organic compounds
4-Benzylpyridinium hydrogen selenate
aLaboratoire de l'Etat Solide, Faculté des Sciences de Sfax, BP 1171, 3000 Sfax, Tunisia, and bLaboratoire de Matériaux et Cristallochimie, Département de Chimie, Faculté des Sciences, 2092 Campus Universitaire, Tunis, Tunisia
*Correspondence e-mail: maalej_wassim@yahoo.fr
The structure of the title salt, C12H12N+·HSeO4−, consists of infinite parallel two-dimensional planes built of 4-benzylpyridinium and hydrogen selenate ions that are mutually connected by strong O—H⋯O and N—H⋯O hydrogen bonds. There are no contacts other than normal van der Waals interactions between the layers.
Related literature
For general background, see Fleck (2006); Baran et al. (2000). For related compounds, see: Ben Hamada & Jouini (2006); Kaabi et al. (2004); Ben Djemaa et al. (2007); Gowda et al. (2007).
Experimental
Crystal data
|
Refinement
|
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536808033801/im2065sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808033801/im2065Isup2.hkl
Crystals of the title compound C6H5CH2C5H4NH+ HSeO4- were prepared by slowly adding, at room temperature, an equimolecular proportion of H2SeO4 (1.9 cm3) to a solution of 4-benzyl pyridine (5 cm3). A crystalline precipitate was formed. After dissolving the precipitate by adding H2O, the solution is allowed to slowly evaporate at room temperature for several days until the formation of pink prismatic crystals with dimensions suitable for a crystallographic study occurs.
Hydrogen atoms at C6, C9 and O3 were positioned geometrically, with C—H = 0.93 Å and O—H = 0.82 Å, and were refined with Uiso(H) = 1.41Ueq of the corresponding parent atom. The other H atoms bound to C (cyclic and CH2) groups, and N atoms were located from the difference Fourier map, and refined with distance restraints of [C—H = 0.90 (4)–1.00 (5) Å and Uiso(H) = 0.06 (1)–0.10 (2) Å2, (cyclic groups)], [C—H = 0.88 (6)–1.00 (4) Å and Uiso(H) = 0.06 (1)–0.12 (2) Å2, (CH2 group)], and N—H = 0.95 (4) Å with Uiso(H) = 1.14Ueq(N) for NH bond.
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell
CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. ORTEP drawing of [C6H5CH2C5H4NH]+ [HSeO4]-. | |
Fig. 2. Projection along the b axis of the crystal structure of [C6H5CH2C5H4NH]+ [HSeO4]-. |
C12H12N+·HSeO4− | F(000) = 1264 |
Mr = 314.19 | Dx = 1.592 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 25 reflections |
a = 27.449 (5) Å | θ = 14–16° |
b = 10.821 (6) Å | µ = 2.87 mm−1 |
c = 8.830 (1) Å | T = 289 K |
V = 2623 (2) Å3 | Prism, pink |
Z = 8 | 0.11 × 0.09 × 0.04 mm |
Enraf–Nonius CAD-4 diffractometer | 1486 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.045 |
Graphite monochromator | θmax = 27.0°, θmin = 2.4° |
Non–profiled ω/2θ scans | h = 0→35 |
Absorption correction: ψ scan (North et al., 1968) | k = 0→13 |
Tmin = 0.743, Tmax = 0.894 | l = −2→11 |
3179 measured reflections | 2 standard reflections every 120 min |
2817 independent reflections | intensity decay: 11% |
Refinement on F2 | H atoms treated by a mixture of independent and constrained refinement |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0299P)2] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.037 | (Δ/σ)max = 0.001 |
wR(F2) = 0.087 | Δρmax = 0.28 e Å−3 |
S = 0.98 | Δρmin = −0.31 e Å−3 |
2817 reflections | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
207 parameters | Extinction coefficient: 0.0065 (3) |
0 restraints |
C12H12N+·HSeO4− | V = 2623 (2) Å3 |
Mr = 314.19 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 27.449 (5) Å | µ = 2.87 mm−1 |
b = 10.821 (6) Å | T = 289 K |
c = 8.830 (1) Å | 0.11 × 0.09 × 0.04 mm |
Enraf–Nonius CAD-4 diffractometer | 1486 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.045 |
Tmin = 0.743, Tmax = 0.894 | 2 standard reflections every 120 min |
3179 measured reflections | intensity decay: 11% |
2817 independent reflections |
R[F2 > 2σ(F2)] = 0.037 | 0 restraints |
wR(F2) = 0.087 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.98 | Δρmax = 0.28 e Å−3 |
2817 reflections | Δρmin = −0.31 e Å−3 |
207 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Se | 0.568598 (14) | 0.68653 (3) | 0.34450 (4) | 0.04502 (15) | |
O1 | 0.53870 (10) | 0.8139 (2) | 0.3574 (4) | 0.0652 (8) | |
O2 | 0.53625 (10) | 0.5754 (2) | 0.2732 (4) | 0.0685 (9) | |
O3 | 0.61665 (10) | 0.7080 (3) | 0.2250 (4) | 0.0779 (10) | |
HO3 | 0.6065 | 0.7281 | 0.1411 | 0.11 (2)* | |
O4 | 0.59571 (11) | 0.6441 (3) | 0.4996 (3) | 0.0644 (8) | |
C1 | 0.22067 (18) | 0.5917 (5) | 0.6315 (6) | 0.0675 (14) | |
C2 | 0.21967 (19) | 0.6932 (5) | 0.5412 (7) | 0.0746 (15) | |
C3 | 0.25920 (19) | 0.7237 (5) | 0.4540 (6) | 0.0624 (13) | |
C4 | 0.30049 (14) | 0.6492 (4) | 0.4530 (4) | 0.0460 (10) | |
C5 | 0.30108 (17) | 0.5471 (4) | 0.5468 (6) | 0.0564 (12) | |
C6 | 0.26129 (17) | 0.5184 (4) | 0.6359 (6) | 0.0681 (14) | |
HC6 | 0.2621 | 0.4494 | 0.6988 | 0.061 (13)* | |
C7 | 0.3437 (2) | 0.6798 (6) | 0.3529 (6) | 0.0683 (14) | |
C8 | 0.38461 (14) | 0.7417 (4) | 0.4400 (4) | 0.0462 (10) | |
C9 | 0.38853 (17) | 0.8693 (4) | 0.4482 (5) | 0.0538 (11) | |
HC9 | 0.3662 | 0.9193 | 0.3977 | 0.046 (11)* | |
C10 | 0.42554 (19) | 0.9215 (5) | 0.5313 (6) | 0.0630 (13) | |
C11 | 0.45454 (18) | 0.7264 (5) | 0.5991 (6) | 0.0631 (13) | |
C12 | 0.41870 (17) | 0.6719 (5) | 0.5168 (6) | 0.0580 (12) | |
N | 0.45683 (14) | 0.8484 (4) | 0.6053 (5) | 0.0621 (11) | |
HC1 | 0.1926 (15) | 0.573 (4) | 0.690 (5) | 0.077 (15)* | |
HC2 | 0.1914 (18) | 0.742 (5) | 0.540 (6) | 0.102 (18)* | |
HC3 | 0.2621 (16) | 0.795 (4) | 0.388 (5) | 0.082 (16)* | |
HC5 | 0.3276 (13) | 0.498 (4) | 0.547 (4) | 0.058 (13)* | |
H1C7 | 0.334 (2) | 0.729 (6) | 0.280 (7) | 0.12 (2)* | |
H2C7 | 0.3573 (13) | 0.602 (4) | 0.309 (4) | 0.062 (14)* | |
HC10 | 0.4295 (16) | 1.006 (4) | 0.543 (5) | 0.090 (17)* | |
HC11 | 0.4786 (18) | 0.680 (4) | 0.661 (6) | 0.104 (19)* | |
HC12 | 0.4167 (16) | 0.587 (5) | 0.503 (5) | 0.087 (16)* | |
HN | 0.4820 (15) | 0.885 (4) | 0.664 (5) | 0.071 (14)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Se | 0.0483 (2) | 0.0418 (2) | 0.0450 (2) | 0.00559 (19) | 0.0005 (2) | −0.0042 (2) |
O1 | 0.0665 (18) | 0.0466 (16) | 0.082 (2) | 0.0135 (15) | −0.0004 (18) | −0.0093 (17) |
O2 | 0.0725 (19) | 0.0479 (17) | 0.085 (2) | 0.0001 (16) | −0.0203 (18) | −0.0108 (17) |
O3 | 0.0505 (17) | 0.120 (3) | 0.063 (2) | 0.0120 (19) | 0.0084 (16) | 0.027 (2) |
O4 | 0.093 (2) | 0.0568 (17) | 0.0429 (16) | 0.0089 (17) | −0.0115 (16) | −0.0017 (15) |
C1 | 0.057 (3) | 0.070 (3) | 0.075 (4) | −0.022 (3) | 0.012 (3) | −0.016 (3) |
C2 | 0.054 (3) | 0.075 (4) | 0.095 (4) | 0.005 (3) | −0.007 (3) | −0.004 (4) |
C3 | 0.075 (3) | 0.055 (3) | 0.057 (3) | −0.002 (3) | −0.013 (3) | 0.008 (2) |
C4 | 0.053 (3) | 0.048 (2) | 0.037 (2) | −0.019 (2) | 0.001 (2) | −0.0074 (19) |
C5 | 0.055 (3) | 0.046 (3) | 0.068 (3) | −0.001 (2) | 0.007 (3) | 0.001 (2) |
C6 | 0.084 (4) | 0.045 (3) | 0.076 (4) | −0.013 (2) | 0.016 (3) | 0.013 (3) |
C7 | 0.077 (3) | 0.081 (4) | 0.047 (3) | −0.028 (3) | 0.010 (3) | −0.014 (3) |
C8 | 0.053 (2) | 0.050 (2) | 0.036 (2) | −0.012 (2) | 0.011 (2) | 0.002 (2) |
C9 | 0.060 (3) | 0.051 (2) | 0.050 (3) | −0.001 (2) | 0.002 (2) | 0.014 (2) |
C10 | 0.072 (3) | 0.051 (3) | 0.066 (3) | −0.016 (3) | 0.014 (3) | −0.006 (3) |
C11 | 0.055 (3) | 0.064 (3) | 0.071 (3) | −0.006 (3) | 0.008 (3) | 0.020 (3) |
C12 | 0.062 (3) | 0.047 (3) | 0.066 (3) | −0.009 (2) | 0.011 (2) | 0.005 (3) |
N | 0.045 (2) | 0.082 (3) | 0.059 (3) | −0.025 (2) | 0.0041 (19) | 0.000 (2) |
Se—O1 | 1.608 (3) | C6—HC6 | 0.93 |
Se—O2 | 1.622 (3) | C7—C8 | 1.518 (6) |
Se—O4 | 1.625 (3) | C7—H1C7 | 0.88 (6) |
Se—O3 | 1.705 (3) | C7—H2C7 | 1.00 (4) |
O3—HO3 | 0.82 | C8—C12 | 1.381 (6) |
C1—C2 | 1.358 (7) | C8—C9 | 1.387 (6) |
C1—C6 | 1.369 (7) | C9—C10 | 1.375 (6) |
C1—HC1 | 0.95 (4) | C9—HC9 | 0.93 |
C2—C3 | 1.371 (7) | C10—N | 1.338 (6) |
C2—HC2 | 0.94 (5) | C10—HC10 | 0.93 (5) |
C3—C4 | 1.391 (6) | C11—N | 1.323 (6) |
C3—HC3 | 0.97 (4) | C11—C12 | 1.358 (7) |
C4—C5 | 1.381 (6) | C11—HC11 | 1.00 (5) |
C4—C7 | 1.515 (6) | C12—HC12 | 0.93 (5) |
C5—C6 | 1.382 (6) | N—HN | 0.95 (4) |
C5—HC5 | 0.90 (4) | ||
O1—Se—O2 | 112.56 (15) | C4—C7—C8 | 112.4 (4) |
O1—Se—O4 | 114.59 (15) | C4—C7—H1C7 | 109 (4) |
O2—Se—O4 | 111.61 (15) | C8—C7—H1C7 | 109 (4) |
O1—Se—O3 | 108.78 (16) | C4—C7—H2C7 | 109 (2) |
O2—Se—O3 | 106.51 (16) | C8—C7—H2C7 | 107 (2) |
O4—Se—O3 | 101.89 (16) | H1C7—C7—H2C7 | 110 (5) |
Se—O3—HO3 | 109.5 | C12—C8—C9 | 117.8 (4) |
C2—C1—C6 | 120.1 (5) | C12—C8—C7 | 120.6 (4) |
C2—C1—HC1 | 118 (3) | C9—C8—C7 | 121.5 (5) |
C6—C1—HC1 | 122 (3) | C10—C9—C8 | 119.6 (4) |
C1—C2—C3 | 120.6 (5) | C10—C9—HC9 | 120.2 |
C1—C2—HC2 | 119 (3) | C8—C9—HC9 | 120.2 |
C3—C2—HC2 | 121 (3) | N—C10—C9 | 119.5 (4) |
C2—C3—C4 | 120.6 (5) | N—C10—HC10 | 117 (3) |
C2—C3—HC3 | 126 (3) | C9—C10—HC10 | 123 (3) |
C4—C3—HC3 | 113 (3) | N—C11—C12 | 119.3 (5) |
C5—C4—C3 | 118.0 (4) | N—C11—HC11 | 117 (3) |
C5—C4—C7 | 121.0 (4) | C12—C11—HC11 | 124 (3) |
C3—C4—C7 | 121.0 (5) | C11—C12—C8 | 121.1 (5) |
C4—C5—C6 | 120.8 (4) | C11—C12—HC12 | 123 (3) |
C4—C5—HC5 | 119 (3) | C8—C12—HC12 | 116 (3) |
C6—C5—HC5 | 121 (3) | C11—N—C10 | 122.6 (5) |
C1—C6—C5 | 119.8 (5) | C11—N—HN | 118 (3) |
C1—C6—HC6 | 120.1 | C10—N—HN | 119 (3) |
C5—C6—HC6 | 120.1 | ||
C6—C1—C2—C3 | −0.2 (8) | C4—C7—C8—C12 | 85.0 (6) |
C1—C2—C3—C4 | 2.0 (8) | C4—C7—C8—C9 | −93.6 (6) |
C2—C3—C4—C5 | −2.6 (7) | C12—C8—C9—C10 | −0.1 (6) |
C2—C3—C4—C7 | 177.9 (4) | C7—C8—C9—C10 | 178.5 (4) |
C3—C4—C5—C6 | 1.6 (7) | C8—C9—C10—N | −1.1 (6) |
C7—C4—C5—C6 | −178.9 (4) | N—C11—C12—C8 | −0.2 (7) |
C2—C1—C6—C5 | −0.8 (8) | C9—C8—C12—C11 | 0.8 (6) |
C4—C5—C6—C1 | 0.0 (7) | C7—C8—C12—C11 | −177.8 (4) |
C5—C4—C7—C8 | −78.7 (6) | C12—C11—N—C10 | −1.1 (7) |
C3—C4—C7—C8 | 100.8 (6) | C9—C10—N—C11 | 1.8 (7) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—HO3···O4i | 0.82 | 1.89 | 2.617 (4) | 148 |
N—HN···O2ii | 0.95 (4) | 1.82 (5) | 2.762 (5) | 168 (4) |
Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) x, −y+3/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C12H12N+·HSeO4− |
Mr | 314.19 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 289 |
a, b, c (Å) | 27.449 (5), 10.821 (6), 8.830 (1) |
V (Å3) | 2623 (2) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 2.87 |
Crystal size (mm) | 0.11 × 0.09 × 0.04 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.743, 0.894 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3179, 2817, 1486 |
Rint | 0.045 |
(sin θ/λ)max (Å−1) | 0.638 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.087, 0.98 |
No. of reflections | 2817 |
No. of parameters | 207 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.28, −0.31 |
Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and DIAMOND (Brandenburg, 1998), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
O3—HO3···O4i | 0.82 | 1.89 | 2.617 (4) | 147.8 |
N—HN···O2ii | 0.95 (4) | 1.82 (5) | 2.762 (5) | 168 (4) |
Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) x, −y+3/2, z+1/2. |
References
Baran, J., Śledź, M., Drozd, M., Pietraszko, A., Haznar, A. & Ratajczak, H. (2000). J. Mol. Struct. 526, 361–371. Web of Science CrossRef CAS Google Scholar
Ben Djemaa, I., Elaoud, Z., Mhiri, T., Abdelhedi, R. & Savariault, J. M. (2007). Solid State Commun. 142, 610–615. CrossRef CAS Google Scholar
Ben Hamada, L. & Jouini, A. (2006). Mater. Res. Bull. 41, 1917–1924. CAS Google Scholar
Brandenburg, K. (1998). DIAMOND. University of Bonn, Germany. Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Fleck, M. (2006). Acta Cryst. E62, o4939–o4941. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Foro, S., Nayak, R. & Fuess, H. (2007). Acta Cryst. E63, o3563. Web of Science CSD CrossRef IUCr Journals Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Kaabi, K., Ben Nasr, C. & Rzaigui, M. (2004). J. Phys. Chem. Solids, 65, 1759–1764. Web of Science CSD CrossRef CAS Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound C6H5CH2C5H4NH+ HSeO4- crystallizes in the orthorhombic space group Pbca. Correspondingly, there are eight formula units per unit cell. The crystal is built up of monohydrogenselenate anions connected by hydrogen bonds of the O—H···O type forming infinite chains [HSeO4]nn- perpendicular to the [001] directions.
These chains are themselves interconnected by means of N—H···O hydrogen bonds originating from the [C6H5CH2C5H4NH]+ cation, so as to build a three-dimensional network. The distances Se—O in the [HSeO4]- anions range from 1.608 (3) to 1.705 (3) Å (Fig. 1). These values are comparable to reported data (Fleck, 2006). The longest Se—O(2) distance of 1.705 (3) Å, is due to the presence of the acidic hydrogen atom on the SeO4 tetrahedron (Baran et al., 2000).
The organic groups are located in the (011) planes at x = 1/4 and x = 3/4. The average values of the C—C, C—N and C═C bond lengths of 1.5165 (6) Å, 1.3305 (6) Å and 1.3753 (6) Å in the [C6H5CH2C5H4NH]+ cation are similar to those observed in related compounds (Ben Hamada & Jouini, 2006; Kaabi et al., 2004; Ben Djemaa et al., 2007; Gowda et al., 2007). The C—C perpendicular interplanar distances range from 1.74 to 4.83 Å and the dihedral angle between two planes of rings is 67.04°, indicating the existence of strong van der Waals interactions by contacts between [C6H5CH2C5H4NH]+ cations.
All the hydrogen bonds (D—H···O, Table 1) and the van der Waals contacts give rise to a three dimensional network in the crystal structure.