organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 11| November 2008| Pages o2072-o2073

1-Methyl-4-[(E)-2-(2-thien­yl)­ethen­yl]­pyridinium 4-methyl­benzene­sulfonate

aCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: suchada.c@psu.ac.th

(Received 19 September 2008; accepted 29 September 2008; online 4 October 2008)

In the title compound, C12H12NS+·C7H7O3S, the cation exists in an E configuration with respect to the ethenyl C=C bond. The cation is essentially planar with a dihedral angle of 1.94 (10)° between the pyridinium and thio­phene rings. The benzene ring of the anion makes dihedral angles of 75.23 (10) and 76.83 (10)°, respectively, with the pyridinium and thio­phene rings. In the crystal structure, cations and anions form alternate layers parallel to the bc plane. Within each layer, both cations and anions are arranged into chains directed along the b axis. The cation chain and the anion chain are inter­connected by weak C—H⋯O inter­actions into a three-dimensional network. The crystal structure is further stabilized by C—H⋯π inter­actions.

Related literature

For bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related literature on hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see, for example: Chantrapromma, Jindawong & Fun (2007[Chantrapromma, S., Jindawong, B. & Fun, H.-K. (2007). Acta Cryst. E63, o2020-o2022.]); Chantrapromma, Jindawong, Fun & Patil (2007[Chantrapromma, S., Jindawong, B., Fun, H.-K. & Patil, P. S. (2007). Acta Cryst. E63, o2321-o2323.]); Chantrapromma et al. (2008[Chantrapromma, S., Laksana, C., Ruanwas, P. & Fun, H.-K. (2008). Acta Cryst. E64, o574-o575.]); Lakshmanaperumal et al. (2002[Lakshmanaperumal, C. K., Arulchakkaravarthi, A., Rajesh, N. P., Santhana Raghavan, P., Huang, Y. C., Ichimura, M. & Ramasamy, P. (2002). J. Cryst. Growth, 240, 212-217.], 2004[Lakshmanaperumal, C. K., Arulchakkaravarthi, A., Balamurugan, N., Santhanaraghavan, P. & Ramasamy, P. (2004). J. Cryst. Growth, 265, 260-265.]); Rahman et al. (2003[Rahman, A. A., Razak, I. A., Fun, H.-K., Saenee, P., Jindawong, B., Chantrapromma, S. & Karalai, C. (2003). Acta Cryst. E59, o1798-o1800.]); Ruanwas et al. (2008[Ruanwas, P., Kobkeatthawin, T., Chantrapromma, S., Fun, H.-K. & Karalai, C. (2008). Acta Cryst. E64, o1453-o1454.]); Usman et al. (2000[Usman, A., Okada, S., Oikawa, H. & Nakanishi, H. (2000). Chem. Mater. 12, 1162-1170.], 2001[Usman, A., Kosuge, H., Okada, S., Oikawa, H. & Nakanishi, H. (2001). Jpn. J. Appl. Phys. 40, 4213-4216.]).

[Scheme 1]

Experimental

Crystal data
  • C12H12NS+·C7H7O3S

  • Mr = 373.49

  • Triclinic, [P \overline 1]

  • a = 9.2947 (1) Å

  • b = 9.6144 (1) Å

  • c = 10.7790 (1) Å

  • α = 87.817 (1)°

  • β = 64.702 (1)°

  • γ = 88.712 (1)°

  • V = 870.21 (1) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 100.0 (1) K

  • 0.36 × 0.35 × 0.18 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.893, Tmax = 0.945

  • 18024 measured reflections

  • 4606 independent reflections

  • 4122 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.148

  • S = 1.04

  • 4606 reflections

  • 228 parameters

  • H-atom parameters constrained

  • Δρmax = 0.98 e Å−3

  • Δρmin = −0.71 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O3i 0.93 2.31 3.219 (3) 166
C3—H3A⋯O1ii 0.93 2.49 3.168 (2) 130
C6—H6A⋯O2 0.93 2.56 3.378 (3) 147
C11—H11A⋯O1iii 0.93 2.54 3.303 (3) 139
C12—H12A⋯O1i 0.96 2.52 3.455 (3) 165
C12—H12C⋯O1ii 0.96 2.47 3.341 (3) 151
C15—H15A⋯O2iv 0.93 2.42 3.272 (2) 152
C17—H17A⋯O3i 0.93 2.43 3.202 (2) 141
C4—H4ACg1v 0.93 2.62 3.431 (2) 145
C10—H10ACg1vi 0.93 2.95 3.666 (3) 135
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z+1; (iii) -x+1, -y+2, -z; (iv) -x+1, -y+1, -z; (v) -x, -y+1, -z+1; (vi) x-1, y+1, z. Cg1 is the centroid of the C13–C18 benzene ring.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Pyridinium derivatives have been found to have nonlinear optical properties (Lakshmanaperumal et al., 2002, 2004; Usman et al., 2000, 2001). We have previously synthesized and crystallized several compounds of pyridinium and quinolinium derivatives to study their non-linear optical properties (Chantrapromma, Jindawong & Fun, 2007; Chantrapromma, Jindawong, Fun & Patil, 2007; Chantrapromma et al., 2008; Ruanwas et al., 2008). As part of our research on nonlinear optic materials, the title compound was synthesized.

The asymmetric unit of the title compound consists of the C12H12NS+ cation and the C7H7O3S- anion. The cation exists in an E configuration with respect to the ethenyl CC bond [C6C7 = 1.346 (3) Å]. The cation is essentially planar with a dihedral angle between the pyridinium and thiophene rings of 1.94 (10)°. The orientation of the anion with respect to the cation can be indicated by the interplanar angles between the benzene ring [C13–C18] with the pyridinium [C1–C5/N1] and thiophene [C8—C11/S1] rings of 75.23 (10) and 76.83 (10)°, respectively. The ethenyl unit is nearly coplanar with the pyridinium and thiophene rings with the torsion angles C4–C5–C6–C7 = 3.0 (3)° and C6–C7–C8–S1 = -3.7 (3)°. The atom O3 of the sulfonate and the S1 atom of the thiophene contribute to the weak intramolecular C—H···O and C—H···S interactions, forming S(5) ring motifs (Bernstein et al., 1995). The bond lengths and angles are normal (Allen et al., 1987) and are comparable with closely related structures (Chantrapromma, Jindawong & Fun, 2007; Chantrapromma, Jindawong, Fun & Patil, 2007; Chantrapromma et al., 2008; Ruanwas et al., 2008).

All the O atoms of 4-methylbenzenesulfonate anion are involved in the C—H···O weak interactions (Table 1). In the crystal packing (Fig. 2), the cations and anions form alternate layers parallel to the bc plane. Within each layer both cations and anions are arranged into chains directed along the b axis. The cations and anions chains are interconnected by C—H···O weak interactions into a three dimensional network. The crystal structure is further stabilized by the C4—H4A···π and C10—H10A···π interactions (Table 1); Cg1 is the centroid of the C13–C18 benzene ring.

Related literature top

For bond lengths and angles, see: Allen et al. (1987). For related literature on hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see, for example: Chantrapromma, Jindawong & Fun (2007); Chantrapromma, Jindawong, Fun & Patil (2007); Chantrapromma et al. (2008); Lakshmanaperumal et al. (2002, 2004); Rahman et al. (2003); Ruanwas et al. (2008); Usman et al. (2000, 2001).

Experimental top

The title compound was synthesized by mixing 4-(2-thiophenestyryl)-1-methylpyridinium iodide (0.1 g, 0.3 mmol) which was prepared in a similar manner to that previously reported (Chantrapromma et al., 2008) in hot methanol (40 ml) and p-toluenesulfonate (0.09 g, 0.3 mmol) in hot methanol (30 ml) (Rahman et al., 2003). The mixture immediately yielded a yellow solid of silver iodide. After stirring the mixture for 30 min, the precipitate of silver iodide was removed and the resulting solution was evaporated and the green-yellow solid was obtained. Yellow block-shaped single crystals of the title compound suitable for x-ray structure determination were recrystalized from the methanol/ethanol (1:1 v/v) solvent by slow evaporation of the solvent at room temperature after several weeks (m.p. 507–509 K).

Refinement top

All H atoms could have been discerned in a difference Fourier map. Nevertheless, all the H atoms attached to the carbon atoms were constrained in a riding motion approximation with Caryl—H = 0.93 and Cmethyl—H = 0.96 Å. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 1.01 Å from C6 and the deepest hole is located at 0.33 Å from S1.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The packing diagram of the title compound, viewed along the c axis. The weak C—H···O and C—H···S interactions are drawn as dashed lines.
1-Methyl-4-[(E)-2-(2-thienyl)ethenyl]pyridinium 4-methylbenzenesulfonate top
Crystal data top
C12H12NS+·C7H7O3SZ = 2
Mr = 373.49F(000) = 392
Triclinic, P1Dx = 1.425 Mg m3
Hall symbol: -P 1Melting point = 507–509 K
a = 9.2947 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.6144 (1) ÅCell parameters from 4606 reflections
c = 10.7790 (1) Åθ = 2.4–29.0°
α = 87.817 (1)°µ = 0.32 mm1
β = 64.702 (1)°T = 100 K
γ = 88.712 (1)°Block, yellow
V = 870.21 (2) Å30.36 × 0.35 × 0.18 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4606 independent reflections
Radiation source: fine-focus sealed tube4122 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 8.33 pixels mm-1θmax = 29.0°, θmin = 2.4°
ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1313
Tmin = 0.893, Tmax = 0.945l = 1414
18024 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0809P)2 + 1.1333P]
where P = (Fo2 + 2Fc2)/3
4606 reflections(Δ/σ)max = 0.001
228 parametersΔρmax = 0.98 e Å3
0 restraintsΔρmin = 0.71 e Å3
Crystal data top
C12H12NS+·C7H7O3Sγ = 88.712 (1)°
Mr = 373.49V = 870.21 (2) Å3
Triclinic, P1Z = 2
a = 9.2947 (1) ÅMo Kα radiation
b = 9.6144 (1) ŵ = 0.32 mm1
c = 10.7790 (1) ÅT = 100 K
α = 87.817 (1)°0.36 × 0.35 × 0.18 mm
β = 64.702 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4606 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4122 reflections with I > 2σ(I)
Tmin = 0.893, Tmax = 0.945Rint = 0.023
18024 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.149H-atom parameters constrained
S = 1.04Δρmax = 0.98 e Å3
4606 reflectionsΔρmin = 0.71 e Å3
228 parameters
Special details top

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.15733 (7)0.99833 (6)0.16005 (6)0.02891 (16)
S20.55035 (5)0.58728 (4)0.20813 (4)0.01428 (13)
O10.69298 (18)0.61236 (15)0.08113 (15)0.0220 (3)
O20.40517 (17)0.63620 (15)0.19977 (15)0.0194 (3)
O30.56449 (18)0.63482 (14)0.32920 (14)0.0196 (3)
N10.0092 (2)0.50151 (17)0.75333 (17)0.0169 (3)
C10.1573 (2)0.6066 (2)0.5395 (2)0.0221 (4)
H1A0.25740.61450.46620.026*
C20.1351 (2)0.5142 (2)0.6456 (2)0.0208 (4)
H2A0.21990.45970.64370.025*
C30.1335 (2)0.5809 (2)0.7588 (2)0.0195 (4)
H3A0.23170.57210.83420.023*
C40.1159 (2)0.6742 (2)0.6539 (2)0.0206 (4)
H4A0.20250.72790.65860.025*
C50.0314 (2)0.6894 (2)0.5397 (2)0.0196 (4)
C60.0632 (2)0.7841 (2)0.4220 (2)0.0220 (4)
H6A0.16430.78270.34970.026*
C70.0453 (3)0.8733 (2)0.4121 (2)0.0235 (4)
H7A0.14610.87190.48490.028*
C80.0211 (3)0.9713 (2)0.2998 (2)0.0225 (4)
C90.1401 (2)1.0515 (2)0.29383 (19)0.0151 (3)
H9A0.24541.04890.35910.018*
C100.0793 (3)1.1440 (2)0.1689 (2)0.0247 (4)
H10A0.14171.20860.14740.030*
C110.0787 (3)1.1230 (2)0.0896 (2)0.0262 (4)
H11A0.13671.17090.00700.031*
C120.0343 (3)0.3981 (2)0.8657 (2)0.0241 (4)
H12A0.06490.37950.87100.036*
H12B0.07400.31340.84790.036*
H12C0.10990.43410.95100.036*
C130.4960 (2)0.1137 (2)0.2619 (2)0.0178 (4)
C140.5220 (2)0.1820 (2)0.1374 (2)0.0179 (4)
H14A0.52730.13030.06430.021*
C150.5401 (2)0.3257 (2)0.12029 (19)0.0161 (3)
H15A0.55730.36940.03670.019*
C160.5323 (2)0.40335 (18)0.22945 (18)0.0141 (3)
C170.5046 (2)0.33792 (19)0.35510 (19)0.0158 (3)
H17A0.49830.38990.42830.019*
C180.4864 (2)0.1940 (2)0.3702 (2)0.0174 (4)
H18A0.46740.15050.45430.021*
C190.4833 (3)0.0423 (2)0.2771 (3)0.0260 (4)
H19A0.39670.06750.36320.039*
H19B0.58070.08090.27440.039*
H19C0.46440.07790.20340.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0231 (3)0.0296 (3)0.0285 (3)0.0008 (2)0.0063 (2)0.0060 (2)
S20.0174 (2)0.0119 (2)0.0122 (2)0.00110 (15)0.00523 (17)0.00122 (15)
O10.0223 (7)0.0188 (7)0.0167 (7)0.0017 (5)0.0007 (6)0.0020 (5)
O20.0224 (7)0.0171 (6)0.0200 (7)0.0047 (5)0.0105 (6)0.0004 (5)
O30.0284 (7)0.0151 (6)0.0183 (7)0.0020 (5)0.0129 (6)0.0014 (5)
N10.0175 (7)0.0161 (7)0.0172 (7)0.0001 (6)0.0076 (6)0.0002 (6)
C10.0187 (9)0.0242 (10)0.0180 (9)0.0016 (7)0.0028 (7)0.0009 (7)
C20.0163 (8)0.0210 (9)0.0229 (10)0.0035 (7)0.0062 (7)0.0033 (7)
C30.0150 (8)0.0234 (9)0.0190 (9)0.0000 (7)0.0061 (7)0.0007 (7)
C40.0182 (9)0.0221 (9)0.0235 (10)0.0023 (7)0.0112 (8)0.0002 (7)
C50.0252 (9)0.0169 (9)0.0181 (9)0.0040 (7)0.0104 (8)0.0005 (7)
C60.0215 (9)0.0222 (10)0.0205 (9)0.0015 (7)0.0074 (8)0.0003 (7)
C70.0218 (9)0.0251 (10)0.0218 (10)0.0018 (8)0.0077 (8)0.0010 (8)
C80.0275 (10)0.0195 (9)0.0225 (10)0.0024 (8)0.0127 (8)0.0015 (7)
C90.0091 (7)0.0229 (9)0.0135 (8)0.0019 (6)0.0051 (6)0.0011 (7)
C100.0281 (10)0.0218 (10)0.0280 (11)0.0013 (8)0.0162 (9)0.0061 (8)
C110.0295 (11)0.0243 (10)0.0242 (10)0.0038 (8)0.0115 (9)0.0076 (8)
C120.0322 (11)0.0195 (9)0.0224 (10)0.0001 (8)0.0137 (9)0.0034 (8)
C130.0158 (8)0.0145 (8)0.0243 (9)0.0013 (6)0.0098 (7)0.0004 (7)
C140.0181 (8)0.0169 (9)0.0187 (9)0.0016 (7)0.0079 (7)0.0030 (7)
C150.0167 (8)0.0172 (9)0.0139 (8)0.0014 (6)0.0061 (7)0.0001 (6)
C160.0147 (8)0.0123 (8)0.0141 (8)0.0012 (6)0.0051 (6)0.0004 (6)
C170.0172 (8)0.0160 (8)0.0142 (8)0.0013 (6)0.0069 (7)0.0007 (6)
C180.0172 (8)0.0165 (9)0.0190 (9)0.0000 (6)0.0086 (7)0.0043 (7)
C190.0313 (11)0.0141 (9)0.0367 (12)0.0006 (8)0.0186 (10)0.0020 (8)
Geometric parameters (Å, º) top
S1—C111.707 (2)C9—C101.484 (3)
S1—C81.715 (2)C9—H9A0.9300
S2—O21.4569 (15)C10—C111.362 (3)
S2—O31.4574 (14)C10—H10A0.9300
S2—O11.4587 (14)C11—H11A0.9300
S2—C161.7769 (18)C12—H12A0.9600
N1—C31.351 (2)C12—H12B0.9600
N1—C21.352 (3)C12—H12C0.9600
N1—C121.479 (3)C13—C181.394 (3)
C1—C21.367 (3)C13—C141.398 (3)
C1—C51.400 (3)C13—C191.504 (3)
C1—H1A0.9300C14—C151.391 (3)
C2—H2A0.9300C14—H14A0.9300
C3—C41.371 (3)C15—C161.393 (3)
C3—H3A0.9300C15—H15A0.9300
C4—C51.403 (3)C16—C171.393 (3)
C4—H4A0.9300C17—C181.393 (3)
C5—C61.458 (3)C17—H17A0.9300
C6—C71.346 (3)C18—H18A0.9300
C6—H6A0.9300C19—H19A0.9600
C7—C81.447 (3)C19—H19B0.9600
C7—H7A0.9300C19—H19C0.9600
C8—C91.357 (3)
C11—S1—C892.72 (11)C11—C10—C9112.07 (19)
O2—S2—O3112.96 (8)C11—C10—H10A124.0
O2—S2—O1113.06 (9)C9—C10—H10A124.0
O3—S2—O1113.19 (9)C10—C11—S1111.84 (17)
O2—S2—C16105.46 (9)C10—C11—H11A124.1
O3—S2—C16105.73 (9)S1—C11—H11A124.1
O1—S2—C16105.54 (8)N1—C12—H12A109.5
C3—N1—C2120.63 (17)N1—C12—H12B109.5
C3—N1—C12118.95 (17)H12A—C12—H12B109.5
C2—N1—C12120.41 (17)N1—C12—H12C109.5
C2—C1—C5120.85 (18)H12A—C12—H12C109.5
C2—C1—H1A119.6H12B—C12—H12C109.5
C5—C1—H1A119.6C18—C13—C14118.08 (18)
N1—C2—C1120.52 (18)C18—C13—C19121.03 (18)
N1—C2—H2A119.7C14—C13—C19120.87 (18)
C1—C2—H2A119.7C15—C14—C13121.46 (18)
N1—C3—C4120.49 (18)C15—C14—H14A119.3
N1—C3—H3A119.8C13—C14—H14A119.3
C4—C3—H3A119.8C14—C15—C16119.38 (17)
C3—C4—C5120.62 (18)C14—C15—H15A120.3
C3—C4—H4A119.7C16—C15—H15A120.3
C5—C4—H4A119.7C15—C16—C17120.27 (17)
C1—C5—C4116.87 (18)C15—C16—S2119.07 (14)
C1—C5—C6117.82 (18)C17—C16—S2120.61 (14)
C4—C5—C6125.30 (19)C16—C17—C18119.45 (17)
C7—C6—C5123.75 (19)C16—C17—H17A120.3
C7—C6—H6A118.1C18—C17—H17A120.3
C5—C6—H6A118.1C17—C18—C13121.35 (18)
C6—C7—C8126.6 (2)C17—C18—H18A119.3
C6—C7—H7A116.7C13—C18—H18A119.3
C8—C7—H7A116.7C13—C19—H19A109.5
C9—C8—C7122.8 (2)C13—C19—H19B109.5
C9—C8—S1112.58 (16)H19A—C19—H19B109.5
C7—C8—S1124.57 (17)C13—C19—H19C109.5
C8—C9—C10110.76 (17)H19A—C19—H19C109.5
C8—C9—H9A124.6H19B—C19—H19C109.5
C10—C9—H9A124.6
C3—N1—C2—C10.7 (3)C8—C9—C10—C111.8 (3)
C12—N1—C2—C1177.87 (19)C9—C10—C11—S10.7 (3)
C5—C1—C2—N10.3 (3)C8—S1—C11—C100.32 (19)
C2—N1—C3—C41.0 (3)C18—C13—C14—C150.9 (3)
C12—N1—C3—C4177.58 (19)C19—C13—C14—C15177.44 (18)
N1—C3—C4—C50.3 (3)C13—C14—C15—C160.0 (3)
C2—C1—C5—C40.9 (3)C14—C15—C16—C170.8 (3)
C2—C1—C5—C6179.05 (19)C14—C15—C16—S2178.34 (14)
C3—C4—C5—C10.6 (3)O2—S2—C16—C1569.43 (16)
C3—C4—C5—C6179.3 (2)O3—S2—C16—C15170.67 (14)
C1—C5—C6—C7177.1 (2)O1—S2—C16—C1550.48 (17)
C4—C5—C6—C73.0 (3)O2—S2—C16—C17108.10 (16)
C5—C6—C7—C8178.9 (2)O3—S2—C16—C1711.80 (18)
C6—C7—C8—C9175.6 (2)O1—S2—C16—C17131.99 (16)
C6—C7—C8—S13.7 (3)C15—C16—C17—C180.7 (3)
C11—S1—C8—C91.40 (18)S2—C16—C17—C18178.16 (14)
C11—S1—C8—C7179.3 (2)C16—C17—C18—C130.3 (3)
C7—C8—C9—C10178.64 (19)C14—C13—C18—C171.0 (3)
S1—C8—C9—C102.0 (2)C19—C13—C18—C17177.30 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O3i0.932.313.219 (3)166
C3—H3A···O1ii0.932.493.168 (2)130
C6—H6A···O20.932.563.378 (3)147
C11—H11A···O1iii0.932.543.303 (3)139
C12—H12A···O1i0.962.523.455 (3)165
C12—H12C···O1ii0.962.473.341 (3)151
C15—H15A···O2iv0.932.423.272 (2)152
C17—H17A···O3i0.932.433.202 (2)141
C4—H4A···Cg1v0.932.623.431 (2)145
C10—H10A···Cg1vi0.932.953.666 (3)135
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z+1; (iii) x+1, y+2, z; (iv) x+1, y+1, z; (v) x, y+1, z+1; (vi) x1, y+1, z.

Experimental details

Crystal data
Chemical formulaC12H12NS+·C7H7O3S
Mr373.49
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.2947 (1), 9.6144 (1), 10.7790 (1)
α, β, γ (°)87.817 (1), 64.702 (1), 88.712 (1)
V3)870.21 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.36 × 0.35 × 0.18
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.893, 0.945
No. of measured, independent and
observed [I > 2σ(I)] reflections
18024, 4606, 4122
Rint0.023
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.149, 1.04
No. of reflections4606
No. of parameters228
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.98, 0.71

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O3i0.932.30773.219 (3)166
C3—H3A···O1ii0.932.48963.168 (2)130
C6—H6A···O20.932.55883.378 (3)147
C11—H11A···O1iii0.932.54233.303 (3)139
C12—H12A···O1i0.962.51803.455 (3)165
C12—H12C···O1ii0.962.47133.341 (3)151
C15—H15A···O2iv0.932.42313.272 (2)152
C17—H17A···O3i0.932.42583.202 (2)141
C4—H4A···Cg1v0.932.62363.431 (2)145
C10—H10A···Cg1vi0.932.94883.666 (3)135
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z+1; (iii) x+1, y+2, z; (iv) x+1, y+1, z; (v) x, y+1, z+1; (vi) x1, y+1, z.
 

Footnotes

This paper is dedicated to the late Her Royal Highness Princess Galyani Vadhana Krom Luang Naradhiwas Rajanagarindra for her patronage of science in Thailand.

Additional correspondence author, e-mail: hkfun@usm.my.

Acknowledgements

The authors thank the Prince of Songkla University for a research grant. The authors also thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChantrapromma, S., Jindawong, B. & Fun, H.-K. (2007). Acta Cryst. E63, o2020–o2022.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChantrapromma, S., Jindawong, B., Fun, H.-K. & Patil, P. S. (2007). Acta Cryst. E63, o2321–o2323.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChantrapromma, S., Laksana, C., Ruanwas, P. & Fun, H.-K. (2008). Acta Cryst. E64, o574–o575.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLakshmanaperumal, C. K., Arulchakkaravarthi, A., Balamurugan, N., Santhanaraghavan, P. & Ramasamy, P. (2004). J. Cryst. Growth, 265, 260–265.  Web of Science CrossRef CAS Google Scholar
First citationLakshmanaperumal, C. K., Arulchakkaravarthi, A., Rajesh, N. P., Santhana Raghavan, P., Huang, Y. C., Ichimura, M. & Ramasamy, P. (2002). J. Cryst. Growth, 240, 212–217.  CAS Google Scholar
First citationRahman, A. A., Razak, I. A., Fun, H.-K., Saenee, P., Jindawong, B., Chantrapromma, S. & Karalai, C. (2003). Acta Cryst. E59, o1798–o1800.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRuanwas, P., Kobkeatthawin, T., Chantrapromma, S., Fun, H.-K. & Karalai, C. (2008). Acta Cryst. E64, o1453–o1454.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUsman, A., Kosuge, H., Okada, S., Oikawa, H. & Nakanishi, H. (2001). Jpn. J. Appl. Phys. 40, 4213–4216.  Google Scholar
First citationUsman, A., Okada, S., Oikawa, H. & Nakanishi, H. (2000). Chem. Mater. 12, 1162–1170.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 11| November 2008| Pages o2072-o2073
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds