organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-5-Chloro-3-(2,6-di­chloro­benzyl­­idene)­indolin-2-one

aDepartment of Chemistry, Southern Methodist University, Dallas, TX 75275, USA
*Correspondence e-mail: hzhang@smu.edu

(Received 19 June 2008; accepted 3 October 2008; online 11 October 2008)

There are two independent mol­ecules of the title compound, C15H8Cl3NO, in the asymmetric unit. Both form inversion dimers via pairs of hydrazide–carbonyl N—H⋯O hydrogen bonds.

Related literature

For background information on the pharmacological activities of 3-substituted indoline-2-ones, see: Andreani et al. (2006[Andreani, A., Burnelli, S., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Varoli, L. & Kunkel, M. W. (2006). J. Med. Chem. 49, 6922-6924.]); Sun et al. (2003[Sun, L., Tran, N., Tang, F., App, H., Hirth, P., McMahon, G. & Tang, C. (2003). J. Med. Chem. 46, 1116-1119.]); Johnson et al. (2005[Johnson, K., Liu, L., Majdzadeh, N., Chavez, C., Chin, P. C., Morrison, B., Wang, L., Park, J., Chugh, P., Chen, H. & D'Mello, S. R. (2005). J. Neurochem. 93, 538-548.]). For related structures, see: Gayathri et al. (2008[Gayathri, D., Velmurugan, D., Shanthi, G., Perumal, P. T. & Ravikumar, K. (2008). Acta Cryst. E64, o501-o502.]); Ali et al. (2008[Ali, H. M., Laila, M., Rizal, M. R. & Ng, S. W. (2008). Acta Cryst. E64, o921.]); De (2008[De, A. (2008). Acta Cryst. E64, o562.]).

[Scheme 1]

Experimental

Crystal data
  • C15H8Cl3NO

  • Mr = 324.57

  • Triclinic, [P \overline 1]

  • a = 8.0809 (6) Å

  • b = 13.4944 (11) Å

  • c = 14.3698 (16) Å

  • α = 63.116 (1)°

  • β = 82.973 (2)°

  • γ = 80.162 (1)°

  • V = 1375.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.66 mm−1

  • T = 296 (2) K

  • 0.39 × 0.28 × 0.21 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.785, Tmax = 0.874

  • 16659 measured reflections

  • 6438 independent reflections

  • 5292 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.158

  • S = 1.08

  • 6438 reflections

  • 361 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 2.09 2.919 (3) 162
N21—H21⋯O22ii 0.86 2.02 2.838 (3) 159
Symmetry codes: (i) -x+2, -y, -z+1; (ii) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

3-Substituted indoline-2-ones have well recognized pharmacological activities, including antitumor properties (Andreani et al., 2006), receptor tyrosine kinase (RTK) inhibitors (Sun et al., 1998) and neuroprotective agents (D'Mello et al., 2005). To study their neuroprotective activity, a series of 3- and 3,5-substituted indoline-2-one derivatives have been synthesized and crystallized in our laboratory. As part of our studies on structure–activity relationships of 3-substituted indoline-2-ones and the importance of substituent at the 5-postion, the title compound was synthesized and its crystal structure was carried out. The study found the title compound adopted an E conformation in the structure (Fig. 1) and that converted into a mixture of E and Z isomers in DMSO-d6 solution. As expected, the substituent, O2, Cl5, and C10, lie essentially in the plane of the indole ring. The indolyl plane with that of phenyl are twisted, with the dihedral angles between the rings are 62.16 (10), 63.06 (6)°, respectively, for each independent molecule. It's similar to other indolin-2-one compounds (Gayathri et al., 2008; Ali et al., 2008; De, 2008) containing intermolecular hydrazide–carbonyl N—H···O hydrogen bonds. The H-bonds link two inverted molecules and a dimer is formed (Table 1).

Related literature top

For background information on the pharmacological activities of 3-substituted indoline-2-ones, see: Andreani et al. (2006); Sun et al. (1998); D'Mello et al. (2005); For related structures, see: Gayathri et al. (2008); Ali et al. (2008); De (2008). [Please check rephrasing]

Experimental top

The title compound was synthesized by the condensation of 2,6-dichlorobenzaldehyde (1 mmol) with 5-chloro-oxindole (1 mmol) in ethanol (10 ml) in the presence of catalytic amount of piperidine (0.1 mmol). After refluxing for 3 hrs, the reaction mixture was left to stand overnight. The resulting crude solid was filtered, washed with cold ethanol (10 ml) and dried. Orange colored single crystals of the compound suitable for X-ray structure determination were recrystallized from ethanol.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. A view of one of the independent molecules with displacement ellipsoids drawn at the 40% probability level. H atoms are presented as open circles with arbitrary radii. Atoms of another independent molecule were labeled as N21 C22 O22 C23 through C35 C36 Cl36.
[Figure 2] Fig. 2. A unit cell packing view of the title compound. Dash lines indicate hydrogen bonds. For clarity, H atoms not involved in H-bonding were omitted.
(E)-5-Chloro-3-(2,6-dichlorobenzylidene)indolin-2-one top
Crystal data top
C15H8Cl3NOZ = 4
Mr = 324.57F(000) = 656
Triclinic, P1Dx = 1.568 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0809 (6) ÅCell parameters from 9259 reflections
b = 13.4944 (11) Åθ = 2.6–28.2°
c = 14.3698 (16) ŵ = 0.66 mm1
α = 63.116 (1)°T = 296 K
β = 82.973 (2)°Rod, orange
γ = 80.162 (1)°0.39 × 0.28 × 0.21 mm
V = 1375.3 (2) Å3
Data collection top
Bruker APEX CCD area-detector
diffractometer
6438 independent reflections
Radiation source: fine-focus sealed tube5292 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 83.33 pixels mm-1θmax = 28.2°, θmin = 1.6°
ϕ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1717
Tmin = 0.785, Tmax = 0.874l = 1818
16659 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0786P)2 + 0.7214P]
where P = (Fo2 + 2Fc2)/3
6438 reflections(Δ/σ)max < 0.001
361 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C15H8Cl3NOγ = 80.162 (1)°
Mr = 324.57V = 1375.3 (2) Å3
Triclinic, P1Z = 4
a = 8.0809 (6) ÅMo Kα radiation
b = 13.4944 (11) ŵ = 0.66 mm1
c = 14.3698 (16) ÅT = 296 K
α = 63.116 (1)°0.39 × 0.28 × 0.21 mm
β = 82.973 (2)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
6438 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5292 reflections with I > 2σ(I)
Tmin = 0.785, Tmax = 0.874Rint = 0.028
16659 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.158H-atom parameters constrained
S = 1.08Δρmax = 0.53 e Å3
6438 reflectionsΔρmin = 0.39 e Å3
361 parameters
Special details top

Experimental. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.8654 (3)0.07885 (18)0.38440 (16)0.0441 (5)
H10.88340.09420.43400.053*
C20.9186 (3)0.0212 (2)0.38197 (19)0.0419 (5)
O21.0019 (3)0.10122 (17)0.44698 (16)0.0564 (5)
C30.8546 (3)0.0123 (2)0.28386 (18)0.0366 (5)
C40.6911 (3)0.1609 (2)0.13832 (19)0.0407 (5)
H40.68380.12750.09500.049*
C50.6255 (4)0.2711 (2)0.1105 (2)0.0465 (6)
Cl50.53114 (14)0.34756 (7)0.00817 (7)0.0780 (3)
C60.6336 (4)0.3220 (2)0.1745 (2)0.0532 (7)
H60.58710.39640.15400.064*
C70.7100 (4)0.2633 (2)0.2680 (2)0.0497 (6)
H70.71570.29680.31140.060*
C80.7778 (3)0.1536 (2)0.29584 (19)0.0399 (5)
C90.7679 (3)0.10133 (19)0.23239 (18)0.0355 (5)
C100.8876 (3)0.0984 (2)0.26019 (19)0.0396 (5)
H100.95370.16080.30670.047*
C110.8348 (3)0.10953 (18)0.17102 (18)0.0358 (5)
C120.6685 (3)0.1043 (2)0.15124 (19)0.0405 (5)
Cl120.50744 (9)0.07520 (7)0.23006 (6)0.0552 (2)
C130.6254 (4)0.1275 (3)0.0740 (2)0.0534 (7)
H130.51280.12370.06320.064*
C140.7491 (4)0.1563 (3)0.0131 (2)0.0614 (8)
H140.72020.17180.03930.074*
C150.9149 (4)0.1623 (3)0.0288 (2)0.0559 (7)
H150.99910.18170.01240.067*
C160.9551 (3)0.1393 (2)0.1065 (2)0.0426 (5)
Cl161.16558 (10)0.14706 (9)0.12559 (7)0.0693 (3)
N210.3669 (3)0.12638 (17)0.40122 (17)0.0442 (5)
H210.39130.06000.40540.053*
C220.4168 (4)0.1590 (2)0.4684 (2)0.0441 (6)
O220.5053 (3)0.10166 (16)0.54222 (16)0.0602 (6)
C230.3436 (3)0.28014 (19)0.43404 (19)0.0411 (5)
C240.1590 (4)0.4078 (2)0.2758 (2)0.0457 (6)
H240.14570.47190.28630.055*
C250.0844 (4)0.4072 (2)0.1947 (2)0.0522 (7)
Cl250.04299 (14)0.52723 (8)0.11626 (7)0.0819 (3)
C260.1041 (4)0.3135 (3)0.1766 (2)0.0560 (7)
H260.05460.31640.12010.067*
C270.1976 (4)0.2155 (2)0.2423 (2)0.0517 (7)
H270.21070.15170.23130.062*
C280.2706 (3)0.2145 (2)0.32410 (19)0.0412 (5)
C290.2540 (3)0.3105 (2)0.34098 (19)0.0399 (5)
C300.3666 (3)0.3334 (2)0.48909 (19)0.0433 (6)
H300.42070.28940.55110.052*
C310.3183 (3)0.4519 (2)0.46532 (19)0.0414 (6)
C320.3765 (4)0.5398 (2)0.3753 (2)0.0451 (6)
Cl320.50911 (12)0.51303 (6)0.28279 (6)0.0612 (2)
C330.3398 (4)0.6498 (2)0.3583 (2)0.0524 (7)
H330.38180.70610.29790.063*
C340.2410 (4)0.6762 (2)0.4306 (3)0.0569 (8)
H340.21430.75070.41850.068*
C350.1809 (4)0.5927 (2)0.5213 (3)0.0562 (7)
H350.11420.61020.57070.067*
C360.2217 (4)0.4827 (2)0.5371 (2)0.0459 (6)
Cl360.14997 (12)0.37906 (7)0.65309 (6)0.0650 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0581 (13)0.0448 (12)0.0374 (11)0.0013 (10)0.0110 (9)0.0257 (9)
C20.0491 (14)0.0430 (13)0.0377 (12)0.0000 (11)0.0068 (10)0.0222 (11)
O20.0766 (14)0.0497 (11)0.0483 (11)0.0148 (10)0.0283 (10)0.0281 (9)
C30.0419 (12)0.0388 (12)0.0302 (11)0.0033 (10)0.0057 (9)0.0157 (10)
C40.0504 (14)0.0393 (13)0.0345 (12)0.0049 (10)0.0047 (10)0.0177 (10)
C50.0551 (15)0.0406 (13)0.0372 (13)0.0008 (11)0.0103 (11)0.0113 (11)
Cl50.1182 (8)0.0484 (4)0.0584 (5)0.0115 (4)0.0432 (5)0.0139 (4)
C60.0665 (18)0.0371 (13)0.0557 (16)0.0052 (12)0.0096 (14)0.0228 (12)
C70.0644 (17)0.0419 (14)0.0500 (15)0.0009 (12)0.0068 (13)0.0284 (12)
C80.0436 (13)0.0435 (13)0.0361 (12)0.0038 (10)0.0026 (10)0.0212 (11)
C90.0399 (12)0.0341 (11)0.0340 (11)0.0038 (9)0.0019 (9)0.0166 (9)
C100.0469 (13)0.0360 (12)0.0351 (12)0.0021 (10)0.0104 (10)0.0156 (10)
C110.0456 (13)0.0287 (11)0.0329 (11)0.0020 (9)0.0061 (9)0.0133 (9)
C120.0447 (13)0.0397 (12)0.0381 (12)0.0058 (10)0.0012 (10)0.0182 (10)
Cl120.0485 (4)0.0678 (5)0.0578 (4)0.0124 (3)0.0077 (3)0.0361 (4)
C130.0503 (15)0.0683 (19)0.0521 (16)0.0161 (14)0.0043 (13)0.0325 (15)
C140.071 (2)0.082 (2)0.0520 (17)0.0184 (17)0.0036 (14)0.0451 (17)
C150.0613 (18)0.0677 (19)0.0483 (15)0.0050 (14)0.0028 (13)0.0364 (15)
C160.0408 (13)0.0451 (14)0.0415 (13)0.0020 (10)0.0053 (10)0.0193 (11)
Cl160.0433 (4)0.1032 (7)0.0631 (5)0.0028 (4)0.0077 (3)0.0411 (5)
N210.0630 (14)0.0297 (10)0.0405 (11)0.0003 (9)0.0007 (10)0.0185 (9)
C220.0616 (16)0.0313 (12)0.0376 (13)0.0003 (11)0.0006 (11)0.0164 (10)
O220.0968 (16)0.0346 (9)0.0476 (11)0.0152 (10)0.0217 (11)0.0203 (9)
C230.0538 (14)0.0291 (11)0.0378 (12)0.0022 (10)0.0015 (11)0.0153 (10)
C240.0586 (16)0.0361 (13)0.0421 (13)0.0010 (11)0.0035 (12)0.0192 (11)
C250.0617 (17)0.0485 (15)0.0395 (14)0.0050 (13)0.0093 (12)0.0160 (12)
Cl250.1096 (8)0.0673 (5)0.0607 (5)0.0255 (5)0.0378 (5)0.0257 (4)
C260.0694 (19)0.0619 (18)0.0438 (15)0.0053 (15)0.0094 (13)0.0290 (14)
C270.0702 (19)0.0472 (15)0.0478 (15)0.0081 (13)0.0006 (13)0.0303 (13)
C280.0498 (14)0.0355 (12)0.0387 (12)0.0042 (10)0.0040 (10)0.0185 (10)
C290.0515 (14)0.0366 (12)0.0337 (12)0.0051 (10)0.0003 (10)0.0178 (10)
C300.0601 (16)0.0306 (12)0.0365 (12)0.0034 (10)0.0111 (11)0.0137 (10)
C310.0559 (15)0.0325 (12)0.0390 (12)0.0039 (10)0.0152 (11)0.0187 (10)
C320.0595 (16)0.0380 (13)0.0397 (13)0.0004 (11)0.0133 (11)0.0184 (11)
Cl320.0888 (6)0.0524 (4)0.0433 (4)0.0095 (4)0.0018 (3)0.0231 (3)
C330.0693 (18)0.0329 (13)0.0535 (16)0.0012 (12)0.0223 (14)0.0148 (12)
C340.0660 (19)0.0317 (13)0.077 (2)0.0092 (12)0.0240 (16)0.0275 (14)
C350.0593 (17)0.0475 (15)0.071 (2)0.0038 (13)0.0068 (15)0.0374 (15)
C360.0572 (16)0.0380 (13)0.0453 (14)0.0020 (11)0.0082 (12)0.0210 (11)
Cl360.0868 (6)0.0549 (4)0.0561 (4)0.0154 (4)0.0106 (4)0.0283 (4)
Geometric parameters (Å, º) top
N1—C21.360 (3)N21—C221.352 (3)
N1—C81.398 (3)N21—C281.397 (3)
N1—H10.8600N21—H210.8600
C2—O21.219 (3)C22—O221.220 (3)
C2—C31.508 (3)C22—C231.509 (3)
C3—C101.329 (3)C23—C301.331 (3)
C3—C91.457 (3)C23—C291.456 (4)
C4—C51.378 (4)C24—C251.378 (4)
C4—C91.383 (3)C24—C291.382 (4)
C4—H40.9300C24—H240.9300
C5—C61.387 (4)C25—C261.383 (4)
C5—Cl51.736 (3)C25—Cl251.737 (3)
C6—C71.373 (4)C26—C271.385 (4)
C6—H60.9300C26—H260.9300
C7—C81.375 (4)C27—C281.372 (4)
C7—H70.9300C27—H270.9300
C8—C91.397 (3)C28—C291.404 (3)
C10—C111.475 (3)C30—C311.467 (3)
C10—H100.9300C30—H300.9300
C11—C121.391 (4)C31—C361.388 (4)
C11—C161.395 (3)C31—C321.398 (4)
C12—C131.378 (4)C32—C331.374 (4)
C12—Cl121.732 (3)C32—Cl321.733 (3)
C13—C141.370 (4)C33—C341.370 (4)
C13—H130.9300C33—H330.9300
C14—C151.369 (5)C34—C351.381 (5)
C14—H140.9300C34—H340.9300
C15—C161.373 (4)C35—C361.382 (4)
C15—H150.9300C35—H350.9300
C16—Cl161.734 (3)C36—Cl361.733 (3)
C2—N1—C8111.2 (2)C22—N21—C28111.3 (2)
C2—N1—H1124.4C22—N21—H21124.4
C8—N1—H1124.4C28—N21—H21124.4
O2—C2—N1125.9 (2)O22—C22—N21126.6 (2)
O2—C2—C3127.6 (2)O22—C22—C23126.5 (2)
N1—C2—C3106.4 (2)N21—C22—C23106.9 (2)
C10—C3—C9134.2 (2)C30—C23—C29134.6 (2)
C10—C3—C2120.2 (2)C30—C23—C22120.1 (2)
C9—C3—C2105.53 (19)C29—C23—C22105.2 (2)
C5—C4—C9118.1 (2)C25—C24—C29118.2 (2)
C5—C4—H4120.9C25—C24—H24120.9
C9—C4—H4120.9C29—C24—H24120.9
C4—C5—C6121.8 (2)C24—C25—C26122.0 (3)
C4—C5—Cl5118.7 (2)C24—C25—Cl25118.4 (2)
C6—C5—Cl5119.6 (2)C26—C25—Cl25119.6 (2)
C7—C6—C5120.3 (2)C25—C26—C27120.0 (3)
C7—C6—H6119.8C25—C26—H26120.0
C5—C6—H6119.8C27—C26—H26120.0
C6—C7—C8118.4 (2)C28—C27—C26118.5 (2)
C6—C7—H7120.8C28—C27—H27120.8
C8—C7—H7120.8C26—C27—H27120.8
C7—C8—C9121.6 (2)C27—C28—N21129.1 (2)
C7—C8—N1128.7 (2)C27—C28—C29121.5 (2)
C9—C8—N1109.7 (2)N21—C28—C29109.5 (2)
C4—C9—C8119.8 (2)C24—C29—C28119.8 (2)
C4—C9—C3133.0 (2)C24—C29—C23133.0 (2)
C8—C9—C3107.1 (2)C28—C29—C23107.2 (2)
C3—C10—C11129.5 (2)C23—C30—C31128.8 (2)
C3—C10—H10115.3C23—C30—H30115.6
C11—C10—H10115.3C31—C30—H30115.6
C12—C11—C16115.2 (2)C36—C31—C32115.6 (2)
C12—C11—C10124.4 (2)C36—C31—C30120.8 (2)
C16—C11—C10120.0 (2)C32—C31—C30123.4 (2)
C13—C12—C11122.5 (2)C33—C32—C31122.4 (3)
C13—C12—Cl12117.7 (2)C33—C32—Cl32116.8 (2)
C11—C12—Cl12119.70 (19)C31—C32—Cl32120.63 (19)
C14—C13—C12119.7 (3)C34—C33—C32119.7 (3)
C14—C13—H13120.1C34—C33—H33120.1
C12—C13—H13120.1C32—C33—H33120.1
C15—C14—C13120.3 (3)C33—C34—C35120.4 (2)
C15—C14—H14119.9C33—C34—H34119.8
C13—C14—H14119.9C35—C34—H34119.8
C14—C15—C16119.0 (3)C34—C35—C36118.7 (3)
C14—C15—H15120.5C34—C35—H35120.7
C16—C15—H15120.5C36—C35—H35120.7
C15—C16—C11123.3 (2)C35—C36—C31123.2 (3)
C15—C16—Cl16118.6 (2)C35—C36—Cl36117.9 (2)
C11—C16—Cl16118.14 (19)C31—C36—Cl36118.92 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.092.919 (3)162
N21—H21···O22ii0.862.022.838 (3)159
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC15H8Cl3NO
Mr324.57
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.0809 (6), 13.4944 (11), 14.3698 (16)
α, β, γ (°)63.116 (1), 82.973 (2), 80.162 (1)
V3)1375.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.66
Crystal size (mm)0.39 × 0.28 × 0.21
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.785, 0.874
No. of measured, independent and
observed [I > 2σ(I)] reflections
16659, 6438, 5292
Rint0.028
(sin θ/λ)max1)0.665
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.158, 1.08
No. of reflections6438
No. of parameters361
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.39

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.092.919 (3)162.1
N21—H21···O22ii0.862.022.838 (3)159.4
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y, z+1.
 

Acknowledgements

The authors are grateful for grants from the Welch Foundation (grant No. N-118) and DARPA (grant No. HR0011-06-1-0032).

References

First citationAli, H. M., Laila, M., Rizal, M. R. & Ng, S. W. (2008). Acta Cryst. E64, o921.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAndreani, A., Burnelli, S., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Varoli, L. & Kunkel, M. W. (2006). J. Med. Chem. 49, 6922–6924.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDe, A. (2008). Acta Cryst. E64, o562.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGayathri, D., Velmurugan, D., Shanthi, G., Perumal, P. T. & Ravikumar, K. (2008). Acta Cryst. E64, o501–o502.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJohnson, K., Liu, L., Majdzadeh, N., Chavez, C., Chin, P. C., Morrison, B., Wang, L., Park, J., Chugh, P., Chen, H. & D'Mello, S. R. (2005). J. Neurochem. 93, 538–548.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, L., Tran, N., Tang, F., App, H., Hirth, P., McMahon, G. & Tang, C. (2003). J. Med. Chem. 46, 1116–1119.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds