organic compounds
5-Bromo-5-bromomethyl-2-phenoxy-1,3,2-dioxaphosphorinan-2-one
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, cDepartment of Chemistry, Purdue University, West Lafayette, IN 47907, USA, and dDepartment of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah 711 103, India
*Correspondence e-mail: hkfun@usm.my
In the title 1,3,2-dioxaphosphorinane derivative, C10H11Br2O4P, the 1,3,2-dioxaphosphorinane ring adopts a chair conformation, having the P=O bond equatorially oriented and the phenoxy group axially oriented. The bromo substituent is in an axial position opposite to the phenoxy group and the bromomethyl group is in an equatorial position opposite to the P=O bond. In the crystal packing, molecules are linked through weak C—H⋯O and C—H⋯Br interactions to form chains along the b axis. The chains are arranged into sheets parallel to the ab plane. In adjacent sheets, molecules are arranged in an antiparallel fashion. Intermolecular C—H⋯π interactions are also observed.
Related literature
For values of bond lengths and angles, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For ring conformations, see: Cremer & Pople (1975). For related structures, see, for example: Jones et al. (1984); Polozov et al. (1995). For related literature and applications of dioxaphosphorinane derivatives, see, for example: Goswami (1993); Goswami & Adak (2002); Pilato et al. (1991); Taylor & Goswami (1992).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).
Supporting information
10.1107/S1600536808033631/is2349sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808033631/is2349Isup2.hkl
A solution of 5-methylene-2-oxo-2-phenoxy-[1,3,2]-dioxaphosphorinane (0.4 g, 1.76 mmol), doubly crystallized N-bromosuccinimide (0.38 g, 1.78 mmol) and azobisisobutyronitrile (10 mg) in dry CCl4 (40 ml) was heated under reflux in the presence of a 60 W lamp for 4 h. By this time, a maximum of 80% of the starting materials were converted into the product. Upon prolonged heating for a period of 8 h, no improvement has been observed with respect to yield nor new spot was observed as monitored by thin layer
The CCl4 layer was then stripped off and the gummy material was dissolved in dichloromethane (100 ml) and washed well with water (2 × 100 ml) and then with brine. The organic layer was dried (Na2SO4) and concentrated to afford the crude product as a light brown gum which was passed through a silica gel (100–200 mesh) column eluting with dichloromethane to get the pure title compound as a white crystalline solid (0.32 g, 60%; m.p. 361–362 K).All H atoms were constrained in a riding motion approximation, with Caryl—H = 0.93 Å and 0.97 Å for CH2. The Uiso(H) values were constrained to be 1.2Ueq of the
The highest residual electron density peak is located at 0.72 Å from Br1 and the deepest hole is located at 0.61 Å from Br2.Data collection: APEX2 (Bruker, 2005); cell
APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).C10H11Br2O4P | F(000) = 752 |
Mr = 385.96 | Dx = 1.984 Mg m−3 |
Monoclinic, P21/c | Melting point = 361–362 K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 12.1315 (3) Å | Cell parameters from 3756 reflections |
b = 6.3095 (1) Å | θ = 2.4–30.0° |
c = 16.8901 (3) Å | µ = 6.40 mm−1 |
β = 92.196 (2)° | T = 296 K |
V = 1291.88 (4) Å3 | Needle, colourless |
Z = 4 | 0.45 × 0.10 × 0.05 mm |
Bruker APEXII CCD area-detector diffractometer | 3756 independent reflections |
Radiation source: fine-focus sealed tube | 1952 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.072 |
Detector resolution: 8.33 pixels mm-1 | θmax = 30.0°, θmin = 2.4° |
ω scans | h = −15→17 |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | k = −8→8 |
Tmin = 0.156, Tmax = 0.726 | l = −22→23 |
16007 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.047 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.142 | H-atom parameters constrained |
S = 0.99 | w = 1/[σ2(Fo2) + (0.0636P)2 + 0.3299P] where P = (Fo2 + 2Fc2)/3 |
3756 reflections | (Δ/σ)max = 0.001 |
154 parameters | Δρmax = 0.67 e Å−3 |
0 restraints | Δρmin = −0.91 e Å−3 |
C10H11Br2O4P | V = 1291.88 (4) Å3 |
Mr = 385.96 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 12.1315 (3) Å | µ = 6.40 mm−1 |
b = 6.3095 (1) Å | T = 296 K |
c = 16.8901 (3) Å | 0.45 × 0.10 × 0.05 mm |
β = 92.196 (2)° |
Bruker APEXII CCD area-detector diffractometer | 3756 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 1952 reflections with I > 2σ(I) |
Tmin = 0.156, Tmax = 0.726 | Rint = 0.072 |
16007 measured reflections |
R[F2 > 2σ(F2)] = 0.047 | 0 restraints |
wR(F2) = 0.142 | H-atom parameters constrained |
S = 0.99 | Δρmax = 0.67 e Å−3 |
3756 reflections | Δρmin = −0.91 e Å−3 |
154 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.60424 (5) | 0.36096 (9) | 0.21315 (3) | 0.0610 (2) | |
Br2 | 0.53167 (5) | 0.78769 (10) | 0.08461 (4) | 0.0719 (2) | |
P1 | 0.88523 (11) | 0.20179 (19) | 0.12969 (8) | 0.0438 (3) | |
O1 | 0.8686 (3) | 0.3316 (5) | 0.20749 (18) | 0.0463 (8) | |
O2 | 0.7744 (3) | 0.2261 (5) | 0.0802 (2) | 0.0495 (8) | |
O3 | 0.9159 (3) | −0.0157 (5) | 0.1448 (3) | 0.0677 (11) | |
O4 | 0.9665 (3) | 0.3340 (5) | 0.0784 (2) | 0.0504 (8) | |
C1 | 0.7093 (4) | 0.5327 (6) | 0.1542 (3) | 0.0376 (10) | |
C2 | 0.8186 (4) | 0.5375 (7) | 0.2016 (3) | 0.0443 (11) | |
H2A | 0.8687 | 0.6340 | 0.1764 | 0.053* | |
H2B | 0.8063 | 0.5908 | 0.2544 | 0.053* | |
C3 | 0.7229 (4) | 0.4330 (7) | 0.0740 (3) | 0.0453 (11) | |
H3B | 0.6511 | 0.4192 | 0.0472 | 0.054* | |
H3C | 0.7677 | 0.5250 | 0.0422 | 0.054* | |
C4 | 0.6653 (4) | 0.7573 (7) | 0.1467 (3) | 0.0519 (13) | |
H4A | 0.7214 | 0.8449 | 0.1235 | 0.062* | |
H4B | 0.6535 | 0.8115 | 0.1994 | 0.062* | |
C5 | 1.0807 (4) | 0.3235 (7) | 0.0921 (3) | 0.0408 (11) | |
C6 | 1.1335 (5) | 0.4950 (9) | 0.1258 (3) | 0.0619 (15) | |
H6A | 1.0939 | 0.6132 | 0.1413 | 0.074* | |
C7 | 1.2469 (6) | 0.4884 (12) | 0.1362 (3) | 0.077 (2) | |
H7A | 1.2841 | 0.6040 | 0.1585 | 0.092* | |
C8 | 1.3055 (5) | 0.3123 (14) | 0.1139 (3) | 0.077 (2) | |
H8A | 1.3817 | 0.3087 | 0.1217 | 0.092* | |
C9 | 1.2510 (5) | 0.1428 (10) | 0.0803 (3) | 0.0640 (16) | |
H9A | 1.2904 | 0.0241 | 0.0651 | 0.077* | |
C10 | 1.1368 (4) | 0.1479 (8) | 0.0688 (3) | 0.0494 (12) | |
H10A | 1.0993 | 0.0336 | 0.0458 | 0.059* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0439 (3) | 0.0719 (4) | 0.0680 (4) | −0.0032 (3) | 0.0128 (3) | 0.0258 (3) |
Br2 | 0.0560 (4) | 0.0786 (4) | 0.0810 (5) | 0.0177 (3) | 0.0001 (3) | 0.0093 (3) |
P1 | 0.0372 (7) | 0.0360 (6) | 0.0585 (8) | −0.0025 (5) | 0.0049 (6) | 0.0049 (5) |
O1 | 0.0419 (19) | 0.0494 (18) | 0.0472 (19) | 0.0009 (15) | −0.0047 (15) | 0.0109 (14) |
O2 | 0.048 (2) | 0.0423 (17) | 0.058 (2) | 0.0006 (15) | −0.0007 (17) | −0.0115 (15) |
O3 | 0.056 (2) | 0.0374 (18) | 0.110 (3) | 0.0033 (17) | 0.011 (2) | 0.0135 (19) |
O4 | 0.0383 (19) | 0.0516 (19) | 0.062 (2) | 0.0020 (15) | 0.0096 (16) | 0.0124 (16) |
C1 | 0.038 (3) | 0.035 (2) | 0.040 (2) | −0.0041 (19) | 0.006 (2) | 0.0020 (18) |
C2 | 0.041 (3) | 0.047 (3) | 0.044 (3) | 0.001 (2) | −0.003 (2) | −0.004 (2) |
C3 | 0.040 (3) | 0.052 (3) | 0.043 (3) | 0.001 (2) | −0.005 (2) | 0.000 (2) |
C4 | 0.044 (3) | 0.041 (3) | 0.070 (4) | −0.001 (2) | −0.002 (3) | −0.001 (2) |
C5 | 0.039 (3) | 0.046 (3) | 0.037 (2) | −0.007 (2) | 0.008 (2) | 0.0027 (19) |
C6 | 0.076 (4) | 0.056 (3) | 0.055 (3) | −0.022 (3) | 0.020 (3) | −0.009 (3) |
C7 | 0.082 (5) | 0.097 (5) | 0.050 (3) | −0.048 (4) | −0.001 (3) | −0.007 (3) |
C8 | 0.048 (4) | 0.137 (6) | 0.045 (3) | −0.029 (4) | −0.008 (3) | 0.022 (4) |
C9 | 0.049 (3) | 0.088 (4) | 0.055 (3) | 0.010 (3) | 0.004 (3) | 0.014 (3) |
C10 | 0.043 (3) | 0.058 (3) | 0.048 (3) | −0.005 (2) | 0.004 (2) | −0.003 (2) |
Br1—C1 | 1.971 (4) | C3—H3C | 0.9700 |
Br2—C4 | 1.907 (5) | C4—H4A | 0.9700 |
P1—O3 | 1.442 (4) | C4—H4B | 0.9700 |
P1—O2 | 1.563 (4) | C5—C10 | 1.365 (7) |
P1—O1 | 1.568 (3) | C5—C6 | 1.371 (7) |
P1—O4 | 1.576 (3) | C6—C7 | 1.380 (9) |
O1—C2 | 1.436 (5) | C6—H6A | 0.9300 |
O2—C3 | 1.450 (6) | C7—C8 | 1.380 (10) |
O4—C5 | 1.398 (6) | C7—H7A | 0.9300 |
C1—C3 | 1.509 (6) | C8—C9 | 1.369 (9) |
C1—C4 | 1.518 (6) | C8—H8A | 0.9300 |
C1—C2 | 1.523 (6) | C9—C10 | 1.392 (8) |
C2—H2A | 0.9700 | C9—H9A | 0.9300 |
C2—H2B | 0.9700 | C10—H10A | 0.9300 |
C3—H3B | 0.9700 | ||
O3—P1—O2 | 113.5 (2) | H3B—C3—H3C | 107.9 |
O3—P1—O1 | 112.9 (2) | C1—C4—Br2 | 115.4 (3) |
O2—P1—O1 | 105.14 (18) | C1—C4—H4A | 108.4 |
O3—P1—O4 | 116.0 (2) | Br2—C4—H4A | 108.4 |
O2—P1—O4 | 101.35 (19) | C1—C4—H4B | 108.4 |
O1—P1—O4 | 106.73 (19) | Br2—C4—H4B | 108.4 |
C2—O1—P1 | 118.8 (3) | H4A—C4—H4B | 107.5 |
C3—O2—P1 | 119.1 (3) | C10—C5—C6 | 122.0 (5) |
C5—O4—P1 | 121.4 (3) | C10—C5—O4 | 119.5 (4) |
C3—C1—C4 | 111.3 (4) | C6—C5—O4 | 118.4 (5) |
C3—C1—C2 | 110.9 (4) | C5—C6—C7 | 118.5 (6) |
C4—C1—C2 | 108.8 (4) | C5—C6—H6A | 120.8 |
C3—C1—Br1 | 108.6 (3) | C7—C6—H6A | 120.8 |
C4—C1—Br1 | 108.9 (3) | C8—C7—C6 | 120.7 (6) |
C2—C1—Br1 | 108.2 (3) | C8—C7—H7A | 119.6 |
O1—C2—C1 | 112.0 (4) | C6—C7—H7A | 119.6 |
O1—C2—H2A | 109.2 | C9—C8—C7 | 119.8 (6) |
C1—C2—H2A | 109.2 | C9—C8—H8A | 120.1 |
O1—C2—H2B | 109.2 | C7—C8—H8A | 120.1 |
C1—C2—H2B | 109.2 | C8—C9—C10 | 120.1 (6) |
H2A—C2—H2B | 107.9 | C8—C9—H9A | 120.0 |
O2—C3—C1 | 111.8 (4) | C10—C9—H9A | 120.0 |
O2—C3—H3B | 109.3 | C5—C10—C9 | 118.9 (5) |
C1—C3—H3B | 109.3 | C5—C10—H10A | 120.5 |
O2—C3—H3C | 109.3 | C9—C10—H10A | 120.5 |
C1—C3—H3C | 109.3 | ||
O3—P1—O1—C2 | −168.7 (3) | C2—C1—C3—O2 | 53.4 (5) |
O2—P1—O1—C2 | −44.4 (4) | Br1—C1—C3—O2 | −65.5 (4) |
O4—P1—O1—C2 | 62.7 (4) | C3—C1—C4—Br2 | 54.6 (5) |
O3—P1—O2—C3 | 168.0 (3) | C2—C1—C4—Br2 | 177.1 (3) |
O1—P1—O2—C3 | 44.1 (4) | Br1—C1—C4—Br2 | −65.2 (4) |
O4—P1—O2—C3 | −66.9 (4) | P1—O4—C5—C10 | 74.5 (5) |
O3—P1—O4—C5 | −44.2 (4) | P1—O4—C5—C6 | −108.2 (4) |
O2—P1—O4—C5 | −167.6 (3) | C10—C5—C6—C7 | 0.0 (8) |
O1—P1—O4—C5 | 82.6 (4) | O4—C5—C6—C7 | −177.3 (4) |
P1—O1—C2—C1 | 52.5 (5) | C5—C6—C7—C8 | −0.6 (9) |
C3—C1—C2—O1 | −54.0 (5) | C6—C7—C8—C9 | 0.7 (9) |
C4—C1—C2—O1 | −176.7 (4) | C7—C8—C9—C10 | −0.2 (9) |
Br1—C1—C2—O1 | 65.1 (4) | C6—C5—C10—C9 | 0.4 (7) |
P1—O2—C3—C1 | −52.0 (5) | O4—C5—C10—C9 | 177.7 (4) |
C4—C1—C3—O2 | 174.6 (4) | C8—C9—C10—C5 | −0.4 (8) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2A···O3i | 0.97 | 2.35 | 3.217 (6) | 148 |
C3—H3B···Br2 | 0.97 | 2.82 | 3.233 (5) | 106 |
C4—H4A···O3i | 0.97 | 2.53 | 3.362 (6) | 144 |
C2—H2B···Cg1ii | 0.97 | 2.81 | 3.755 (5) | 166 |
C3—H3C···Cg1iii | 0.97 | 2.70 | 3.560 (5) | 148 |
Symmetry codes: (i) x, y+1, z; (ii) −x+2, y+1/2, −z+1/2; (iii) −x+2, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | C10H11Br2O4P |
Mr | 385.96 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 296 |
a, b, c (Å) | 12.1315 (3), 6.3095 (1), 16.8901 (3) |
β (°) | 92.196 (2) |
V (Å3) | 1291.88 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 6.40 |
Crystal size (mm) | 0.45 × 0.10 × 0.05 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.156, 0.726 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 16007, 3756, 1952 |
Rint | 0.072 |
(sin θ/λ)max (Å−1) | 0.703 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.047, 0.142, 0.99 |
No. of reflections | 3756 |
No. of parameters | 154 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.67, −0.91 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2A···O3i | 0.97 | 2.3497 | 3.217 (6) | 148 |
C3—H3B···Br2 | 0.97 | 2.8239 | 3.233 (5) | 106 |
C4—H4A···O3i | 0.97 | 2.5309 | 3.362 (6) | 144 |
C2—H2B···Cg1ii | 0.97 | 2.8055 | 3.755 (5) | 166 |
C3—H3C···Cg1iii | 0.97 | 2.7027 | 3.560 (5) | 148 |
Symmetry codes: (i) x, y+1, z; (ii) −x+2, y+1/2, −z+1/2; (iii) −x+2, −y+1, −z. |
Footnotes
‡Additional correspondence author, e-mail: suchada.c@psu.ac.th.
Acknowledgements
AKA, ACM and SG acknowledge the DST (grant No. SR/S1/OC-13/2005), Government of India, for financial support. ACM thanks the UGC, Government of India, for a fellowship. The authors also thank the Universiti Sains Malaysia for Research University Golden Goose Grant No. 1001/PFIZIK/811012.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19. CrossRef Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Goswami, S. P. (1993). Heterocycles, 35, 1551–1570. CrossRef CAS Google Scholar
Goswami, S. P. & Adak, A. K. (2002). Tetrahedron Lett. 43, 503–505. Web of Science CrossRef CAS Google Scholar
Jones, P. G., Sheldrick, G. M., Kirby, A. J. & Briggs, A. J. (1984). Acta Cryst. C40, 1061–1065. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Pilato, R. S., Erickson, K. A., Greaney, M. A., Stiefel, E. I., Goswami, S. P., Kilpatric, L., Spiro, T. G., Taylor, E. C. & Rhiengold, A. L. (1991). J. Am. Chem. Soc. 113, 9372–9374. CSD CrossRef CAS Web of Science Google Scholar
Polozov, A. M., Litvinov, I. A., Kataeva, O. N., Stolov, A. A., Yarkova, E. G., Khotinen, A. V. & Klimovitskii, E. N. (1995). J. Mol. Struct. 356, 125–130. CSD CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Taylor, E. C. & Goswami, S. P. (1992). Tetrahedron Lett. 32, 7357–7360. CrossRef Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Six-membered cyclic phosphates are important constituents present in a number of biologically important molecules e.g. cyclic adenosine monophosphate (cAMP) and the Compound Z, a precursor of the molybdenum cofactor (Moco) (Goswami, 1993). They especially play key roles in many biosynthetic pathways and comprise structural sub-units of many physiologically important materials. In our synthetic studies (Pilato et al., 1991; Taylor & Goswami, 1992) on the molybdenum cofactor, we are interested to have an efficient synthesis of cyclic dihydroxyacetone phosphate (CDHAP) (Goswami & Adak, 2002). Reaction of phosphate triesters with N-bromosuccinimide (NBS) results in the formation of a dibromo derivative (Fig. 1).
In the title 1,3,2-dioxaphosphorinane derivative (Fig. 1), C10H11Br2O4P, the 1,3,2-dioxaphosphorinane ring adopts a slightly flattened chair conformation with the puckering parameter (Cremer & Pople, 1975) Q = 0.496 (4) Å, θ = 7.4 (5)° and ϕ = 177 (4)°, having the P═O bond equatorially attached and the phenoxy substituent axially attached with the torsion angle O1—P1—O4—O5 = 82.6 (4)°. The orientation of the phenoxy group is not co-planar to the 1,3,2-dioxaphosphorinane ring as can be indicated by the torsion angle P1—O4—C5—C6 of -108.2 (4)°. The bromo substituent is in the opposite axial position to the phenoxy substituent and the methylbromo group is in an opposite equatorial position to the P═O bond. The bond lengths and angles in (I) are within normal ranges (Allen et al., 1987) and are comparable to related structures (Jones et al., 1984; Polozov et al., 1995). The closest Br···Br distance is 3.5484 (9) Å.
In the crystal packing shown in Fig. 2, the molecules are linked through weak C—H···O interactions (Table 1) to form chains along the b axis which generate S(6) ring motifs (Bernstein et al., 1995). The chains are arranged into sheets parallel to the ab plane. In the adjacent sheets, the molecules are arranged in an anti-parallel fashion (Fig. 3). The adjacent sheets are connected through weak C—H···O interactions (Table 1) and Br···Br short contacts with the Br···Br distance of 3.8771 (9) Å (symmetry code: 1 - x, 1/2 + y, 1/2 - z). The crystal is stabilized by weak C—H···O, C—H···Br interactions and C—H···π interactions (Table 1); Cg1 is the centroid of the C5–C10 ring.