O1—Ni1—O1i | 87.37 (17) | O1—Ni1—N2i | 91.40 (14) | O1—Ni1—N2 | 178.49 (14) | N2i—Ni1—N2 | 89.8 (2) | O1—Ni1—N1 | 88.84 (14) | N2—Ni1—N1 | 90.27 (15) | O1—Ni1—N1i | 89.72 (13) | N2—Ni1—N1i | 91.14 (15) | N1—Ni1—N1i | 178.0 (2) | Symmetry code: (i) y, x, -z. | |
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A | C9—H9B⋯Cl1ii | 0.97 | 2.82 | 3.475 (5) | 125 | C12—H12⋯O2iii | 0.93 | 2.36 | 3.287 (7) | 174 | N3—H3A⋯O1iv | 0.86 | 2.06 | 2.899 (5) | 166 | Symmetry codes: (ii) ; (iii) ; (iv) . | |
Data collection: SMART (Bruker, 2007
); cell refinement: SAINT (Bruker, 2007
); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008
); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008
); molecular graphics: SHELXTL (Sheldrick, 2008
); software used to prepare material for publication: SHELXTL.
Supporting information
2,6-Diformyl-4-chlorophenol was prepared using the method of Taniguchi (1984). The title compound was synthesized by the following procedure: To an acetonitrile solution (10 ml) of 2,6-diformyl-4-chlorophenol (0.092 g, 0.5 mmol) and Ni(ClO4)2.6H2O (0.018 g, 0.25 mmol), a solution of NaOH (0.041 g, 1 mmol) and histamine dihydrochloride (0.092 g, 0.5 mmol) in 15 ml of absolute methanol was added dropwise. After the mixture was stirred at ambient temperature for about 1 h, a red solution appeared and then the stirring was continued for 3 h. Red needle crystals of the title compound suitable for X-ray diffraction were obtained in about a month.
H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93(CH), 0.97(CH2) Å and N—H = 0.86 Å and with Uiso(H) = 1.2Ueq(C,N).
Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Bis{4-chloro-6-formyl-2-[(
E)-2-(1
H-imidazol-4- yl-
κN
3)ethyliminomethyl-
κN]phenolato-
κO1}nickel(II)
top Crystal data top [Ni(C13H11ClN3O2)2] | Dx = 1.568 Mg m−3 |
Mr = 612.11 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, P43212 | Cell parameters from 1360 reflections |
Hall symbol: P 4nw 2abw | θ = 2.6–15.1° |
a = 13.5883 (16) Å | µ = 1.00 mm−1 |
c = 14.0392 (16) Å | T = 293 K |
V = 2592.2 (5) Å3 | Needle, red |
Z = 4 | 0.10 × 0.04 × 0.02 mm |
F(000) = 1256 | |
Data collection top Bruker SMART APEX CCD area-detector diffractometer | 2294 independent reflections |
Radiation source: fine-focus sealed tube | 1253 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.154 |
ϕ and ω scans | θmax = 25.0°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −16→16 |
Tmin = 0.901, Tmax = 0.978 | k = −16→16 |
21136 measured reflections | l = −14→16 |
Refinement top Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.045 | H-atom parameters constrained |
wR(F2) = 0.081 | w = 1/[σ2(Fo2) + (0.0298P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.82 | (Δ/σ)max = 0.003 |
2294 reflections | Δρmax = 0.35 e Å−3 |
177 parameters | Δρmin = −0.24 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 920 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.02 (3) |
Crystal data top [Ni(C13H11ClN3O2)2] | Z = 4 |
Mr = 612.11 | Mo Kα radiation |
Tetragonal, P43212 | µ = 1.00 mm−1 |
a = 13.5883 (16) Å | T = 293 K |
c = 14.0392 (16) Å | 0.10 × 0.04 × 0.02 mm |
V = 2592.2 (5) Å3 | |
Data collection top Bruker SMART APEX CCD area-detector diffractometer | 2294 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1253 reflections with I > 2σ(I) |
Tmin = 0.901, Tmax = 0.978 | Rint = 0.154 |
21136 measured reflections | |
Refinement top R[F2 > 2σ(F2)] = 0.045 | H-atom parameters constrained |
wR(F2) = 0.081 | Δρmax = 0.35 e Å−3 |
S = 0.82 | Δρmin = −0.24 e Å−3 |
2294 reflections | Absolute structure: Flack (1983), 920 Friedel pairs |
177 parameters | Absolute structure parameter: 0.02 (3) |
0 restraints | |
Special details top Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. The reason of the large Rintvalue is the poor quality and small size of the crystal sample. Although many efforts were made to select better crystal for experiment, each time we failed. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Ni1 | 0.23545 (4) | 0.23545 (4) | 0.0000 | 0.0433 (3) | |
C1 | 0.2375 (4) | 0.0575 (3) | 0.1277 (3) | 0.0428 (12) | |
C2 | 0.2104 (4) | 0.0113 (4) | 0.2139 (4) | 0.0564 (15) | |
C3 | 0.2586 (4) | −0.0728 (4) | 0.2478 (4) | 0.0656 (14) | |
H3 | 0.2381 | −0.1026 | 0.3041 | 0.079* | |
C4 | 0.3356 (4) | −0.1106 (4) | 0.1977 (5) | 0.0642 (17) | |
C5 | 0.3666 (4) | −0.0659 (4) | 0.1150 (4) | 0.0593 (15) | |
H5 | 0.4202 | −0.0920 | 0.0825 | 0.071* | |
C6 | 0.3205 (4) | 0.0165 (3) | 0.0790 (4) | 0.0455 (13) | |
C7 | 0.1300 (4) | 0.0521 (5) | 0.2722 (4) | 0.0800 (19) | |
H7 | 0.1037 | 0.1125 | 0.2545 | 0.096* | |
C8 | 0.3581 (3) | 0.0522 (4) | −0.0096 (4) | 0.0519 (13) | |
H8 | 0.4055 | 0.0129 | −0.0384 | 0.062* | |
C9 | 0.3904 (4) | 0.1472 (4) | −0.1444 (4) | 0.0700 (17) | |
H9A | 0.4022 | 0.0839 | −0.1743 | 0.084* | |
H9B | 0.4539 | 0.1760 | −0.1294 | 0.084* | |
C10 | 0.3368 (4) | 0.2136 (4) | −0.2143 (3) | 0.0636 (15) | |
H10A | 0.3701 | 0.2112 | −0.2754 | 0.076* | |
H10B | 0.2704 | 0.1892 | −0.2233 | 0.076* | |
C11 | 0.3326 (4) | 0.3166 (4) | −0.1810 (4) | 0.0500 (14) | |
C12 | 0.3728 (4) | 0.4001 (4) | −0.2169 (4) | 0.0620 (16) | |
H12 | 0.4097 | 0.4056 | −0.2724 | 0.074* | |
C13 | 0.2960 (3) | 0.4340 (4) | −0.0856 (4) | 0.0504 (14) | |
H13 | 0.2707 | 0.4695 | −0.0345 | 0.060* | |
Cl1 | 0.39581 (12) | −0.21688 (11) | 0.23773 (13) | 0.1081 (7) | |
N1 | 0.3352 (3) | 0.1319 (3) | −0.0552 (3) | 0.0487 (11) | |
N2 | 0.2844 (3) | 0.3389 (3) | −0.0971 (3) | 0.0480 (11) | |
N3 | 0.3486 (3) | 0.4739 (3) | −0.1563 (3) | 0.0584 (12) | |
H3A | 0.3641 | 0.5349 | −0.1622 | 0.070* | |
O1 | 0.1862 (2) | 0.1302 (2) | 0.0935 (2) | 0.0494 (9) | |
O2 | 0.0962 (3) | 0.0119 (3) | 0.3416 (3) | 0.1061 (15) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Ni1 | 0.0453 (3) | 0.0453 (3) | 0.0393 (5) | 0.0010 (4) | 0.0040 (3) | −0.0040 (3) |
C1 | 0.038 (3) | 0.050 (3) | 0.040 (3) | −0.012 (3) | −0.004 (3) | 0.003 (3) |
C2 | 0.057 (4) | 0.056 (4) | 0.056 (4) | −0.014 (3) | −0.008 (3) | 0.009 (3) |
C3 | 0.067 (4) | 0.064 (4) | 0.066 (4) | −0.024 (3) | −0.020 (5) | 0.016 (4) |
C4 | 0.059 (4) | 0.055 (4) | 0.079 (5) | 0.001 (3) | −0.026 (4) | 0.017 (4) |
C5 | 0.041 (3) | 0.060 (4) | 0.077 (5) | −0.003 (3) | −0.011 (3) | −0.002 (3) |
C6 | 0.043 (3) | 0.043 (3) | 0.050 (4) | −0.003 (3) | −0.006 (3) | 0.001 (3) |
C7 | 0.080 (5) | 0.115 (5) | 0.045 (5) | −0.021 (4) | 0.001 (4) | 0.030 (4) |
C8 | 0.048 (3) | 0.044 (3) | 0.064 (4) | 0.007 (3) | 0.004 (3) | −0.013 (3) |
C9 | 0.094 (4) | 0.056 (4) | 0.060 (4) | 0.015 (3) | 0.028 (4) | 0.004 (3) |
C10 | 0.082 (4) | 0.069 (4) | 0.040 (4) | 0.011 (3) | 0.020 (3) | −0.006 (3) |
C11 | 0.060 (4) | 0.053 (4) | 0.038 (4) | 0.003 (3) | 0.002 (3) | 0.002 (3) |
C12 | 0.070 (4) | 0.068 (4) | 0.048 (4) | 0.015 (3) | 0.018 (3) | 0.000 (3) |
C13 | 0.052 (4) | 0.054 (4) | 0.045 (4) | 0.004 (3) | 0.009 (3) | 0.006 (3) |
Cl1 | 0.1068 (12) | 0.0770 (11) | 0.1405 (16) | 0.0095 (10) | −0.0362 (12) | 0.0368 (12) |
N1 | 0.052 (3) | 0.054 (3) | 0.041 (3) | −0.001 (2) | 0.009 (2) | −0.003 (2) |
N2 | 0.063 (3) | 0.042 (3) | 0.039 (3) | −0.003 (2) | 0.003 (2) | 0.000 (2) |
N3 | 0.063 (3) | 0.053 (3) | 0.059 (3) | −0.009 (2) | 0.006 (3) | 0.018 (3) |
O1 | 0.043 (2) | 0.059 (2) | 0.046 (2) | 0.0090 (17) | 0.0044 (17) | 0.0083 (18) |
O2 | 0.116 (4) | 0.135 (4) | 0.068 (4) | −0.013 (3) | 0.017 (3) | 0.026 (3) |
Geometric parameters (Å, º) top Ni1—O1 | 2.054 (3) | C7—H7 | 0.9300 |
Ni1—O1i | 2.054 (3) | C8—N1 | 1.296 (5) |
Ni1—N2i | 2.068 (4) | C8—H8 | 0.9300 |
Ni1—N2 | 2.068 (4) | C9—N1 | 1.474 (5) |
Ni1—N1 | 2.102 (4) | C9—C10 | 1.519 (6) |
Ni1—N1i | 2.102 (4) | C9—H9A | 0.9700 |
C1—O1 | 1.301 (5) | C9—H9B | 0.9700 |
C1—C2 | 1.412 (6) | C10—C11 | 1.477 (6) |
C1—C6 | 1.431 (6) | C10—H10A | 0.9700 |
C2—C3 | 1.401 (6) | C10—H10B | 0.9700 |
C2—C7 | 1.474 (7) | C11—C12 | 1.355 (6) |
C3—C4 | 1.362 (7) | C11—N2 | 1.382 (5) |
C3—H3 | 0.9300 | C12—N3 | 1.356 (5) |
C4—C5 | 1.376 (7) | C12—H12 | 0.9300 |
C4—Cl1 | 1.752 (5) | C13—N2 | 1.312 (5) |
C5—C6 | 1.380 (6) | C13—N3 | 1.337 (5) |
C5—H5 | 0.9300 | C13—H13 | 0.9300 |
C6—C8 | 1.429 (6) | N3—H3A | 0.8600 |
C7—O2 | 1.208 (5) | | |
| | | |
O1—Ni1—O1i | 87.37 (17) | C2—C7—H7 | 117.9 |
O1—Ni1—N2i | 91.40 (14) | N1—C8—C6 | 128.9 (5) |
O1i—Ni1—N2i | 178.49 (14) | N1—C8—H8 | 115.5 |
O1—Ni1—N2 | 178.49 (14) | C6—C8—H8 | 115.5 |
O1i—Ni1—N2 | 91.40 (14) | N1—C9—C10 | 112.8 (4) |
N2i—Ni1—N2 | 89.8 (2) | N1—C9—H9A | 109.0 |
O1—Ni1—N1 | 88.84 (14) | C10—C9—H9A | 109.0 |
O1i—Ni1—N1 | 89.72 (13) | N1—C9—H9B | 109.0 |
N2i—Ni1—N1 | 91.14 (15) | C10—C9—H9B | 109.0 |
N2—Ni1—N1 | 90.27 (15) | H9A—C9—H9B | 107.8 |
O1—Ni1—N1i | 89.72 (13) | C11—C10—C9 | 112.2 (4) |
O1i—Ni1—N1i | 88.84 (14) | C11—C10—H10A | 109.2 |
N2i—Ni1—N1i | 90.27 (15) | C9—C10—H10A | 109.2 |
N2—Ni1—N1i | 91.14 (15) | C11—C10—H10B | 109.2 |
N1—Ni1—N1i | 178.0 (2) | C9—C10—H10B | 109.2 |
O1—C1—C2 | 120.9 (5) | H10A—C10—H10B | 107.9 |
O1—C1—C6 | 122.8 (4) | C12—C11—N2 | 108.9 (5) |
C2—C1—C6 | 116.2 (5) | C12—C11—C10 | 131.3 (5) |
C3—C2—C1 | 122.2 (5) | N2—C11—C10 | 119.7 (5) |
C3—C2—C7 | 117.6 (5) | C11—C12—N3 | 106.8 (5) |
C1—C2—C7 | 120.2 (5) | C11—C12—H12 | 126.6 |
C4—C3—C2 | 119.4 (5) | N3—C12—H12 | 126.6 |
C4—C3—H3 | 120.3 | N2—C13—N3 | 111.9 (5) |
C2—C3—H3 | 120.3 | N2—C13—H13 | 124.1 |
C3—C4—C5 | 120.3 (5) | N3—C13—H13 | 124.1 |
C3—C4—Cl1 | 120.3 (5) | C8—N1—C9 | 114.6 (4) |
C5—C4—Cl1 | 119.4 (5) | C8—N1—Ni1 | 122.1 (3) |
C4—C5—C6 | 121.9 (5) | C9—N1—Ni1 | 123.2 (3) |
C4—C5—H5 | 119.0 | C13—N2—C11 | 105.3 (4) |
C6—C5—H5 | 119.0 | C13—N2—Ni1 | 128.9 (4) |
C5—C6—C8 | 115.6 (5) | C11—N2—Ni1 | 124.4 (3) |
C5—C6—C1 | 119.9 (5) | C13—N3—C12 | 107.2 (4) |
C8—C6—C1 | 124.4 (4) | C13—N3—H3A | 126.4 |
O2—C7—C2 | 124.1 (6) | C12—N3—H3A | 126.4 |
O2—C7—H7 | 117.9 | C1—O1—Ni1 | 126.1 (3) |
| | | |
O1—C1—C2—C3 | 173.9 (4) | C10—C9—N1—Ni1 | −28.0 (6) |
C6—C1—C2—C3 | −3.1 (6) | O1—Ni1—N1—C8 | −17.2 (4) |
O1—C1—C2—C7 | −7.0 (7) | O1i—Ni1—N1—C8 | −104.6 (4) |
C6—C1—C2—C7 | 176.0 (4) | N2i—Ni1—N1—C8 | 74.1 (4) |
C1—C2—C3—C4 | 1.5 (7) | N2—Ni1—N1—C8 | 164.0 (4) |
C7—C2—C3—C4 | −177.6 (5) | O1—Ni1—N1—C9 | 167.8 (4) |
C2—C3—C4—C5 | 0.8 (8) | O1i—Ni1—N1—C9 | 80.4 (4) |
C2—C3—C4—Cl1 | −179.0 (3) | N2i—Ni1—N1—C9 | −100.8 (4) |
C3—C4—C5—C6 | −1.3 (8) | N2—Ni1—N1—C9 | −11.0 (4) |
Cl1—C4—C5—C6 | 178.5 (4) | N3—C13—N2—C11 | −0.2 (5) |
C4—C5—C6—C8 | −177.3 (5) | N3—C13—N2—Ni1 | 166.5 (3) |
C4—C5—C6—C1 | −0.4 (7) | C12—C11—N2—C13 | 0.6 (6) |
O1—C1—C6—C5 | −174.4 (4) | C10—C11—N2—C13 | 178.1 (5) |
C2—C1—C6—C5 | 2.5 (6) | C12—C11—N2—Ni1 | −166.8 (3) |
O1—C1—C6—C8 | 2.2 (7) | C10—C11—N2—Ni1 | 10.7 (6) |
C2—C1—C6—C8 | 179.2 (4) | N2i—Ni1—N2—C13 | −52.1 (4) |
C3—C2—C7—O2 | −8.3 (8) | N1—Ni1—N2—C13 | −143.3 (4) |
C1—C2—C7—O2 | 172.5 (5) | N2i—Ni1—N2—C11 | 112.2 (4) |
C5—C6—C8—N1 | −173.5 (5) | N1—Ni1—N2—C11 | 21.0 (4) |
C1—C6—C8—N1 | 9.8 (8) | N1i—Ni1—N2—C11 | −157.6 (4) |
N1—C9—C10—C11 | 69.3 (6) | N2—C13—N3—C12 | −0.3 (6) |
C9—C10—C11—C12 | 115.1 (6) | C11—C12—N3—C13 | 0.6 (6) |
C9—C10—C11—N2 | −61.8 (6) | C2—C1—O1—Ni1 | 157.3 (3) |
N2—C11—C12—N3 | −0.7 (6) | C6—C1—O1—Ni1 | −25.9 (6) |
C10—C11—C12—N3 | −177.9 (5) | O1i—Ni1—O1—C1 | 118.8 (4) |
C6—C8—N1—C9 | 178.7 (5) | N1—Ni1—O1—C1 | 29.0 (4) |
C6—C8—N1—Ni1 | 3.3 (7) | N1i—Ni1—O1—C1 | −152.4 (3) |
C10—C9—N1—C8 | 156.6 (4) | | |
Symmetry code: (i) y, x, −z. |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9B···Cl1ii | 0.97 | 2.82 | 3.475 (5) | 125 |
C12—H12···O2iii | 0.93 | 2.36 | 3.287 (7) | 174 |
N3—H3A···O1iv | 0.86 | 2.06 | 2.899 (5) | 166 |
Symmetry codes: (ii) −x+1, −y, z−1/2; (iii) y+1/2, −x+1/2, z−3/4; (iv) −y+1/2, x+1/2, z−1/4. |
Experimental details
Crystal data |
Chemical formula | [Ni(C13H11ClN3O2)2] |
Mr | 612.11 |
Crystal system, space group | Tetragonal, P43212 |
Temperature (K) | 293 |
a, c (Å) | 13.5883 (16), 14.0392 (16) |
V (Å3) | 2592.2 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.00 |
Crystal size (mm) | 0.10 × 0.04 × 0.02 |
|
Data collection |
Diffractometer | Bruker SMART APEX CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.901, 0.978 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 21136, 2294, 1253 |
Rint | 0.154 |
(sin θ/λ)max (Å−1) | 0.594 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.045, 0.081, 0.82 |
No. of reflections | 2294 |
No. of parameters | 177 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.35, −0.24 |
Absolute structure | Flack (1983), 920 Friedel pairs |
Absolute structure parameter | 0.02 (3) |
Selected geometric parameters (Å, º) topNi1—O1 | 2.054 (3) | Ni1—N1 | 2.102 (4) |
Ni1—N2 | 2.068 (4) | | |
| | | |
O1—Ni1—O1i | 87.37 (17) | N2—Ni1—N1 | 90.27 (15) |
O1—Ni1—N2i | 91.40 (14) | O1—Ni1—N1i | 89.72 (13) |
O1—Ni1—N2 | 178.49 (14) | N2—Ni1—N1i | 91.14 (15) |
N2i—Ni1—N2 | 89.8 (2) | N1—Ni1—N1i | 178.0 (2) |
O1—Ni1—N1 | 88.84 (14) | | |
Symmetry code: (i) y, x, −z. |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9B···Cl1ii | 0.97 | 2.82 | 3.475 (5) | 125 |
C12—H12···O2iii | 0.93 | 2.36 | 3.287 (7) | 174 |
N3—H3A···O1iv | 0.86 | 2.06 | 2.899 (5) | 166 |
Symmetry codes: (ii) −x+1, −y, z−1/2; (iii) y+1/2, −x+1/2, z−3/4; (iv) −y+1/2, x+1/2, z−1/4. |
Acknowledgements
The authors gratefully acknowledge financial support from the Midlife and Youth Excellent Innovation Group of Hubei Province, China (grant No. T200802), the Key Foundation of the Education Department of Hubei Province, China (grant No. D20081503), and the Graduate Innovation Foundation of Wuhan Institute of Technology (RGCT200804).
References
Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Casella, L. & Gullotti, M. (1986). Inorg. Chem. 25, 1293–1303. CrossRef CAS Web of Science Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Hodnett, E. M. & Dunn, W. J. (1970). J. Med. Chem. 13, 768–770. CrossRef CAS PubMed Web of Science Google Scholar
Kim, H.-J., Kim, W., Lough, A. J., Kim, B. M. & Chin, J. (2005). J. Am. Chem. Soc. 127, 16776–16777. Web of Science CSD CrossRef PubMed CAS Google Scholar
May, J. P., Ting, R., Lermer, L., Thomas, J. M., Roupioz, Y. & Perrin, D. M. (2004). J. Am. Chem. Soc. 126, 4145–4156. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Taniguchi, S. (1984). Bull. Chem. Soc. Jpn, 57, 2683–2689. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
 | CRYSTALLOGRAPHIC COMMUNICATIONS |
ISSN: 2056-9890
Open

access
Transition metal–Schiff base complexes have been an interesting field for a long time due to their striking biological activites (Casella & Gullotti, 1986; Hodnett & Dunn, 1970; Kim et al., 2005; May et al., 2004). In this paper, we report the crystal structure of a new nickel(II) complex with a Schiff base ligand, 2-[(E)-(2-(1H-imidazol-4-yl)ethylimino)methyl]-4-chloro -6-formylphenolate.
In the title compound, the NiII atom is located on a twofold rotation axis and six-coordinated by four N atoms and two phenolate O atoms from two Schiff base ligands (Fig. 1). The coordination geometry of the Ni atom can be described as distorted octahedral. The two phenolate O atoms and the two imidazole N atoms are located in the equatorial plane, with Ni—O distance of 2.054 (3)Å and Ni—N distance of 2.068 (4)Å (Table 1), and with the mean plane deviation of 0.0147 (2) Å. The other two N atoms from the imino groups of the Schiff base ligands occupy the axial positions, with somewhat long Ni—N distance of 2.102 (4) Å. The complex molecules are connected by C—H···Cl, C—H···O and N—H···O hydrogen bonds (Table 2).