metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 11| November 2008| Pages m1367-m1368

Bis{4-chloro-6-formyl-2-[(E)-2-(1H-imidazol-4-yl-κN3)ethyl­imino­methyl-κN]phenolato-κO1}nickel(II)

aKey Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430073, People's Republic of China, and bDepartment of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
*Correspondence e-mail: zhiqpan@163.com

(Received 6 September 2008; accepted 30 September 2008; online 4 October 2008)

In the title compound, [Ni(C13H11ClN3O2)2], the NiII atom is located on a twofold rotation axis and is six-coordinated by four N atoms and two phenolate O atoms from the two equal Schiff base ligands in a distorted octa­hedral coordination geometry. The complex mol­ecules are connected by C—H⋯Cl, C—H⋯O and N—H⋯O hydrogen bonds.

Related literature

For related literature on transition metal–Schiff base complexes, see: Casella & Gullotti (1986[Casella, L. & Gullotti, M. (1986). Inorg. Chem. 25, 1293-1303.]); Hodnett & Dunn (1970[Hodnett, E. M. & Dunn, W. J. (1970). J. Med. Chem. 13, 768-770.]); Kim et al. (2005[Kim, H.-J., Kim, W., Lough, A. J., Kim, B. M. & Chin, J. (2005). J. Am. Chem. Soc. 127, 16776-16777.]); May et al. (2004[May, J. P., Ting, R., Lermer, L., Thomas, J. M., Roupioz, Y. & Perrin, D. M. (2004). J. Am. Chem. Soc. 126, 4145-4156.]). For literature related to the synthesis, see: Taniguchi (1984[Taniguchi, S. (1984). Bull. Chem. Soc. Jpn, 57, 2683-2689.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C13H11ClN3O2)2]

  • Mr = 612.11

  • Tetragonal, P 43 21 2

  • a = 13.5883 (16) Å

  • c = 14.0392 (16) Å

  • V = 2592.2 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.00 mm−1

  • T = 293 (2) K

  • 0.10 × 0.04 × 0.02 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.901, Tmax = 0.978

  • 21136 measured reflections

  • 2294 independent reflections

  • 1253 reflections with I > 2σ(I)

  • Rint = 0.154

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.081

  • S = 0.82

  • 2294 reflections

  • 177 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 920 Friedel pairs

  • Flack parameter: 0.02 (3)

Table 1
Selected geometric parameters (Å, °)

Ni1—O1 2.054 (3)
Ni1—N2 2.068 (4)
Ni1—N1 2.102 (4)
O1—Ni1—O1i 87.37 (17)
O1—Ni1—N2i 91.40 (14)
O1—Ni1—N2 178.49 (14)
N2i—Ni1—N2 89.8 (2)
O1—Ni1—N1 88.84 (14)
N2—Ni1—N1 90.27 (15)
O1—Ni1—N1i 89.72 (13)
N2—Ni1—N1i 91.14 (15)
N1—Ni1—N1i 178.0 (2)
Symmetry code: (i) y, x, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9B⋯Cl1ii 0.97 2.82 3.475 (5) 125
C12—H12⋯O2iii 0.93 2.36 3.287 (7) 174
N3—H3A⋯O1iv 0.86 2.06 2.899 (5) 166
Symmetry codes: (ii) [-x+1, -y, z-{\script{1\over 2}}]; (iii) [y+{\script{1\over 2}}, -x+{\script{1\over 2}}, z-{\script{3\over 4}}]; (iv) [-y+{\script{1\over 2}}, x+{\script{1\over 2}}, z-{\script{1\over 4}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Transition metal–Schiff base complexes have been an interesting field for a long time due to their striking biological activites (Casella & Gullotti, 1986; Hodnett & Dunn, 1970; Kim et al., 2005; May et al., 2004). In this paper, we report the crystal structure of a new nickel(II) complex with a Schiff base ligand, 2-[(E)-(2-(1H-imidazol-4-yl)ethylimino)methyl]-4-chloro -6-formylphenolate.

In the title compound, the NiII atom is located on a twofold rotation axis and six-coordinated by four N atoms and two phenolate O atoms from two Schiff base ligands (Fig. 1). The coordination geometry of the Ni atom can be described as distorted octahedral. The two phenolate O atoms and the two imidazole N atoms are located in the equatorial plane, with Ni—O distance of 2.054 (3)Å and Ni—N distance of 2.068 (4)Å (Table 1), and with the mean plane deviation of 0.0147 (2) Å. The other two N atoms from the imino groups of the Schiff base ligands occupy the axial positions, with somewhat long Ni—N distance of 2.102 (4) Å. The complex molecules are connected by C—H···Cl, C—H···O and N—H···O hydrogen bonds (Table 2).

Related literature top

For related literature on transition metal–Schiff base complexes, see: Casella & Gullotti (1986); Hodnett & Dunn (1970); Kim et al. (2005); May et al. (2004). For literature related to the synthesis, see: Taniguchi (1984).

Experimental top

2,6-Diformyl-4-chlorophenol was prepared using the method of Taniguchi (1984). The title compound was synthesized by the following procedure: To an acetonitrile solution (10 ml) of 2,6-diformyl-4-chlorophenol (0.092 g, 0.5 mmol) and Ni(ClO4)2.6H2O (0.018 g, 0.25 mmol), a solution of NaOH (0.041 g, 1 mmol) and histamine dihydrochloride (0.092 g, 0.5 mmol) in 15 ml of absolute methanol was added dropwise. After the mixture was stirred at ambient temperature for about 1 h, a red solution appeared and then the stirring was continued for 3 h. Red needle crystals of the title compound suitable for X-ray diffraction were obtained in about a month.

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93(CH), 0.97(CH2) Å and N—H = 0.86 Å and with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) x, y, -z.]
Bis{4-chloro-6-formyl-2-[(E)-2-(1H-imidazol-4- yl-κN3)ethyliminomethyl-κN]phenolato-κO1}nickel(II) top
Crystal data top
[Ni(C13H11ClN3O2)2]Dx = 1.568 Mg m3
Mr = 612.11Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P43212Cell parameters from 1360 reflections
Hall symbol: P 4nw 2abwθ = 2.6–15.1°
a = 13.5883 (16) ŵ = 1.00 mm1
c = 14.0392 (16) ÅT = 293 K
V = 2592.2 (5) Å3Needle, red
Z = 40.10 × 0.04 × 0.02 mm
F(000) = 1256
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2294 independent reflections
Radiation source: fine-focus sealed tube1253 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.154
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1616
Tmin = 0.901, Tmax = 0.978k = 1616
21136 measured reflectionsl = 1416
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0298P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.82(Δ/σ)max = 0.003
2294 reflectionsΔρmax = 0.35 e Å3
177 parametersΔρmin = 0.24 e Å3
0 restraintsAbsolute structure: Flack (1983), 920 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (3)
Crystal data top
[Ni(C13H11ClN3O2)2]Z = 4
Mr = 612.11Mo Kα radiation
Tetragonal, P43212µ = 1.00 mm1
a = 13.5883 (16) ÅT = 293 K
c = 14.0392 (16) Å0.10 × 0.04 × 0.02 mm
V = 2592.2 (5) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2294 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1253 reflections with I > 2σ(I)
Tmin = 0.901, Tmax = 0.978Rint = 0.154
21136 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.081Δρmax = 0.35 e Å3
S = 0.82Δρmin = 0.24 e Å3
2294 reflectionsAbsolute structure: Flack (1983), 920 Friedel pairs
177 parametersAbsolute structure parameter: 0.02 (3)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. The reason of the large Rintvalue is the poor quality and small size of the crystal sample. Although many efforts were made to select better crystal for experiment, each time we failed.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.23545 (4)0.23545 (4)0.00000.0433 (3)
C10.2375 (4)0.0575 (3)0.1277 (3)0.0428 (12)
C20.2104 (4)0.0113 (4)0.2139 (4)0.0564 (15)
C30.2586 (4)0.0728 (4)0.2478 (4)0.0656 (14)
H30.23810.10260.30410.079*
C40.3356 (4)0.1106 (4)0.1977 (5)0.0642 (17)
C50.3666 (4)0.0659 (4)0.1150 (4)0.0593 (15)
H50.42020.09200.08250.071*
C60.3205 (4)0.0165 (3)0.0790 (4)0.0455 (13)
C70.1300 (4)0.0521 (5)0.2722 (4)0.0800 (19)
H70.10370.11250.25450.096*
C80.3581 (3)0.0522 (4)0.0096 (4)0.0519 (13)
H80.40550.01290.03840.062*
C90.3904 (4)0.1472 (4)0.1444 (4)0.0700 (17)
H9A0.40220.08390.17430.084*
H9B0.45390.17600.12940.084*
C100.3368 (4)0.2136 (4)0.2143 (3)0.0636 (15)
H10A0.37010.21120.27540.076*
H10B0.27040.18920.22330.076*
C110.3326 (4)0.3166 (4)0.1810 (4)0.0500 (14)
C120.3728 (4)0.4001 (4)0.2169 (4)0.0620 (16)
H120.40970.40560.27240.074*
C130.2960 (3)0.4340 (4)0.0856 (4)0.0504 (14)
H130.27070.46950.03450.060*
Cl10.39581 (12)0.21688 (11)0.23773 (13)0.1081 (7)
N10.3352 (3)0.1319 (3)0.0552 (3)0.0487 (11)
N20.2844 (3)0.3389 (3)0.0971 (3)0.0480 (11)
N30.3486 (3)0.4739 (3)0.1563 (3)0.0584 (12)
H3A0.36410.53490.16220.070*
O10.1862 (2)0.1302 (2)0.0935 (2)0.0494 (9)
O20.0962 (3)0.0119 (3)0.3416 (3)0.1061 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0453 (3)0.0453 (3)0.0393 (5)0.0010 (4)0.0040 (3)0.0040 (3)
C10.038 (3)0.050 (3)0.040 (3)0.012 (3)0.004 (3)0.003 (3)
C20.057 (4)0.056 (4)0.056 (4)0.014 (3)0.008 (3)0.009 (3)
C30.067 (4)0.064 (4)0.066 (4)0.024 (3)0.020 (5)0.016 (4)
C40.059 (4)0.055 (4)0.079 (5)0.001 (3)0.026 (4)0.017 (4)
C50.041 (3)0.060 (4)0.077 (5)0.003 (3)0.011 (3)0.002 (3)
C60.043 (3)0.043 (3)0.050 (4)0.003 (3)0.006 (3)0.001 (3)
C70.080 (5)0.115 (5)0.045 (5)0.021 (4)0.001 (4)0.030 (4)
C80.048 (3)0.044 (3)0.064 (4)0.007 (3)0.004 (3)0.013 (3)
C90.094 (4)0.056 (4)0.060 (4)0.015 (3)0.028 (4)0.004 (3)
C100.082 (4)0.069 (4)0.040 (4)0.011 (3)0.020 (3)0.006 (3)
C110.060 (4)0.053 (4)0.038 (4)0.003 (3)0.002 (3)0.002 (3)
C120.070 (4)0.068 (4)0.048 (4)0.015 (3)0.018 (3)0.000 (3)
C130.052 (4)0.054 (4)0.045 (4)0.004 (3)0.009 (3)0.006 (3)
Cl10.1068 (12)0.0770 (11)0.1405 (16)0.0095 (10)0.0362 (12)0.0368 (12)
N10.052 (3)0.054 (3)0.041 (3)0.001 (2)0.009 (2)0.003 (2)
N20.063 (3)0.042 (3)0.039 (3)0.003 (2)0.003 (2)0.000 (2)
N30.063 (3)0.053 (3)0.059 (3)0.009 (2)0.006 (3)0.018 (3)
O10.043 (2)0.059 (2)0.046 (2)0.0090 (17)0.0044 (17)0.0083 (18)
O20.116 (4)0.135 (4)0.068 (4)0.013 (3)0.017 (3)0.026 (3)
Geometric parameters (Å, º) top
Ni1—O12.054 (3)C7—H70.9300
Ni1—O1i2.054 (3)C8—N11.296 (5)
Ni1—N2i2.068 (4)C8—H80.9300
Ni1—N22.068 (4)C9—N11.474 (5)
Ni1—N12.102 (4)C9—C101.519 (6)
Ni1—N1i2.102 (4)C9—H9A0.9700
C1—O11.301 (5)C9—H9B0.9700
C1—C21.412 (6)C10—C111.477 (6)
C1—C61.431 (6)C10—H10A0.9700
C2—C31.401 (6)C10—H10B0.9700
C2—C71.474 (7)C11—C121.355 (6)
C3—C41.362 (7)C11—N21.382 (5)
C3—H30.9300C12—N31.356 (5)
C4—C51.376 (7)C12—H120.9300
C4—Cl11.752 (5)C13—N21.312 (5)
C5—C61.380 (6)C13—N31.337 (5)
C5—H50.9300C13—H130.9300
C6—C81.429 (6)N3—H3A0.8600
C7—O21.208 (5)
O1—Ni1—O1i87.37 (17)C2—C7—H7117.9
O1—Ni1—N2i91.40 (14)N1—C8—C6128.9 (5)
O1i—Ni1—N2i178.49 (14)N1—C8—H8115.5
O1—Ni1—N2178.49 (14)C6—C8—H8115.5
O1i—Ni1—N291.40 (14)N1—C9—C10112.8 (4)
N2i—Ni1—N289.8 (2)N1—C9—H9A109.0
O1—Ni1—N188.84 (14)C10—C9—H9A109.0
O1i—Ni1—N189.72 (13)N1—C9—H9B109.0
N2i—Ni1—N191.14 (15)C10—C9—H9B109.0
N2—Ni1—N190.27 (15)H9A—C9—H9B107.8
O1—Ni1—N1i89.72 (13)C11—C10—C9112.2 (4)
O1i—Ni1—N1i88.84 (14)C11—C10—H10A109.2
N2i—Ni1—N1i90.27 (15)C9—C10—H10A109.2
N2—Ni1—N1i91.14 (15)C11—C10—H10B109.2
N1—Ni1—N1i178.0 (2)C9—C10—H10B109.2
O1—C1—C2120.9 (5)H10A—C10—H10B107.9
O1—C1—C6122.8 (4)C12—C11—N2108.9 (5)
C2—C1—C6116.2 (5)C12—C11—C10131.3 (5)
C3—C2—C1122.2 (5)N2—C11—C10119.7 (5)
C3—C2—C7117.6 (5)C11—C12—N3106.8 (5)
C1—C2—C7120.2 (5)C11—C12—H12126.6
C4—C3—C2119.4 (5)N3—C12—H12126.6
C4—C3—H3120.3N2—C13—N3111.9 (5)
C2—C3—H3120.3N2—C13—H13124.1
C3—C4—C5120.3 (5)N3—C13—H13124.1
C3—C4—Cl1120.3 (5)C8—N1—C9114.6 (4)
C5—C4—Cl1119.4 (5)C8—N1—Ni1122.1 (3)
C4—C5—C6121.9 (5)C9—N1—Ni1123.2 (3)
C4—C5—H5119.0C13—N2—C11105.3 (4)
C6—C5—H5119.0C13—N2—Ni1128.9 (4)
C5—C6—C8115.6 (5)C11—N2—Ni1124.4 (3)
C5—C6—C1119.9 (5)C13—N3—C12107.2 (4)
C8—C6—C1124.4 (4)C13—N3—H3A126.4
O2—C7—C2124.1 (6)C12—N3—H3A126.4
O2—C7—H7117.9C1—O1—Ni1126.1 (3)
O1—C1—C2—C3173.9 (4)C10—C9—N1—Ni128.0 (6)
C6—C1—C2—C33.1 (6)O1—Ni1—N1—C817.2 (4)
O1—C1—C2—C77.0 (7)O1i—Ni1—N1—C8104.6 (4)
C6—C1—C2—C7176.0 (4)N2i—Ni1—N1—C874.1 (4)
C1—C2—C3—C41.5 (7)N2—Ni1—N1—C8164.0 (4)
C7—C2—C3—C4177.6 (5)O1—Ni1—N1—C9167.8 (4)
C2—C3—C4—C50.8 (8)O1i—Ni1—N1—C980.4 (4)
C2—C3—C4—Cl1179.0 (3)N2i—Ni1—N1—C9100.8 (4)
C3—C4—C5—C61.3 (8)N2—Ni1—N1—C911.0 (4)
Cl1—C4—C5—C6178.5 (4)N3—C13—N2—C110.2 (5)
C4—C5—C6—C8177.3 (5)N3—C13—N2—Ni1166.5 (3)
C4—C5—C6—C10.4 (7)C12—C11—N2—C130.6 (6)
O1—C1—C6—C5174.4 (4)C10—C11—N2—C13178.1 (5)
C2—C1—C6—C52.5 (6)C12—C11—N2—Ni1166.8 (3)
O1—C1—C6—C82.2 (7)C10—C11—N2—Ni110.7 (6)
C2—C1—C6—C8179.2 (4)N2i—Ni1—N2—C1352.1 (4)
C3—C2—C7—O28.3 (8)N1—Ni1—N2—C13143.3 (4)
C1—C2—C7—O2172.5 (5)N2i—Ni1—N2—C11112.2 (4)
C5—C6—C8—N1173.5 (5)N1—Ni1—N2—C1121.0 (4)
C1—C6—C8—N19.8 (8)N1i—Ni1—N2—C11157.6 (4)
N1—C9—C10—C1169.3 (6)N2—C13—N3—C120.3 (6)
C9—C10—C11—C12115.1 (6)C11—C12—N3—C130.6 (6)
C9—C10—C11—N261.8 (6)C2—C1—O1—Ni1157.3 (3)
N2—C11—C12—N30.7 (6)C6—C1—O1—Ni125.9 (6)
C10—C11—C12—N3177.9 (5)O1i—Ni1—O1—C1118.8 (4)
C6—C8—N1—C9178.7 (5)N1—Ni1—O1—C129.0 (4)
C6—C8—N1—Ni13.3 (7)N1i—Ni1—O1—C1152.4 (3)
C10—C9—N1—C8156.6 (4)
Symmetry code: (i) y, x, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···Cl1ii0.972.823.475 (5)125
C12—H12···O2iii0.932.363.287 (7)174
N3—H3A···O1iv0.862.062.899 (5)166
Symmetry codes: (ii) x+1, y, z1/2; (iii) y+1/2, x+1/2, z3/4; (iv) y+1/2, x+1/2, z1/4.

Experimental details

Crystal data
Chemical formula[Ni(C13H11ClN3O2)2]
Mr612.11
Crystal system, space groupTetragonal, P43212
Temperature (K)293
a, c (Å)13.5883 (16), 14.0392 (16)
V3)2592.2 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.00
Crystal size (mm)0.10 × 0.04 × 0.02
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.901, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
21136, 2294, 1253
Rint0.154
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.081, 0.82
No. of reflections2294
No. of parameters177
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.24
Absolute structureFlack (1983), 920 Friedel pairs
Absolute structure parameter0.02 (3)

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Ni1—O12.054 (3)Ni1—N12.102 (4)
Ni1—N22.068 (4)
O1—Ni1—O1i87.37 (17)N2—Ni1—N190.27 (15)
O1—Ni1—N2i91.40 (14)O1—Ni1—N1i89.72 (13)
O1—Ni1—N2178.49 (14)N2—Ni1—N1i91.14 (15)
N2i—Ni1—N289.8 (2)N1—Ni1—N1i178.0 (2)
O1—Ni1—N188.84 (14)
Symmetry code: (i) y, x, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···Cl1ii0.972.823.475 (5)125
C12—H12···O2iii0.932.363.287 (7)174
N3—H3A···O1iv0.862.062.899 (5)166
Symmetry codes: (ii) x+1, y, z1/2; (iii) y+1/2, x+1/2, z3/4; (iv) y+1/2, x+1/2, z1/4.
 

Acknowledgements

The authors gratefully acknowledge financial support from the Midlife and Youth Excellent Innovation Group of Hubei Province, China (grant No. T200802), the Key Foundation of the Education Department of Hubei Province, China (grant No. D20081503), and the Graduate Innovation Foundation of Wuhan Institute of Technology (RGCT200804).

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCasella, L. & Gullotti, M. (1986). Inorg. Chem. 25, 1293–1303.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHodnett, E. M. & Dunn, W. J. (1970). J. Med. Chem. 13, 768–770.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKim, H.-J., Kim, W., Lough, A. J., Kim, B. M. & Chin, J. (2005). J. Am. Chem. Soc. 127, 16776–16777.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMay, J. P., Ting, R., Lermer, L., Thomas, J. M., Roupioz, Y. & Perrin, D. M. (2004). J. Am. Chem. Soc. 126, 4145–4156.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaniguchi, S. (1984). Bull. Chem. Soc. Jpn, 57, 2683–2689.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 11| November 2008| Pages m1367-m1368
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds