organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,1,3-Tri­methyl-3-(4-nitro­phen­yl)indane

aCollege of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
*Correspondence e-mail: gaosunday@yahoo.com.cn

(Received 21 July 2008; accepted 28 August 2008; online 25 October 2008)

In the title compound, C18H19NO2, the five-membered ring of the indane fragment adopts an envelope conformation, with the unsubstituted C atom, acting as the flap atom, deviating by 0.412 (3) Å from the plane through the remaining four atoms. The dihedral angle between the nitro­phenyl ring and the indane benzene ring is 72.5 (1)°. The distances from the two O atoms to the plane of the adjacent benzene ring are 0.113 (4) and 0.064 (4) Å.

Related literature

For related literature, see: Bateman & Gordon (1976[Bateman, J. & Gordon, D. A. (1976). US Patent 3 983 092.]); Bezdek & Hrabak et al. (1979[Bezdek, M. & Hrabak, F. J. (1979). Polym. Sci. Polym. Chem. Ed. 17, 2857.]); Kumar et al. (1983[Kumar, D., Fohlen, G. M. & Parker, J. A. (1983). Macromol. Chem. 16, 1250-1257.]); Men et al. (2008[Men, J., Yang, M.-J., Jiang, Y., Chen, H. & Gao, G.-W. (2008). Acta Cryst. E64, o847.]); Hanaineh-Abdelnour et al. (1999[Hanaineh-Abdelnour, L., Bayyuk, S. & Theodorie, R. (1999). Tetrahedron, 50, 11859-11870.]).

[Scheme 1]

Experimental

Crystal data
  • C18H19NO2

  • Mr = 281.34

  • Monoclinic, P 21 /c

  • a = 11.305 (4) Å

  • b = 11.422 (2) Å

  • c = 11.963 (2) Å

  • β = 102.32 (4)°

  • V = 1509.1 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 294 (2) K

  • 0.48 × 0.42 × 0.40 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 3836 measured reflections

  • 2808 independent reflections

  • 1569 reflections with I > 2σ(I)

  • Rint = 0.005

  • 3 standard reflections every 200 reflections intensity decay: 0.3%

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.148

  • S = 1.02

  • 2808 reflections

  • 197 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: DIFRAC (Gabe & White, 1993[Gabe, E. J. & White, P. S. (1993). American Crystallographic Association Pittsburgh Meeting, Abstract PA104.]); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Maleimide and its substituted derivatives are well known monomers that have many applications in industry. It may be used to prepare heat resistant polymers or copolymers (Kumar et al., 1983; Bezdek & Hrabak et al., 1979). Excellent thermal properties of the maleimide polymers and copolymers have also attracted much attention (Hanaineh-Abdelnour et al., 1999). The title compound is an important intermediate for synthesis of maleimide and its substituted derivatives. (Bateman & Gordon, 1976). Phenylindane amines is prepared by a process comprising acid-catalyzed dimerization of α-methylstyrene and subsequent nitration and reduction of the 1,1,3-trimethyl-3-phenyl-2,3-dihydro-1H-indene (Bateman & Gordon, 1976).

In the molecule of the title compound (Fig.1), the bond lengths and angles of the phenylidane moiety are comparable with those observed in 1,1,3,-trimethyl-3-phenyl-2,3-dihydro-1H-indene (Men et al., 2008). Ring A (C1—C6) and B (C13—C18) are planar and have a dihedral angle of 72.5 (1)°. The B ring forms a dihedral angle of 27.1 (3)° with the plane defined by the indane Csp3 atoms C7, C9 and C10. The torsion angles O1—N1—C3—C2 and O2—N1—C3—C4 are -174.3 (2)° and -176.5 (2)°, respectively. The distances of the O atoms to the plane through the adjacent benzene ring are 0.113 (4) Å and 0.064 (4) Å, respectively. The five-membered ring of the indane fragment adopts an envelop conformation, with the unsubstituted C atom acting as the flag atom, deviating 0.412 (3) Å from the plane through the remaining four atoms.

Related literature top

For related literature, see: Bateman & Gordon (1976); Bezdek & Hrabak et al. (1979); Kumar et al. (1983); Men et al. (2008); Hanaineh-Abdelnour et al. (1999).

Experimental top

To a three-necked, 250 ml flask equipped with a mechanical stirrer, 23.6 g (0.1 mol) 1,1,3-trimethyl-3-phenylindane, dissolved in 75 ml chloroform, was added. The flask was placed in an ice bath at 273 K. A previously mixed acidic solution containing 39.6 ml H2SO4 and 13.2 ml HNO3 was added dropwise to the phenylidane solution over 4 h at 273 K. The chloroform phase was isolated and washed with an aqueous bicarbonate solution and then with distilled water until neutral. The chloroform was removed with a rotovaporator, thereby yielding a viscous yellow liquid, which was recrystallized from methanol, afforded a light yellow powder (22.0 g, yield 78%, m.p.452–455 K). Single crystals suitable for X-ray diffraction were obtained at room temperature by slow evaporation of ethyl acetate over a period of several days.

Refinement top

H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined with a riding model (U =0.06688–0.08804 Å2)

Computing details top

Data collection: DIFRAC (Gabe & White, 1993); cell refinement: DIFRAC (Gabe & White, 1993); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level.
1,1,3-Trimethyl-3-(4-nitrophenyl)indane top
Crystal data top
C18H19NO2F(000) = 600
Mr = 281.34Dx = 1.238 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.305 (4) ÅCell parameters from 25 reflections
b = 11.422 (2) Åθ = 4.6–7.5°
c = 11.963 (2) ŵ = 0.08 mm1
β = 102.32 (4)°T = 294 K
V = 1509.1 (7) Å3Block, colourless
Z = 40.48 × 0.42 × 0.40 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.005
Radiation source: fine-focus sealed tubeθmax = 25.6°, θmin = 1.8°
Graphite monochromatorh = 1313
ω/2θ scansk = 013
3836 measured reflectionsl = 914
2808 independent reflections3 standard reflections every 200 reflections
1569 reflections with I > 2σ(I) intensity decay: 0.3%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.148 w = 1/[σ2(Fo2) + (0.0825P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2808 reflectionsΔρmax = 0.20 e Å3
197 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.017 (3)
Crystal data top
C18H19NO2V = 1509.1 (7) Å3
Mr = 281.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.305 (4) ŵ = 0.08 mm1
b = 11.422 (2) ÅT = 294 K
c = 11.963 (2) Å0.48 × 0.42 × 0.40 mm
β = 102.32 (4)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.005
3836 measured reflections3 standard reflections every 200 reflections
2808 independent reflections intensity decay: 0.3%
1569 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 1.02Δρmax = 0.20 e Å3
2808 reflectionsΔρmin = 0.18 e Å3
197 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3433 (2)0.30042 (15)0.44243 (16)0.0958 (7)
O20.3595 (2)0.17051 (16)0.31987 (16)0.0899 (7)
N10.34612 (19)0.19883 (17)0.41338 (17)0.0587 (6)
C10.3077 (2)0.08995 (18)0.53719 (17)0.0510 (6)
H10.30210.16790.51420.067 (3)*
C20.3234 (2)0.00613 (19)0.45991 (18)0.0525 (6)
H20.32870.02630.38580.067 (3)*
C30.3312 (2)0.10856 (17)0.49490 (17)0.0454 (5)
C40.3226 (2)0.13981 (18)0.60329 (18)0.0523 (6)
H40.32650.21810.62510.067 (3)*
C50.3082 (2)0.05412 (19)0.67899 (17)0.0521 (6)
H50.30380.07500.75310.067 (3)*
C60.29992 (18)0.06319 (18)0.64821 (16)0.0412 (5)
C70.2858 (2)0.15488 (17)0.73769 (16)0.0447 (5)
C80.3994 (2)0.1497 (2)0.83509 (18)0.0616 (7)
H8A0.47040.15860.80390.088 (3)*
H8B0.40220.07560.87350.088 (3)*
H8C0.39630.21170.88860.088 (3)*
C90.1683 (2)0.13740 (19)0.78272 (18)0.0544 (6)
H9A0.14400.05580.77580.068 (5)*
H9B0.18190.15940.86280.068 (5)*
C100.0684 (2)0.21467 (19)0.71127 (19)0.0546 (6)
C110.0054 (3)0.1487 (2)0.6080 (2)0.0786 (8)
H11A0.05970.20220.56060.088 (3)*
H11B0.05130.08770.63420.088 (3)*
H11C0.04830.11510.56460.088 (3)*
C120.0166 (3)0.2629 (3)0.7825 (3)0.0865 (9)
H12A0.02890.30710.84550.088 (3)*
H12B0.05700.19920.81130.088 (3)*
H12C0.07560.31270.73590.088 (3)*
C130.1449 (2)0.30897 (18)0.67178 (18)0.0479 (6)
C140.1073 (3)0.4174 (2)0.6255 (2)0.0638 (7)
H140.02670.43990.61500.067 (3)*
C150.1915 (3)0.4909 (2)0.5954 (2)0.0656 (7)
H150.16720.56370.56400.067 (3)*
C160.3109 (3)0.4589 (2)0.6106 (2)0.0629 (7)
H160.36630.51010.58960.067 (3)*
C170.3492 (2)0.3515 (2)0.65694 (19)0.0539 (6)
H170.43020.32980.66800.067 (3)*
C180.2645 (2)0.27631 (17)0.68677 (16)0.0437 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.170 (2)0.0401 (10)0.0774 (12)0.0122 (11)0.0259 (13)0.0062 (9)
O20.152 (2)0.0637 (11)0.0666 (12)0.0012 (12)0.0525 (12)0.0106 (9)
N10.0753 (15)0.0474 (12)0.0535 (12)0.0026 (10)0.0136 (10)0.0071 (9)
C10.0736 (18)0.0365 (11)0.0463 (11)0.0024 (11)0.0204 (11)0.0039 (9)
C20.0739 (17)0.0448 (13)0.0426 (11)0.0010 (11)0.0208 (11)0.0024 (10)
C30.0503 (15)0.0411 (11)0.0457 (11)0.0029 (10)0.0124 (10)0.0051 (9)
C40.0687 (17)0.0375 (12)0.0505 (13)0.0069 (11)0.0124 (11)0.0045 (9)
C50.0695 (17)0.0468 (13)0.0414 (11)0.0073 (11)0.0152 (11)0.0075 (9)
C60.0439 (13)0.0387 (11)0.0424 (11)0.0003 (10)0.0126 (9)0.0014 (9)
C70.0515 (14)0.0420 (11)0.0419 (11)0.0028 (10)0.0131 (10)0.0008 (9)
C80.0662 (17)0.0681 (16)0.0482 (12)0.0069 (13)0.0069 (11)0.0068 (11)
C90.0644 (17)0.0517 (14)0.0530 (12)0.0029 (12)0.0258 (11)0.0020 (10)
C100.0490 (15)0.0538 (14)0.0648 (14)0.0004 (11)0.0208 (12)0.0004 (11)
C110.0667 (19)0.0772 (19)0.0885 (19)0.0178 (16)0.0091 (15)0.0037 (15)
C120.080 (2)0.081 (2)0.113 (2)0.0119 (17)0.0548 (19)0.0061 (17)
C130.0481 (15)0.0444 (12)0.0532 (12)0.0030 (11)0.0152 (10)0.0057 (10)
C140.0608 (17)0.0524 (15)0.0776 (16)0.0115 (13)0.0135 (13)0.0005 (12)
C150.083 (2)0.0401 (13)0.0751 (16)0.0022 (14)0.0209 (15)0.0023 (11)
C160.082 (2)0.0423 (14)0.0683 (15)0.0165 (13)0.0241 (14)0.0082 (11)
C170.0547 (16)0.0492 (13)0.0595 (13)0.0078 (12)0.0160 (11)0.0112 (11)
C180.0497 (15)0.0397 (12)0.0439 (11)0.0010 (10)0.0147 (10)0.0082 (9)
Geometric parameters (Å, º) top
O1—N11.214 (2)C9—H9A0.9700
O2—N11.205 (2)C9—H9B0.9700
N1—C31.454 (3)C10—C121.518 (3)
C1—C21.368 (3)C10—C131.518 (3)
C1—C61.384 (3)C10—C111.533 (3)
C1—H10.9300C11—H11A0.9600
C2—C31.372 (3)C11—H11B0.9600
C2—H20.9300C11—H11C0.9600
C3—C41.368 (3)C12—H12A0.9600
C4—C51.366 (3)C12—H12B0.9600
C4—H40.9300C12—H12C0.9600
C5—C61.387 (3)C13—C181.377 (3)
C5—H50.9300C13—C141.385 (3)
C6—C71.530 (3)C14—C151.374 (4)
C7—C181.513 (3)C14—H140.9300
C7—C81.540 (3)C15—C161.372 (3)
C7—C91.550 (3)C15—H150.9300
C8—H8A0.9600C16—C171.377 (3)
C8—H8B0.9600C16—H160.9300
C8—H8C0.9600C17—C181.389 (3)
C9—C101.540 (3)C17—H170.9300
O2—N1—O1122.6 (2)H9A—C9—H9B108.4
O2—N1—C3119.22 (19)C12—C10—C13112.8 (2)
O1—N1—C3118.2 (2)C12—C10—C11109.2 (2)
C2—C1—C6122.54 (19)C13—C10—C11110.26 (19)
C2—C1—H1118.7C12—C10—C9111.9 (2)
C6—C1—H1118.7C13—C10—C9100.42 (18)
C1—C2—C3118.08 (19)C11—C10—C9112.0 (2)
C1—C2—H2121.0C10—C11—H11A109.5
C3—C2—H2121.0C10—C11—H11B109.5
C4—C3—C2121.69 (19)H11A—C11—H11B109.5
C4—C3—N1119.52 (19)C10—C11—H11C109.5
C2—C3—N1118.78 (19)H11A—C11—H11C109.5
C5—C4—C3118.9 (2)H11B—C11—H11C109.5
C5—C4—H4120.5C10—C12—H12A109.5
C3—C4—H4120.5C10—C12—H12B109.5
C4—C5—C6121.78 (19)H12A—C12—H12B109.5
C4—C5—H5119.1C10—C12—H12C109.5
C6—C5—H5119.1H12A—C12—H12C109.5
C1—C6—C5116.97 (18)H12B—C12—H12C109.5
C1—C6—C7123.90 (18)C18—C13—C14120.2 (2)
C5—C6—C7119.12 (17)C18—C13—C10112.06 (18)
C18—C7—C6112.16 (15)C14—C13—C10127.8 (2)
C18—C7—C8112.04 (18)C15—C14—C13118.7 (3)
C6—C7—C8107.99 (17)C15—C14—H14120.6
C18—C7—C9100.55 (17)C13—C14—H14120.6
C6—C7—C9112.34 (17)C16—C15—C14121.3 (2)
C8—C7—C9111.73 (18)C16—C15—H15119.4
C7—C8—H8A109.5C14—C15—H15119.4
C7—C8—H8B109.5C15—C16—C17120.4 (2)
H8A—C8—H8B109.5C15—C16—H16119.8
C7—C8—H8C109.5C17—C16—H16119.8
H8A—C8—H8C109.5C16—C17—C18118.7 (2)
H8B—C8—H8C109.5C16—C17—H17120.7
C10—C9—C7108.33 (17)C18—C17—H17120.7
C10—C9—H9A110.0C13—C18—C17120.7 (2)
C7—C9—H9A110.0C13—C18—C7111.63 (19)
C10—C9—H9B110.0C17—C18—C7127.7 (2)
C7—C9—H9B110.0
C6—C1—C2—C30.2 (4)C7—C9—C10—C1191.7 (2)
C1—C2—C3—C40.5 (4)C12—C10—C13—C18134.8 (2)
C1—C2—C3—N1179.2 (2)C11—C10—C13—C18102.8 (2)
O2—N1—C3—C4176.5 (2)C9—C10—C13—C1815.5 (2)
O1—N1—C3—C44.4 (3)C12—C10—C13—C1445.1 (3)
O2—N1—C3—C24.9 (3)C11—C10—C13—C1477.3 (3)
O1—N1—C3—C2174.3 (2)C9—C10—C13—C14164.4 (2)
C2—C3—C4—C51.2 (4)C18—C13—C14—C150.1 (3)
N1—C3—C4—C5179.8 (2)C10—C13—C14—C15179.7 (2)
C3—C4—C5—C61.2 (3)C13—C14—C15—C160.2 (4)
C2—C1—C6—C50.3 (3)C14—C15—C16—C170.0 (4)
C2—C1—C6—C7178.3 (2)C15—C16—C17—C180.5 (3)
C4—C5—C6—C10.4 (3)C14—C13—C18—C170.6 (3)
C4—C5—C6—C7179.1 (2)C10—C13—C18—C17179.25 (18)
C1—C6—C7—C187.7 (3)C14—C13—C18—C7179.66 (18)
C5—C6—C7—C18173.75 (19)C10—C13—C18—C70.4 (2)
C1—C6—C7—C8116.2 (2)C16—C17—C18—C130.8 (3)
C5—C6—C7—C862.3 (3)C16—C17—C18—C7179.52 (19)
C1—C6—C7—C9120.1 (2)C6—C7—C18—C13103.5 (2)
C5—C6—C7—C961.4 (3)C8—C7—C18—C13134.8 (2)
C18—C7—C9—C1025.7 (2)C9—C7—C18—C1316.0 (2)
C6—C7—C9—C1093.8 (2)C6—C7—C18—C1776.8 (3)
C8—C7—C9—C10144.68 (18)C8—C7—C18—C1744.8 (3)
C7—C9—C10—C12145.3 (2)C9—C7—C18—C17163.6 (2)
C7—C9—C10—C1325.3 (2)

Experimental details

Crystal data
Chemical formulaC18H19NO2
Mr281.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)11.305 (4), 11.422 (2), 11.963 (2)
β (°) 102.32 (4)
V3)1509.1 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.48 × 0.42 × 0.40
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3836, 2808, 1569
Rint0.005
(sin θ/λ)max1)0.607
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.148, 1.02
No. of reflections2808
No. of parameters197
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.18

Computer programs: DIFRAC (Gabe & White, 1993), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

 

Acknowledgements

The authors are grateful to the National Undergraduates' Innovative Experiment Project of China for financial support and thank Mr Zhi-Hua Mao of Sichuan University for the X-ray data collection.

References

First citationBateman, J. & Gordon, D. A. (1976). US Patent 3 983 092.  Google Scholar
First citationBezdek, M. & Hrabak, F. J. (1979). Polym. Sci. Polym. Chem. Ed. 17, 2857.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGabe, E. J. & White, P. S. (1993). American Crystallographic Association Pittsburgh Meeting, Abstract PA104.  Google Scholar
First citationHanaineh-Abdelnour, L., Bayyuk, S. & Theodorie, R. (1999). Tetrahedron, 50, 11859–11870.  Web of Science CrossRef Google Scholar
First citationKumar, D., Fohlen, G. M. & Parker, J. A. (1983). Macromol. Chem. 16, 1250–1257.  CAS Google Scholar
First citationMen, J., Yang, M.-J., Jiang, Y., Chen, H. & Gao, G.-W. (2008). Acta Cryst. E64, o847.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds