metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 11| November 2008| Pages m1415-m1416

catena-Poly[[[aqua­(pyridine-2,6-di­carboxyl­ato N-oxide-κ2O1,O2)cobalt(II)]-μ-1,3-di-4-pyridylpropane-κ2N:N′] dihydrate]

aDepartment of Chemistry, Lishui University, Lishui 323000, Zhejiang, People's Republic of China
*Correspondence e-mail: lswlj2008@yahoo.cn

(Received 4 October 2008; accepted 10 October 2008; online 18 October 2008)

In the title compound, {[Co(C7H3NO5)(C13H14N2)(H2O)]·2H2O}n, the CoII atom is coordinated by two O atoms from a pyridine-2,6-dicarboxyl­ate N-oxide ligand, two N atoms from two 1,3-di-4-pyridylpropane ligands and one water mol­ecule, and displays a distorted square-pyramidal coordination geometry. The 1,3-di-4-pyridylpropane ligands link the CoII atoms into an infinite zigzag chain parallel to [010]. The chains are further linked through O—H⋯O and C—H⋯O hydrogen bonds, forming a three-dimensional supra­molecular network.

Related literature

For related literature on metal complexes with pyridine-2,6-dicarboxyl­ate N-oxide, see: Nathan et al. (1985[Nathan, L. C., Doyle, C. A., Mooring, A. M., Zapien, D. C., Larsen, S. K. & Pierpont, C. G. (1985). Inorg. Chem. 24, 2763-2766.]); Wen et al. (2005[Wen, L.-L., Dang, D.-B., Duan, C.-Y., Li, Y.-Z., Tian, Z.-F. & Meng, Q.-J. (2005). Inorg. Chem. 44, 7161-7170.], 2006[Wen, L.-L., Tian, Z.-F., Lin, J.-G., Zhu, H.-Z. & Meng, Q.-J. (2006). Z. Anorg. Allg. Chem. 632, 689-694.]); Wu et al. (2007[Wu, W.-P., Wang, Y.-Y., Wu, Y.-P., Liu, J.-Q., Zeng, X.-R., Shi, Q.-Z. & Peng, S.-M. (2007). CrystEngComm, 9, 753-757.]). For related literature on metal complexes with 1,3-di-4-pyridylpropane, see: Konar et al. (2003[Konar, S., Zangrando, E., Drew, M. G. B., Mallah, T., Ribas, J. & Chaudhuri, N. R. (2003). Inorg. Chem. 42, 5966-5973.]); Lai & Tiekink (2004[Lai, C. S. & Tiekink, E. R. T. (2004). CrystEngComm, 6, 593-605.]); Li et al. (2004[Li, X., Cao, R., Sun, D., Bi, W., Wang, Y., Li, X. & Hong, M. (2004). Cryst. Growth Des. 4, 775-780.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C7H3NO5)(C13H14N2)(H2O)]·2H2O

  • Mr = 492.34

  • Monoclinic, P 21 /c

  • a = 10.2712 (12) Å

  • b = 11.5251 (13) Å

  • c = 18.309 (2) Å

  • β = 90.521 (2)°

  • V = 2167.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.84 mm−1

  • T = 296 (2) K

  • 0.35 × 0.29 × 0.25 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.751, Tmax = 0.817

  • 10818 measured reflections

  • 3897 independent reflections

  • 2170 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.175

  • S = 1.00

  • 3897 reflections

  • 290 parameters

  • 9 restraints

  • H-atom parameters constrained

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Selected bond lengths (Å)

Co1—O1 1.927 (4)
Co1—O5 1.932 (3)
Co1—N2 1.994 (4)
Co1—N3i 2.000 (4)
Co1—O1W 2.184 (4)
Symmetry code: (i) x, y-1, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O3ii 0.82 1.83 2.635 (5) 165
O1W—H2W⋯O2W 0.82 1.99 2.732 (6) 150
O2W—H3W⋯O3Wiii 0.84 2.55 3.018 (9) 117
O2W—H4W⋯O3 0.84 1.98 2.778 (6) 157
O3W—H5W⋯O2 0.84 2.01 2.828 (7) 166
O3W—H6W⋯O4iv 0.82 2.19 2.935 (7) 150
C3—H3⋯O4v 0.93 2.46 3.364 (8) 165
C9—H9⋯O5vi 0.93 2.46 3.366 (7) 164
C15—H15A⋯O2vii 0.97 2.57 3.492 (7) 159
C18—H18⋯O3Wvi 0.93 2.55 3.369 (7) 149
Symmetry codes: (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) x, y+1, z; (v) -x+1, -y, -z+1; (vi) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the structural investigation of metal complexes with pyridine-2,6-dicarboxylate-N-oxide (pdco), it has been found that pdco functions as a multidentate ligand with versatile coordination modes (Nathan et al., 1985; Wen et al., 2005, 2006; Wu et al., 2007). As is well known, 1,3-di-4-pyridylpropane may act in bidentate bridging or monodentate terminal modes, leading to the formation of one-, two- or three-dimensional network (Konar et al., 2003; Lai & Tiekink, 2004; Li et al., 2004). On the basis of these observations, we utilize pdco, 1,3-di-4-pyridylpropane and CoII ion as building blocks. A new one-dimensional coordination framework has been obtained from the hydrothermal treatment in an alkaline aqueous solution.

As illustrated in Fig. 1, the CoII atom exists in a distorted square-pyramidal environment, defined by two O atoms from one pdco ligand, two N atoms from two 1,3-di-4-pyridylpropane ligands and one water molecule (Table 1). The O1, O5, N2, N3i atoms (i = x, -1 + y, z) in the basal plane are alomst coplanar, and a water molecule lies at the apical position. The 1,3-di-4-pyridylpropane ligand in a bidentate bridging mode links the CoII atoms into an infinite zigzag chain, with the shortest Co···Co separation of 11.525 (3)Å and a Co—C13—Coii angle (ii = x, 1 + y, z) of 100.06 (4)°. The chains are further self-assembled into a three-dimensional supramolecular network through O—H···O and C—H···O hydrogen bonds (Table 2; Fig. 2).

Related literature top

For related literature on metal complexes with pyridine-2,6-dicarboxylate N-oxide, see: Nathan et al. (1985); Wen et al. (2005, 2006); Wu et al. (2007). For related literature on metal complexes with 1,3-di-4-pyridylpropane, see: Konar et al. (2003); Lai & Tiekink (2004); Li et al. (2004).

Experimental top

A mixture of cobalt chloride (0.238 g, 1 mmol), pyridine-2,6-dicarboxylic acid N-oxide (0.181 g, 1 mmol), 1,3-di-4-pyridylpropane (0.198 g, 1 mmol), NaOH (0.06 g, 1.5 mmol) and H2O (12 ml) was placed in a 23 ml Teflon-lined reactor, which was heated to 433 K for 3 d and then cooled to room temperature at a rate of 10 K h-1. The crystals obtained were washed with water and dryed in air.

Refinement top

H atoms bound to C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93(CH) and 0.97(CH2) Å and with Uiso(H) = 1.2Ueq(C). H atoms of water molecules were located on a difference Fourier map and fixed in the refinements, with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry code: (i) x, -1 + y, z.]
[Figure 2] Fig. 2. A packing view of the title compound. Hydrogen bonds are shown as dashed lines.
catena-Poly[[[aqua(pyridine-2,6-dicarboxylato N-oxide- κ2O1,O2)cobalt(II)]-µ-1,3-di-4-pyridylpropane- κ2N:N'] dihydrate] top
Crystal data top
[Co(C7H3NO5)(C13H14N2)(H2O)]·2H2OF(000) = 1020
Mr = 492.34Dx = 1.509 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5837 reflections
a = 10.2712 (12) Åθ = 2.8–27.9°
b = 11.5251 (13) ŵ = 0.84 mm1
c = 18.309 (2) ÅT = 296 K
β = 90.521 (2)°Block, colorless
V = 2167.3 (4) Å30.35 × 0.29 × 0.25 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3897 independent reflections
Radiation source: fine-focus sealed tube2170 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
ϕ and ω scansθmax = 25.2°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.751, Tmax = 0.817k = 1313
10818 measured reflectionsl = 2021
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.175 w = 1/[σ2(Fo2) + (0.0828P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
3897 reflectionsΔρmax = 0.66 e Å3
290 parametersΔρmin = 0.40 e Å3
9 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0030 (8)
Crystal data top
[Co(C7H3NO5)(C13H14N2)(H2O)]·2H2OV = 2167.3 (4) Å3
Mr = 492.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.2712 (12) ŵ = 0.84 mm1
b = 11.5251 (13) ÅT = 296 K
c = 18.309 (2) Å0.35 × 0.29 × 0.25 mm
β = 90.521 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3897 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2170 reflections with I > 2σ(I)
Tmin = 0.751, Tmax = 0.817Rint = 0.064
10818 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0599 restraints
wR(F2) = 0.175H-atom parameters constrained
S = 1.00Δρmax = 0.66 e Å3
3897 reflectionsΔρmin = 0.40 e Å3
290 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O40.3287 (4)0.0221 (4)0.4108 (2)0.0776 (13)
N30.2102 (4)1.1756 (4)0.1902 (2)0.0519 (11)
C190.2965 (6)1.0894 (5)0.1927 (3)0.0622 (16)
H190.37291.10090.21940.075*
C200.2794 (6)0.9841 (5)0.1583 (3)0.0609 (15)
H200.34320.92720.16210.073*
C180.1003 (5)1.1549 (5)0.1514 (3)0.0568 (15)
H180.03761.21290.14860.068*
C170.0769 (6)1.0515 (5)0.1159 (3)0.0597 (15)
H170.00071.04110.09020.072*
C160.1677 (5)0.9631 (5)0.1180 (3)0.0565 (14)
C150.1470 (6)0.8479 (5)0.0794 (3)0.0647 (16)
H15A0.18420.85320.03100.078*
H15B0.19480.78850.10590.078*
Co10.24328 (6)0.32149 (5)0.24652 (3)0.0423 (3)
O50.2788 (4)0.2215 (3)0.32898 (19)0.0565 (10)
N20.1568 (4)0.4237 (4)0.1728 (2)0.0522 (11)
O20.2658 (5)0.5550 (4)0.4120 (2)0.0892 (15)
O10.2384 (4)0.4531 (3)0.3113 (2)0.0777 (13)
O30.4937 (4)0.0354 (3)0.3417 (2)0.0761 (12)
C60.3381 (5)0.3644 (5)0.4174 (3)0.0513 (14)
C120.1618 (6)0.5381 (5)0.0652 (3)0.0593 (15)
H120.20430.55750.02230.071*
N10.3424 (4)0.2545 (4)0.3900 (2)0.0494 (11)
C30.4691 (6)0.1910 (6)0.4901 (3)0.0702 (18)
H30.51560.13260.51370.084*
C70.2755 (6)0.4653 (5)0.3766 (3)0.0607 (15)
C20.4082 (5)0.1683 (5)0.4248 (3)0.0496 (13)
C130.0066 (6)0.6897 (4)0.0347 (3)0.0660 (17)
H13A0.09810.67500.02520.079*
H13B0.03810.69030.01170.079*
C100.0487 (5)0.5928 (5)0.0824 (3)0.0540 (14)
C10.4076 (6)0.0499 (5)0.3885 (3)0.0559 (14)
C50.3971 (6)0.3843 (5)0.4831 (3)0.0664 (16)
H50.39310.45850.50290.080*
C110.2145 (5)0.4541 (5)0.1107 (3)0.0547 (14)
H110.29180.41800.09760.066*
C80.0451 (6)0.4774 (5)0.1890 (3)0.0675 (17)
H80.00370.45770.23220.081*
C40.4619 (6)0.2997 (6)0.5211 (3)0.0730 (18)
H40.49990.31500.56630.088*
C90.0109 (6)0.5589 (5)0.1456 (3)0.0653 (16)
H90.08990.59180.15870.078*
C140.0088 (6)0.8095 (4)0.0717 (3)0.0641 (17)
H14A0.03870.86670.04320.077*
H14B0.02990.80640.11980.077*
O1W0.4465 (4)0.3311 (4)0.2130 (3)0.0969 (16)
H1W0.47670.39440.20110.145*
H2W0.48910.30340.24710.145*
O2W0.6417 (5)0.2145 (5)0.2840 (3)0.1170 (19)
H3W0.66690.17240.24940.175*
H4W0.58870.17530.30840.175*
O3W0.2003 (5)0.7719 (5)0.3494 (4)0.141 (2)
H5W0.22810.70610.36180.212*
H6W0.21900.82200.37950.212*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.089 (3)0.053 (3)0.091 (3)0.012 (2)0.005 (2)0.013 (2)
N30.058 (3)0.044 (3)0.053 (3)0.005 (2)0.012 (2)0.000 (2)
C190.074 (4)0.043 (4)0.069 (4)0.008 (3)0.015 (3)0.002 (3)
C200.066 (4)0.045 (4)0.071 (4)0.008 (3)0.010 (3)0.005 (3)
C180.061 (4)0.038 (3)0.071 (4)0.006 (3)0.012 (3)0.002 (3)
C170.070 (4)0.038 (3)0.071 (4)0.008 (3)0.014 (3)0.004 (3)
C160.067 (4)0.043 (3)0.059 (3)0.003 (3)0.002 (3)0.003 (3)
C150.080 (4)0.045 (4)0.069 (4)0.005 (3)0.003 (3)0.004 (3)
Co10.0543 (5)0.0245 (4)0.0478 (4)0.0021 (3)0.0085 (3)0.0006 (3)
O50.075 (3)0.040 (2)0.054 (2)0.0000 (19)0.0150 (19)0.0013 (18)
N20.059 (3)0.042 (3)0.056 (3)0.001 (2)0.002 (2)0.003 (2)
O20.133 (4)0.046 (3)0.088 (3)0.019 (3)0.033 (3)0.024 (2)
O10.121 (4)0.039 (2)0.072 (3)0.010 (2)0.026 (3)0.005 (2)
O30.074 (3)0.048 (3)0.107 (3)0.005 (2)0.022 (3)0.008 (2)
C60.055 (3)0.040 (3)0.059 (3)0.007 (3)0.009 (3)0.008 (3)
C120.080 (4)0.048 (4)0.050 (3)0.005 (3)0.001 (3)0.002 (3)
N10.055 (3)0.040 (3)0.053 (3)0.001 (2)0.007 (2)0.002 (2)
C30.076 (4)0.066 (5)0.068 (4)0.010 (3)0.018 (3)0.010 (3)
C70.071 (4)0.045 (4)0.066 (4)0.009 (3)0.011 (3)0.013 (3)
C20.050 (3)0.044 (3)0.055 (3)0.004 (3)0.001 (3)0.004 (3)
C130.087 (4)0.042 (3)0.069 (4)0.003 (3)0.027 (3)0.003 (3)
C100.059 (3)0.037 (3)0.066 (4)0.001 (3)0.013 (3)0.003 (3)
C10.064 (4)0.041 (4)0.062 (4)0.007 (3)0.013 (3)0.008 (3)
C50.086 (4)0.047 (4)0.066 (4)0.006 (3)0.014 (3)0.008 (3)
C110.058 (3)0.048 (4)0.058 (3)0.008 (3)0.000 (3)0.003 (3)
C80.068 (4)0.065 (4)0.070 (4)0.015 (3)0.008 (3)0.009 (3)
C40.088 (5)0.065 (4)0.066 (4)0.001 (4)0.029 (3)0.004 (3)
C90.068 (4)0.056 (4)0.072 (4)0.015 (3)0.006 (3)0.012 (3)
C140.078 (4)0.033 (3)0.081 (4)0.004 (3)0.027 (3)0.005 (3)
O1W0.074 (3)0.070 (3)0.147 (4)0.008 (2)0.002 (3)0.047 (3)
O2W0.116 (4)0.098 (4)0.136 (5)0.009 (3)0.017 (3)0.034 (4)
O3W0.115 (4)0.075 (4)0.233 (7)0.015 (3)0.046 (4)0.024 (4)
Geometric parameters (Å, º) top
O4—C11.232 (7)C12—C101.361 (7)
N3—C191.332 (6)C12—C111.384 (7)
N3—C181.348 (6)C12—H120.9300
N3—Co1i2.000 (4)N1—C21.358 (6)
C19—C201.378 (7)C3—C21.370 (7)
C19—H190.9300C3—C41.377 (8)
C20—C161.379 (7)C3—H30.9300
C20—H200.9300C2—C11.518 (7)
C18—C171.378 (7)C13—C101.524 (7)
C18—H180.9300C13—C141.545 (7)
C17—C161.381 (7)C13—H13A0.9700
C17—H170.9300C13—H13B0.9700
C16—C151.519 (7)C10—C91.371 (7)
C15—C141.492 (7)C5—C41.368 (8)
C15—H15A0.9700C5—H50.9300
C15—H15B0.9700C11—H110.9300
Co1—O11.927 (4)C8—C91.354 (7)
Co1—O51.932 (3)C8—H80.9300
Co1—N21.994 (4)C4—H40.9300
Co1—N3ii2.000 (4)C9—H90.9300
Co1—O1W2.184 (4)C14—H14A0.9700
O5—N11.344 (5)C14—H14B0.9700
N2—C111.334 (6)O1W—H1W0.8200
N2—C81.339 (6)O1W—H2W0.8200
O2—C71.224 (6)O2W—H3W0.8400
O1—C71.259 (6)O2W—H4W0.8400
O3—C11.248 (7)O3W—H6W0.8200
C6—C51.361 (7)O3W—H5W0.8400
C6—N11.363 (6)O3W—H6W0.8200
C6—C71.522 (7)
C19—N3—C18116.1 (5)C2—C3—C4120.5 (6)
C19—N3—Co1i119.9 (4)C2—C3—H3119.7
C18—N3—Co1i123.9 (4)C4—C3—H3119.7
N3—C19—C20123.9 (5)O2—C7—O1124.8 (6)
N3—C19—H19118.0O2—C7—C6115.0 (5)
C20—C19—H19118.0O1—C7—C6120.2 (5)
C16—C20—C19120.1 (5)N1—C2—C3119.4 (5)
C16—C20—H20119.9N1—C2—C1116.9 (4)
C19—C20—H20119.9C3—C2—C1123.7 (5)
N3—C18—C17122.9 (5)C10—C13—C14111.6 (4)
N3—C18—H18118.5C10—C13—H13A109.3
C17—C18—H18118.5C14—C13—H13A109.3
C18—C17—C16120.6 (5)C10—C13—H13B109.3
C18—C17—H17119.7C14—C13—H13B109.3
C16—C17—H17119.7H13A—C13—H13B108.0
C20—C16—C17116.3 (5)C12—C10—C9116.8 (5)
C20—C16—C15121.0 (5)C12—C10—C13121.4 (5)
C17—C16—C15122.7 (5)C9—C10—C13121.8 (5)
C14—C15—C16115.6 (5)O4—C1—O3127.6 (6)
C14—C15—H15A108O4—C1—C2117.4 (6)
C16—C15—H15A108O3—C1—C2114.9 (5)
C14—C15—H15B108C6—C5—C4122.7 (6)
C16—C15—H15B108C6—C5—H5118.7
H15A—C15—H15B107C4—C5—H5118.7
O1—Co1—O589.67 (16)N2—C11—C12121.5 (5)
O1—Co1—N286.43 (16)N2—C11—H11119.3
O5—Co1—N2164.02 (17)C12—C11—H11119.3
O1—Co1—N3ii166.97 (19)N2—C8—C9123.4 (6)
O5—Co1—N3ii86.08 (16)N2—C8—H8118.3
N2—Co1—N3ii94.30 (16)C9—C8—H8118.3
O1—Co1—O1W99.39 (19)C5—C4—C3117.8 (5)
O5—Co1—O1W94.32 (16)C5—C4—H4121.1
N2—Co1—O1W101.61 (17)C3—C4—H4121.1
N3ii—Co1—O1W93.21 (18)C8—C9—C10120.2 (6)
N1—O5—Co1124.5 (3)C8—C9—H9119.9
C11—N2—C8117.0 (5)C10—C9—H9119.9
C11—N2—Co1122.3 (4)C15—C14—C13113.6 (5)
C8—N2—Co1120.1 (4)C15—C14—H14A108.9
C7—O1—Co1131.5 (4)C13—C14—H14A108.9
C5—C6—N1117.8 (5)C15—C14—H14B108.9
C5—C6—C7119.1 (5)C13—C14—H14B108.9
N1—C6—C7123.0 (4)H14A—C14—H14B107.7
C10—C12—C11121.0 (5)Co1—O1W—H1W118.8
C10—C12—H12119.5Co1—O1W—H2W105.7
C11—C12—H12119.5H1W—O1W—H2W110
O5—N1—C2114.7 (4)H3W—O2W—H4W107
O5—N1—C6123.5 (4)H5W—O3W—H6W112
C2—N1—C6121.7 (4)
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O3iii0.821.832.635 (5)165
O1W—H2W···O2W0.821.992.732 (6)150
O2W—H3W···O3Wiv0.842.553.018 (9)117
O2W—H4W···O30.841.982.778 (6)157
O3W—H5W···O20.842.012.828 (7)166
O3W—H6W···O4i0.822.192.935 (7)150
C3—H3···O4v0.932.463.364 (8)165
C9—H9···O5vi0.932.463.366 (7)164
C15—H15A···O2vii0.972.573.492 (7)159
C18—H18···O3Wvi0.932.553.369 (7)149
Symmetry codes: (i) x, y+1, z; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y1/2, z+1/2; (v) x+1, y, z+1; (vi) x, y+1/2, z+1/2; (vii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Co(C7H3NO5)(C13H14N2)(H2O)]·2H2O
Mr492.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)10.2712 (12), 11.5251 (13), 18.309 (2)
β (°) 90.521 (2)
V3)2167.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.84
Crystal size (mm)0.35 × 0.29 × 0.25
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.751, 0.817
No. of measured, independent and
observed [I > 2σ(I)] reflections
10818, 3897, 2170
Rint0.064
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.175, 1.00
No. of reflections3897
No. of parameters290
No. of restraints9
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.66, 0.40

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Co1—O11.927 (4)Co1—N3i2.000 (4)
Co1—O51.932 (3)Co1—O1W2.184 (4)
Co1—N21.994 (4)
Symmetry code: (i) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O3ii0.821.832.635 (5)165
O1W—H2W···O2W0.821.992.732 (6)150
O2W—H3W···O3Wiii0.842.553.018 (9)117
O2W—H4W···O30.841.982.778 (6)157
O3W—H5W···O20.842.012.828 (7)166
O3W—H6W···O4iv0.822.192.935 (7)150
C3—H3···O4v0.932.463.364 (8)165
C9—H9···O5vi0.932.463.366 (7)164
C15—H15A···O2vii0.972.573.492 (7)159
C18—H18···O3Wvi0.932.553.369 (7)149
Symmetry codes: (ii) x+1, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x, y+1, z; (v) x+1, y, z+1; (vi) x, y+1/2, z+1/2; (vii) x, y+3/2, z1/2.
 

Acknowledgements

The author is grateful to Lishui University for financial support.

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKonar, S., Zangrando, E., Drew, M. G. B., Mallah, T., Ribas, J. & Chaudhuri, N. R. (2003). Inorg. Chem. 42, 5966–5973.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLai, C. S. & Tiekink, E. R. T. (2004). CrystEngComm, 6, 593–605.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, X., Cao, R., Sun, D., Bi, W., Wang, Y., Li, X. & Hong, M. (2004). Cryst. Growth Des. 4, 775–780.  CSD CrossRef CAS Google Scholar
First citationNathan, L. C., Doyle, C. A., Mooring, A. M., Zapien, D. C., Larsen, S. K. & Pierpont, C. G. (1985). Inorg. Chem. 24, 2763–2766.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWen, L.-L., Dang, D.-B., Duan, C.-Y., Li, Y.-Z., Tian, Z.-F. & Meng, Q.-J. (2005). Inorg. Chem. 44, 7161–7170.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWen, L.-L., Tian, Z.-F., Lin, J.-G., Zhu, H.-Z. & Meng, Q.-J. (2006). Z. Anorg. Allg. Chem. 632, 689–694.  Web of Science CSD CrossRef CAS Google Scholar
First citationWu, W.-P., Wang, Y.-Y., Wu, Y.-P., Liu, J.-Q., Zeng, X.-R., Shi, Q.-Z. & Peng, S.-M. (2007). CrystEngComm, 9, 753–757.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 11| November 2008| Pages m1415-m1416
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds