organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(1-methyl-1-phenyl­ethyl) peroxide

aSchool of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
*Correspondence e-mail: suweiyi222@yahoo.com.cn

(Received 23 September 2008; accepted 14 October 2008; online 18 October 2008)

In the crystal structure, the title compound (also called dicumyl peroxide), C18H22O2, lies on a center of symmetry. The COOC plane including the di­oxy group makes a dihedral angle of 79.10 (5)° with the phenyl ring. An inter­molecular C—H⋯π inter­action is observed between the phenyl groups.

Related literature

For general background, see: Ferrero (2006[Ferrero, F. (2006). J. Therm. Anal. Calorim. 83, 373-378.]); Konar et al. (1993[Konar, J., Sen, A. K. & Bhowmick, A. K. (1993). J. Appl. Polym. Sci. 48, 1579-1585.]); Ramar & Alagar (2004[Ramar, P. & Alagar, M. (2004). Polym. Adv. Technol. 15, 377-381.]); Wang et al. (1998[Wang, Z., Chan, C.-M., Zhu, S.-H. & Shen, J.-R. (1998). Polymer, 39, 6801-6806.]).

[Scheme 1]

Experimental

Crystal data
  • C18H22O2

  • Mr = 270.36

  • Orthorhombic, P b c a

  • a = 10.040 (2) Å

  • b = 7.4774 (15) Å

  • c = 21.016 (4) Å

  • V = 1577.7 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 (2) K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Rigaku R-AXIS RAPID IP area-detector diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.982, Tmax = 0.989

  • 11957 measured reflections

  • 1464 independent reflections

  • 1232 reflections with I > 2σ(I)

  • Rint = 0.077

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.110

  • S = 1.05

  • 1464 reflections

  • 92 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3ACgi 0.93 2.93 3.7874 (17) 154
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: RAPID-AUTO (Rigaku/MSC, 2004[Rigaku/MSC (2004). RAPID-AUTO and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). RAPID-AUTO and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, (I), a simple organic peroxide, has gradually become almost the most important additive in operations affected by molecular transport, such as grafting (Konar et al., 1993; Ramar & Alagar, 2004) and cross-linking (Wang et al., 1998; Ferrero, 2006), which are based on the formation of oxyradicals due to the thermal decomposition of the peroxides. It's widely used in the art as vulcanizing agents for resins and elastomers, as cross-linking agents for polyolefins.

The centrosymmetric molecular structure of (I) is shown in Fig. 1. In the molecule, two phenyl rings are, of course, parallel to each other due to the symmetry element. The peroxy unit has an O—O bond length of 1.6853 (16) Å, and the four atoms, C7, O1, O1A and C7A are coplanar with a C7—O1—O1A bond angle of 106.02 (9)°. There is no hydrogen bond in the packing structure, and cohesion of the crystal can be attributed to van der Waals interactions.

Related literature top

For general background, see: Ferrero (2006); Konar et al. (1993); Ramar & Alagar (2004); Wang et al. (1998).

Experimental top

At room temperature, the title compound (1 g) provided by Gaoqiao petrochemical corporation was dissolved in 20 mL ethanol (99.7%). The solvent was vaporized slowly by use of a film covering the container (beaker). Then the solution was placed in darkness until crystals appeared. The product was taken out from the solvent by tweezers, and dried in the air at room temperature.

Refinement top

H atoms are placed in calculated positions and constrained to ride on their parent atoms, with C–H = 0.93–0.96 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: RAPID-AUTO (Rigaku/MSC, 2004); cell refinement: RAPID-AUTO (Rigaku/MSC, 2004); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing diagram of (I), viewed down the b axis. H atoms have been omitted.
Bis(1-methyl-1-phenylethyl) peroxide top
Crystal data top
C18H22O2Dx = 1.138 Mg m3
Mr = 270.36Melting point: 315.15 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 8972 reflections
a = 10.040 (2) Åθ = 3.5–27.6°
b = 7.4774 (15) ŵ = 0.07 mm1
c = 21.016 (4) ÅT = 293 K
V = 1577.7 (5) Å3Plate, colorless
Z = 40.25 × 0.20 × 0.15 mm
F(000) = 584
Data collection top
Rigaku R-AXIS RAPID IP area-detector
diffractometer
1464 independent reflections
Radiation source: rotating anode1232 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.077
oscillation scansθmax = 25.5°, θmin = 3.5°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1210
Tmin = 0.982, Tmax = 0.989k = 99
11957 measured reflectionsl = 2525
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0556P)2 + 0.2734P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.010
1464 reflectionsΔρmax = 0.26 e Å3
92 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.027 (7)
Crystal data top
C18H22O2V = 1577.7 (5) Å3
Mr = 270.36Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 10.040 (2) ŵ = 0.07 mm1
b = 7.4774 (15) ÅT = 293 K
c = 21.016 (4) Å0.25 × 0.20 × 0.15 mm
Data collection top
Rigaku R-AXIS RAPID IP area-detector
diffractometer
1464 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1232 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.989Rint = 0.077
11957 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.05Δρmax = 0.26 e Å3
1464 reflectionsΔρmin = 0.18 e Å3
92 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.46269 (8)0.07789 (11)0.51277 (4)0.0309 (3)
C10.44577 (13)0.10967 (18)0.62787 (6)0.0373 (4)
H1A0.37460.11150.59960.045*
C20.44768 (16)0.2285 (2)0.67854 (6)0.0462 (4)
H2A0.37850.30990.68360.055*
C30.55144 (16)0.2265 (2)0.72135 (6)0.0482 (4)
H3A0.55270.30600.75540.058*
C40.65322 (16)0.1055 (2)0.71319 (6)0.0453 (4)
H4A0.72310.10250.74220.054*
C50.65252 (13)0.01215 (17)0.66204 (6)0.0353 (3)
H5A0.72270.09200.65680.042*
C60.54838 (12)0.01186 (16)0.61873 (5)0.0285 (3)
C70.54171 (12)0.14706 (16)0.56434 (6)0.0302 (3)
C80.67730 (14)0.20577 (19)0.54013 (6)0.0419 (4)
H8A0.72740.10270.52710.063*
H8B0.72420.26700.57340.063*
H8C0.66600.28470.50450.063*
C90.45933 (16)0.30860 (19)0.58538 (6)0.0457 (4)
H9A0.37400.26890.60040.068*
H9B0.44720.38800.55000.068*
H9C0.50510.37030.61900.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0353 (5)0.0293 (5)0.0282 (5)0.0064 (4)0.0042 (4)0.0065 (3)
C10.0372 (7)0.0434 (8)0.0312 (7)0.0045 (6)0.0036 (6)0.0002 (6)
C20.0558 (9)0.0452 (9)0.0377 (8)0.0046 (7)0.0142 (7)0.0028 (6)
C30.0711 (11)0.0426 (9)0.0309 (7)0.0163 (7)0.0120 (7)0.0058 (6)
C40.0556 (9)0.0506 (9)0.0297 (7)0.0182 (7)0.0080 (7)0.0051 (6)
C50.0383 (7)0.0358 (7)0.0319 (7)0.0045 (6)0.0042 (6)0.0074 (5)
C60.0330 (7)0.0288 (7)0.0235 (6)0.0042 (5)0.0017 (5)0.0057 (5)
C70.0377 (7)0.0271 (6)0.0258 (6)0.0014 (5)0.0039 (5)0.0034 (5)
C80.0495 (8)0.0387 (8)0.0376 (7)0.0153 (6)0.0015 (7)0.0017 (6)
C90.0654 (10)0.0339 (8)0.0377 (8)0.0124 (7)0.0072 (7)0.0068 (6)
Geometric parameters (Å, º) top
O1—C71.4392 (15)C5—C61.3862 (17)
O1—O1i1.4853 (16)C5—H5A0.9300
C1—C61.3871 (18)C6—C71.5273 (17)
C1—C21.387 (2)C7—C81.5181 (18)
C1—H1A0.9300C7—C91.5292 (18)
C2—C31.377 (2)C8—H8A0.9600
C2—H2A0.9300C8—H8B0.9600
C3—C41.375 (2)C8—H8C0.9600
C3—H3A0.9300C9—H9A0.9600
C4—C51.3893 (19)C9—H9B0.9600
C4—H4A0.9300C9—H9C0.9600
C7—O1—O1i106.02 (9)O1—C7—C8110.23 (10)
C6—C1—C2121.05 (13)O1—C7—C6110.47 (10)
C6—C1—H1A119.5C8—C7—C6113.76 (10)
C2—C1—H1A119.5O1—C7—C9101.74 (10)
C3—C2—C1120.35 (14)C8—C7—C9110.70 (11)
C3—C2—H2A119.8C6—C7—C9109.28 (10)
C1—C2—H2A119.8C7—C8—H8A109.5
C4—C3—C2119.21 (14)C7—C8—H8B109.5
C4—C3—H3A120.4H8A—C8—H8B109.5
C2—C3—H3A120.4C7—C8—H8C109.5
C3—C4—C5120.61 (13)H8A—C8—H8C109.5
C3—C4—H4A119.7H8B—C8—H8C109.5
C5—C4—H4A119.7C7—C9—H9A109.5
C6—C5—C4120.72 (13)C7—C9—H9B109.5
C6—C5—H5A119.6H9A—C9—H9B109.5
C4—C5—H5A119.6C7—C9—H9C109.5
C5—C6—C1118.05 (12)H9A—C9—H9C109.5
C5—C6—C7121.56 (11)H9B—C9—H9C109.5
C1—C6—C7120.31 (11)
C6—C1—C2—C30.7 (2)O1i—O1—C7—C665.93 (12)
C1—C2—C3—C40.1 (2)O1i—O1—C7—C9178.12 (10)
C2—C3—C4—C50.7 (2)C5—C6—C7—O1155.72 (11)
C3—C4—C5—C60.95 (19)C1—C6—C7—O127.54 (15)
C4—C5—C6—C10.32 (18)C5—C6—C7—C831.13 (16)
C4—C5—C6—C7176.48 (11)C1—C6—C7—C8152.13 (12)
C2—C1—C6—C50.51 (19)C5—C6—C7—C993.14 (14)
C2—C1—C6—C7177.36 (12)C1—C6—C7—C983.59 (14)
O1i—O1—C7—C860.64 (13)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···Cgii0.932.933.7874 (17)154
Symmetry code: (ii) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC18H22O2
Mr270.36
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)10.040 (2), 7.4774 (15), 21.016 (4)
V3)1577.7 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerRigaku R-AXIS RAPID IP area-detector
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.982, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
11957, 1464, 1232
Rint0.077
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.110, 1.05
No. of reflections1464
No. of parameters92
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.18

Computer programs: RAPID-AUTO (Rigaku/MSC, 2004), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···Cgi0.932.933.7874 (17)154
Symmetry code: (i) x+1, y1/2, z+3/2.
 

Acknowledgements

The authors gratefully acknowledge financial support from the SRCICT of Tianjin University and the material DCP afforded by Gaoqiao Petrochemical Corporation.

References

First citationFerrero, F. (2006). J. Therm. Anal. Calorim. 83, 373–378.  Web of Science CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKonar, J., Sen, A. K. & Bhowmick, A. K. (1993). J. Appl. Polym. Sci. 48, 1579–1585.  CrossRef CAS Web of Science Google Scholar
First citationRamar, P. & Alagar, M. (2004). Polym. Adv. Technol. 15, 377–381.  Web of Science CrossRef CAS Google Scholar
First citationRigaku/MSC (2004). RAPID-AUTO and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z., Chan, C.-M., Zhu, S.-H. & Shen, J.-R. (1998). Polymer, 39, 6801–6806.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds