metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-acetato-κ3O,O′:O;κ3O:O,O′-bis­­[(acetato-κ2O,O′)(1,10-phenan­throline-κ2N,N′)cadmium(II)]

aUniversidad Nacional de la Patagonia, Sede Trelew, 9100 Trelew, Chubut, Argentina, bCenPat, CONICET, 9120 Puerto Madryn, Chubut, Argentina, cUniversidad Nacional de la Patagonia, Sede Puerto Madryn, Argentina, dDepartamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile and CIMAT, Casilla 487-3, Santiago de Chile, Chile, and eDepartamento de Física, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina
*Correspondence e-mail: unharvey@cenpat.edu.ar

(Received 16 August 2008; accepted 15 September 2008; online 22 October 2008)

The title compound, [Cd2(C2H3O2)4(C12H8N2)2], consists of dimeric units built up around a crystallographic symmetry centre. Each cadmium(II) unit is chelated by a 1,10-phenanthroline (phen) group and two acetate ligands, one of which also acts as a bridge, linking both seven-coordinated cadmium(II) centres. The crystal structure is governed by a single ππ inter­action between stacked phen groups [centroid–centroid distance 3.5209 (11) Å], leading to a planar structure parallel to (010).

Related literature

For related literature, see: Brown & Altermatt (1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]); Janiak (2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3898.]); Harvey et al. (2006[Harvey, M. A., Baggio, S. & Baggio, R. (2006). Acta Cryst. B62, 1038-1042.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd2(C2H3O2)4(C12H8N2)2]

  • Mr = 821.40

  • Orthorhombic, P b c a

  • a = 8.4422 (7) Å

  • b = 15.6384 (13) Å

  • c = 22.2195 (18) Å

  • V = 2933.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.51 mm−1

  • T = 150 (2) K

  • 0.50 × 0.40 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.50, Tmax = 0.74

  • 22676 measured reflections

  • 3331 independent reflections

  • 3062 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.064

  • S = 1.06

  • 3331 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 1.58 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—O13 2.2594 (15)
Cd1—O14 2.3239 (13)
Cd1—N1 2.3466 (15)
Cd1—N2 2.3890 (18)
Cd1—O14i 2.4398 (13)
Cd1—O24 2.4561 (15)
Cd1—O23 2.5425 (16)
Symmetry code: (i) -x+2, -y+1, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

The title compound consists of dimeric units located around a crystallographic symmetry centre (Fig. 1) and made up of two Cd cations, two 1,10-phenanthroline (phen) molecules and four acetate anions. Each cadmium(II) unit is chelated by a phen group (through both nitrogen atoms), and two acetates (through their carboxylato oxygens). A seventh coordination bond adds to these three chelating bites, by way of one of the latter oxygens which acts also as a bridge linking both cadmium(II) centres (Fig. 1). Table 1 presents the coordination distances achieved. The Cd-Cd distance (Cd1···Cd1i: 3.846 (1)Å, (i): 2-x, 1-y, 1-z) as well as the O-Cd-O angle (O14-Cd1-O14i: 72.37 (5) °) are unexceptional.

This coordination scheme of the bis(µ2-acetato)-bis(acetato)-bis(L) type (L: a chelating aromatic amine) leading to a dimeric unit is not common among transition metal cations and in fact this is the first case reported.

The description of coordination geometries when chelating ligands are involved usually poses intrinsic difficulties which can be elegantly surmounted through a vectorial description of the ligand geometry, as proposed by Harvey et al. (2006) based on the Bond Valence Theory (Brown and Altermatt, 1985). When applied to the present case, the geometrical outcome turns out to be a tetrahedron, with angles between ligand vectors spanning the range 91.3 (1)–124.6 (1)°. The fact that the two main values associated with the theory, i.e. the bond valence sum (2.01 valence units, (v.u).) and the modulus of the bond valence vector (0.06 v.u.), agree almost perfectly with expected values (2.00 v.u. and 0.00 v.u., respectively) suggests a significant stability of this coordination sphere.

Regarding non-covalent interactions, there are just a few and not too strong either. The only hydrogen bond present (Table 2) is a non conventional, intramolecular one linking one of the methyl hydrogens to a carboxylato oxygen (Fig. 1). In fact the packing is governed by a single π···π interaction (Table 3 and Fig. 2) between staked phen groups, which gives raise to weakly interacting planar structures paralell to (010).

Related literature top

For related literature, see: Brown & Altermatt (1985); Janiak (2000). Harvey et al. (2006).

Experimental top

The title compound was obtained by direct mixing of two 0.15 M solutions of cadmium acetate dihydrate and 1,10-phenanthroline in dimethylformamide. Colorless needles began to develop at once, and after one day adequate crystals for X-ray diffraction could be extracted.

Refinement top

The hydrogen atoms were placed in geometrically idealized positions and allowed to ride on their parent atoms with C—H = 0.96–0.98Å and Uiso(H) = 1.2/1.5× Uequiv(C). Methyl groups were allowed to rotate around their 3-fold axis as well. A peak of ca. 1.5 eA-3 appears at 0.05 Å from Cd1. The next largest peak is less than 1.0 eA-3 in height.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The dimeric unit of the title compound: the symmetry-independent part shown in full thermal ellipsoids, drawn at the 40% level. The intradimeric H-bond is shown in dashed lines.
[Figure 2] Fig. 2. Packing view of the title compund down the [010] direction, showing the π···π bonded two-dimensional network.
Di-µ-acetato- κ3O,O':O;κ3O:O,O'- bis[(acetato-κ2O,O')(1,10-phenanthroline- κ2N,N')cadmium(II)] top
Crystal data top
[Cd2(C2H3O2)4(C12H8N2)2]F(000) = 1632
Mr = 821.40Dx = 1.860 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 11288 reflections
a = 8.4422 (7) Åθ = 2.7–27.8°
b = 15.6384 (13) ŵ = 1.51 mm1
c = 22.2195 (18) ÅT = 150 K
V = 2933.5 (4) Å3Block, colourless
Z = 40.50 × 0.40 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3331 independent reflections
Radiation source: fine-focus sealed tube3062 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 27.9°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1011
Tmin = 0.50, Tmax = 0.74k = 1920
22676 measured reflectionsl = 2827
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0401P)2 + 1.4472P]
where P = (Fo2 + 2Fc2)/3
3331 reflections(Δ/σ)max = 0.003
210 parametersΔρmax = 1.58 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
[Cd2(C2H3O2)4(C12H8N2)2]V = 2933.5 (4) Å3
Mr = 821.40Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 8.4422 (7) ŵ = 1.51 mm1
b = 15.6384 (13) ÅT = 150 K
c = 22.2195 (18) Å0.50 × 0.40 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3331 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
3062 reflections with I > 2σ(I)
Tmin = 0.50, Tmax = 0.74Rint = 0.020
22676 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.064H-atom parameters constrained
S = 1.06Δρmax = 1.58 e Å3
3331 reflectionsΔρmin = 0.40 e Å3
210 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd11.020491 (17)0.537614 (8)0.417981 (6)0.01764 (7)
N10.88137 (18)0.41531 (9)0.38716 (7)0.0202 (3)
N21.02282 (19)0.52821 (10)0.31067 (8)0.0216 (4)
C10.8037 (2)0.36453 (13)0.42461 (9)0.0235 (4)
H10.81290.37460.46660.028*
C20.7084 (2)0.29656 (12)0.40510 (9)0.0254 (4)
H20.65190.26260.43330.030*
C30.6983 (2)0.28003 (12)0.34466 (9)0.0262 (4)
H30.63640.23340.33050.031*
C40.7800 (2)0.33252 (12)0.30367 (9)0.0239 (4)
C50.7738 (2)0.32032 (14)0.23972 (9)0.0302 (4)
H50.71600.27340.22380.036*
C60.8487 (3)0.37424 (14)0.20153 (9)0.0312 (5)
H60.84410.36410.15940.037*
C70.9354 (2)0.44695 (13)0.22400 (9)0.0256 (4)
C81.0118 (2)0.50644 (16)0.18593 (10)0.0294 (5)
H81.00890.49930.14350.035*
C91.0896 (3)0.57412 (14)0.21075 (9)0.0308 (4)
H91.14160.61470.18580.037*
C101.0919 (2)0.58316 (13)0.27331 (9)0.0273 (4)
H101.14550.63100.29000.033*
C110.9455 (2)0.46042 (11)0.28630 (9)0.0209 (4)
C120.8686 (2)0.40117 (11)0.32713 (8)0.0199 (4)
C131.2479 (2)0.66285 (12)0.41072 (8)0.0207 (4)
C231.3877 (3)0.72303 (14)0.40927 (9)0.0286 (4)
H23A1.37590.76290.37550.043*
H23B1.48550.69010.40430.043*
H23C1.39230.75520.44710.043*
O131.27330 (18)0.58473 (9)0.42176 (6)0.0282 (3)
O231.11146 (17)0.69086 (10)0.40168 (8)0.0354 (3)
C140.7547 (2)0.58393 (11)0.48087 (8)0.0192 (3)
C240.6115 (2)0.59980 (13)0.51958 (9)0.0252 (4)
H24A0.61700.65760.53650.038*
H24B0.60880.55790.55230.038*
H24C0.51550.59430.49510.038*
O140.88527 (15)0.56447 (8)0.50710 (6)0.0229 (3)
O240.74741 (18)0.59082 (9)0.42510 (6)0.0247 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01769 (10)0.01872 (10)0.01652 (10)0.00151 (4)0.00046 (4)0.00019 (4)
N10.0207 (7)0.0190 (7)0.0210 (7)0.0005 (6)0.0011 (6)0.0009 (6)
N20.0212 (9)0.0241 (8)0.0196 (8)0.0004 (6)0.0005 (6)0.0009 (6)
C10.0231 (10)0.0235 (10)0.0238 (9)0.0010 (8)0.0003 (7)0.0000 (7)
C20.0223 (9)0.0189 (9)0.0350 (10)0.0002 (7)0.0037 (8)0.0016 (8)
C30.0209 (9)0.0206 (9)0.0372 (11)0.0006 (7)0.0017 (8)0.0047 (8)
C40.0205 (9)0.0224 (9)0.0290 (10)0.0038 (7)0.0037 (7)0.0060 (7)
C50.0285 (10)0.0310 (11)0.0310 (10)0.0005 (8)0.0076 (8)0.0124 (9)
C60.0326 (11)0.0398 (12)0.0213 (9)0.0053 (9)0.0055 (8)0.0101 (8)
C70.0231 (10)0.0318 (10)0.0220 (9)0.0070 (8)0.0013 (8)0.0021 (8)
C80.0299 (11)0.0401 (13)0.0180 (9)0.0071 (9)0.0009 (7)0.0013 (9)
C90.0321 (11)0.0364 (12)0.0240 (10)0.0012 (9)0.0056 (8)0.0074 (8)
C100.0273 (10)0.0292 (10)0.0255 (10)0.0034 (8)0.0028 (8)0.0029 (8)
C110.0168 (9)0.0213 (9)0.0248 (10)0.0044 (7)0.0034 (8)0.0024 (7)
C120.0169 (8)0.0213 (9)0.0217 (9)0.0032 (7)0.0018 (7)0.0028 (7)
C130.0198 (9)0.0245 (10)0.0179 (8)0.0030 (8)0.0003 (7)0.0008 (7)
C230.0239 (10)0.0263 (10)0.0355 (11)0.0050 (8)0.0032 (8)0.0055 (8)
O130.0225 (7)0.0234 (7)0.0387 (8)0.0037 (6)0.0055 (6)0.0065 (6)
O230.0200 (7)0.0277 (8)0.0584 (10)0.0019 (6)0.0047 (7)0.0034 (7)
C140.0204 (8)0.0138 (8)0.0233 (9)0.0002 (6)0.0008 (7)0.0005 (7)
C240.0228 (9)0.0286 (10)0.0243 (9)0.0047 (8)0.0014 (7)0.0004 (8)
O140.0195 (6)0.0261 (7)0.0229 (6)0.0029 (5)0.0011 (5)0.0022 (5)
O240.0248 (7)0.0291 (7)0.0201 (6)0.0023 (6)0.0005 (5)0.0011 (5)
Geometric parameters (Å, º) top
Cd1—O132.2594 (15)C6—H60.9500
Cd1—O142.3239 (13)C7—C111.403 (3)
Cd1—N12.3466 (15)C7—C81.413 (3)
Cd1—N22.3890 (18)C8—C91.362 (3)
Cd1—O14i2.4398 (13)C8—H80.9500
Cd1—O242.4561 (15)C9—C101.397 (3)
Cd1—O232.5425 (16)C9—H90.9500
N1—C11.324 (2)C10—H100.9500
N1—C121.356 (2)C11—C121.450 (3)
N2—C101.329 (3)C13—O231.248 (2)
N2—C111.358 (2)C13—O131.265 (2)
C1—C21.402 (3)C13—C231.510 (3)
C1—H10.9500C23—H23A0.9800
C2—C31.370 (3)C23—H23B0.9800
C2—H20.9500C23—H23C0.9800
C3—C41.407 (3)C14—O241.246 (2)
C3—H30.9500C14—O141.283 (2)
C4—C121.409 (3)C14—C241.504 (2)
C4—C51.435 (3)C24—H24A0.9800
C5—C61.353 (3)C24—H24B0.9800
C5—H50.9500C24—H24C0.9800
C6—C71.442 (3)O14—Cd1i2.4398 (13)
O13—Cd1—O14111.92 (5)C8—C7—C6122.93 (19)
O13—Cd1—N1138.54 (5)C9—C8—C7119.28 (19)
O14—Cd1—N198.64 (5)C9—C8—H8120.4
O13—Cd1—N292.83 (5)C7—C8—H8120.4
O14—Cd1—N2149.95 (5)C8—C9—C10119.21 (19)
N1—Cd1—N270.28 (5)C8—C9—H9120.4
O13—Cd1—O14i83.11 (5)C10—C9—H9120.4
O14—Cd1—O14i72.37 (5)N2—C10—C9123.3 (2)
N1—Cd1—O14i80.16 (5)N2—C10—H10118.3
N2—Cd1—O14i129.64 (5)C9—C10—H10118.3
O13—Cd1—O24140.70 (6)N2—C11—C7122.70 (19)
O14—Cd1—O2454.75 (4)N2—C11—C12117.68 (18)
N1—Cd1—O2479.93 (5)C7—C11—C12119.61 (17)
N2—Cd1—O2495.33 (5)N1—C12—C4122.03 (17)
O14i—Cd1—O24118.94 (4)N1—C12—C11118.39 (16)
O13—Cd1—O2354.03 (5)C4—C12—C11119.55 (17)
O14—Cd1—O2395.70 (5)O23—C13—O13121.80 (18)
N1—Cd1—O23151.38 (5)O23—C13—C23119.94 (18)
N2—Cd1—O2385.03 (6)O13—C13—C23118.26 (18)
O14i—Cd1—O23127.99 (5)O23—C13—Cd167.36 (11)
O24—Cd1—O2388.47 (5)O13—C13—Cd154.44 (10)
C1—N1—C12118.75 (16)C23—C13—Cd1172.67 (14)
C1—N1—Cd1123.59 (13)C13—C23—H23A109.5
C12—N1—Cd1117.36 (12)C13—C23—H23B109.5
C10—N2—C11117.80 (18)H23A—C23—H23B109.5
C10—N2—Cd1125.95 (13)C13—C23—H23C109.5
C11—N2—Cd1116.25 (13)H23A—C23—H23C109.5
N1—C1—C2123.00 (18)H23B—C23—H23C109.5
N1—C1—H1118.5C13—O13—Cd198.47 (12)
C2—C1—H1118.5C13—O23—Cd185.70 (12)
C3—C2—C1118.82 (18)O24—C14—O14120.99 (17)
C3—C2—H2120.6O24—C14—C24120.98 (17)
C1—C2—H2120.6O14—C14—C24118.02 (16)
C2—C3—C4119.59 (18)O24—C14—Cd163.65 (10)
C2—C3—H3120.2O14—C14—Cd157.71 (9)
C4—C3—H3120.2C24—C14—Cd1173.24 (13)
C3—C4—C12117.74 (17)C14—C24—H24A109.5
C3—C4—C5123.09 (18)C14—C24—H24B109.5
C12—C4—C5119.15 (18)H24A—C24—H24B109.5
C6—C5—C4121.43 (19)C14—C24—H24C109.5
C6—C5—H5119.3H24A—C24—H24C109.5
C4—C5—H5119.3H24B—C24—H24C109.5
C5—C6—C7120.77 (18)C14—O14—Cd194.46 (10)
C5—C6—H6119.6C14—O14—Cd1i138.16 (11)
C7—C6—H6119.6Cd1—O14—Cd1i107.63 (5)
C11—C7—C8117.7 (2)C14—O24—Cd189.32 (11)
C11—C7—C6119.41 (19)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C24—H24B···O13i0.982.513.313 (2)139
Symmetry code: (i) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cd2(C2H3O2)4(C12H8N2)2]
Mr821.40
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)150
a, b, c (Å)8.4422 (7), 15.6384 (13), 22.2195 (18)
V3)2933.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.51
Crystal size (mm)0.50 × 0.40 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.50, 0.74
No. of measured, independent and
observed [I > 2σ(I)] reflections
22676, 3331, 3062
Rint0.020
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.064, 1.06
No. of reflections3331
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.58, 0.40

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Selected bond lengths (Å) top
Cd1—O132.2594 (15)Cd1—O14i2.4398 (13)
Cd1—O142.3239 (13)Cd1—O242.4561 (15)
Cd1—N12.3466 (15)Cd1—O232.5425 (16)
Cd1—N22.3890 (18)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C24—H24B···O13i0.982.513.313 (2)139
Symmetry code: (i) x+2, y+1, z+1.
Table 3. π-π interactions (Å, °) for (I) top
Group 1/Group 2ccdipdsa
Cg1/Cg2ii3.5209 (11)3.50 (1)4(2)
Symmetry code: (ii) 1/2+x,y,1/2-z

Cg1: N2,C10,C9,C8,C7,C11 Cg2: C4,C5,C6,C7,C11,C12

ccd: center-to-center distance (distance between ring centroids); sa: mean slippage angle (angle subtended by the intercentroid vector to the plane normal); ipd: mean interplanar distance (distance from one plane to the neighbouring centroid). For details, see Janiak (2000).
 

Acknowledgements

We acknowledge the Spanish Research Council (CSIC) for providing us with a free-of-charge licence for the CSD (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHarvey, M. A., Baggio, S. & Baggio, R. (2006). Acta Cryst. B62, 1038–1042.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3898.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds