metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[2-hydr­­oxy-N′-(2-hy­droxy­benzo­yl)benzohydrazitato]di­pyridine­cadmium(II)

aDepartment of Chemistry, Dezhou University, Dezhou 253023, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
*Correspondence e-mail: lidacheng@lcu.edu.cn

(Received 8 August 2008; accepted 22 October 2008; online 31 October 2008)

The title complex, [Cd(C14H11N2O4)2(C5H5N)2], exhibits crystallographic twofold symmetry. The CdII atom is located on the twofold rotation axis and reveals a slightly distorted octa­hedral coordination defined by four atoms (N2O2) from two symmetry-related chelate ligands and two pyridine N atoms. Intra­molecular O—H⋯O and N—H⋯O hydrogen bonds stabilize the mol­ecular conformation while inter­molecular O—H⋯O hydrogen bonding links mol­ecules into a triad, generating a helix along the threefold screw axis.

Related literature

Three manganese metallacrowns with unsymmetrical aroylhydrazine ligands were synthesized and reported by Dou et al. (2006[Dou, J. M., Liu, M. L., Li, D. C. & Wang, D. Q. (2006). Eur. J. Inorg. Chem. 23, 4866-4871.]) and John et al. (2006[John, R. P., Park, J., Moon, D., Lee, K. & Lah, M. S. (2006). Chem. Commun. pp. 3699-3701.]). For the crystal structure of an iron compound with N,N′-bis-picolinoyl hydrazine, see: Bernhardt et al. (2005[Bernhardt, P. V., Chin, P., Sharpe, P. C., Wang, J. C. & Richardson, D. R. (2005). Biol. Inorg. Chem. 10, 761-777.]). For a nickel complex formed by N,N′-disalicyloylhydrazine, see: Chen et al. (2007[Chen, Y.-T., Dou, J.-M., Li, D.-C., Wang, D.-Q. & Zhu, Y.-H. (2007). Acta Cryst. E63, m2503-m2504.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C14H11N2O4)2(C5H5N)2]

  • Mr = 813.10

  • Trigonal, P 31 21

  • a = 13.0380 (10) Å

  • c = 18.069 (3) Å

  • V = 2660.0 (5) Å3

  • Z = 3

  • Mo Kα radiation

  • μ = 0.68 mm−1

  • T = 298 (2) K

  • 0.40 × 0.38 × 0.35 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.773, Tmax = 0.797

  • 13955 measured reflections

  • 3146 independent reflections

  • 2750 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.071

  • S = 1.00

  • 3146 reflections

  • 241 parameters

  • H-atom parameters constrained

  • Δρmax = 0.90 e Å−3

  • Δρmin = −0.32 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1353 Friedel pairs

  • Flack parameter: −0.06 (3)

Table 1
Selected bond lengths (Å)

Cd1—N1 2.331 (3)
Cd1—N3 2.337 (3)
Cd1—O1 2.389 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O3 0.82 1.92 2.638 (4) 145
N2—H2⋯O2 0.86 1.94 2.624 (4) 135
O2—H2A⋯O3i 0.82 1.88 2.639 (3) 153
Symmetry code: (i) [x-y, -y, -z+{\script{5\over 3}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Metal complexes with aroylhydrazine ligands are of increasing attention due to their interesting chemical activities (John et al. 2006; Dou et al., 2006). However, the research on the compounds with symmetrical diaroylhydrazine ligands was limited (Bernhardt et al., 2005; Chen et al., 2007). As an extension of our work on the structural characterization of these compounds, the title complex, (I), is synthesized and characterized by X-ray structure analysis. The complex (I) exhibits a twofold rotation symmetry. It comprises of one CdII atom at special position at the twofold rotation axes coordinated by two ligands and two pyridines (Fig. 1 and Table 1). Each ligand acts as the bidentate via the iminoacyl groups forming two five-membered rings around metal ion with the dihedral angle of 59.71 (4)°.

Intramolecular O4—H4···O3 and N2—H2···O2 hydrogen bonds stabilizes the molecular conformation. There is also an intermolecular hydrogen bond O—H···O hydrogen bond [ 2.639 (3) Å] (Table 2) assembling three molecules into a triad, that is a basic structural element of a helix along [0 0 1] direction (Fig. 2).

Related literature top

Three manganese metallacrowns with unsymmetrical aroylhydrazine ligands were synthesized and reported by Dou et al. (2006) and John et al. (2006). For the crystal structure of an iron compound with N,N'-bis-picolinoyl hydrazine, see: Bernhardt et al. (2005). For a nickel complex formed by N,N'-disalicyloylhydrazine reported by Chen et al. (2007).

Experimental top

The solution of Cd(NO3)24H2O (0.123 g, 0.4 mmol) in methanol (10 mL) was added to the mixture of 1,2-disalicyloylhydrazine (0.054 g, 0.2 mmol) and sodium hydroxide (0.032 g, 0.8 mmol) in pyridine (10 mL). A colourless solution was generated after stirring for two hours at room temperature. The solution was allowed to stand for 2 weeks, whereupon white block crystals were obtained. Yield: 0.058 g, 77%. m. p.> 573 K. Anal. for C38H32CdN6O8: Calc. C, 56.08; H, 3.93; N, 10.33; Found: C, 56.54; H, 3.71; N, 10.54%. The No. of CCDC: 686345.

Refinement top

All H atoms were placed in geometrically idealized positions and treated as riding on their parent atoms with C(sp2 hybrid)-H distances of 0.93Å (Uiso(H)=1.2Ueq(C)).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Supramolecular structure of the title complex in the direction [001].
Bis[2-hydroxy-N'-(2-hydroxybenzoyl)benzohydrazitato]dipyridinecadmium(II) top
Crystal data top
[Cd(C14H11N2O4)2(C5H5N)2]Dx = 1.523 Mg m3
Mr = 813.10Mo Kα radiation, λ = 0.71073 Å
Trigonal, P3121Cell parameters from 5141 reflections
a = 13.038 (1) Åθ = 2.9–22.9°
c = 18.069 (3) ŵ = 0.68 mm1
V = 2660.0 (5) Å3T = 298 K
Z = 3Block, colourless
F(000) = 12420.40 × 0.38 × 0.35 mm
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3146 independent reflections
Radiation source: fine-focus sealed tube2750 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1515
Tmin = 0.773, Tmax = 0.797k = 1515
13955 measured reflectionsl = 2110
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.041P)2 + 0.5675P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
3146 reflectionsΔρmax = 0.90 e Å3
241 parametersΔρmin = 0.32 e Å3
0 restraintsAbsolute structure: Flack (1983), 1353 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.06 (3)
Crystal data top
[Cd(C14H11N2O4)2(C5H5N)2]Z = 3
Mr = 813.10Mo Kα radiation
Trigonal, P3121µ = 0.68 mm1
a = 13.038 (1) ÅT = 298 K
c = 18.069 (3) Å0.40 × 0.38 × 0.35 mm
V = 2660.0 (5) Å3
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3146 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2750 reflections with I > 2σ(I)
Tmin = 0.773, Tmax = 0.797Rint = 0.033
13955 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.071Δρmax = 0.90 e Å3
S = 1.00Δρmin = 0.32 e Å3
3146 reflectionsAbsolute structure: Flack (1983), 1353 Friedel pairs
241 parametersAbsolute structure parameter: 0.06 (3)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd11.00000.45722 (2)0.66670.04088 (11)
N10.8620 (2)0.2612 (2)0.69499 (15)0.0387 (7)
N20.8356 (3)0.2467 (3)0.77051 (14)0.0406 (6)
H20.80050.17710.78970.049*
N30.8726 (2)0.5186 (3)0.61934 (16)0.0449 (7)
O10.9119 (2)0.4418 (2)0.78506 (13)0.0517 (7)
O20.7567 (3)0.1137 (2)0.88928 (14)0.0584 (7)
H2A0.72900.05610.91700.088*
O30.8013 (3)0.06392 (19)0.69676 (12)0.0558 (6)
O40.9060 (3)0.0079 (3)0.59233 (16)0.0797 (10)
H40.87600.00220.63310.120*
C10.8648 (3)0.3405 (3)0.81227 (18)0.0391 (8)
C20.8409 (3)0.3228 (3)0.89327 (19)0.0403 (8)
C30.7918 (3)0.2136 (4)0.9296 (2)0.0454 (9)
C40.7786 (4)0.2086 (4)1.0058 (2)0.0548 (10)
H4A0.74670.13601.02980.066*
C50.8122 (4)0.3102 (4)1.0464 (2)0.0614 (11)
H50.80120.30531.09740.074*
C60.8618 (4)0.4184 (4)1.0120 (2)0.0556 (10)
H60.88580.48721.03930.067*
C70.8753 (3)0.4233 (3)0.9357 (2)0.0477 (9)
H70.90850.49650.91230.057*
C80.8396 (3)0.1621 (3)0.66318 (18)0.0402 (8)
C90.8647 (3)0.1680 (3)0.58281 (18)0.0415 (8)
C100.9002 (4)0.0938 (4)0.5519 (2)0.0547 (10)
C110.9321 (4)0.1039 (4)0.4769 (2)0.0687 (13)
H110.95920.05620.45680.082*
C120.9225 (4)0.1852 (4)0.4338 (2)0.0673 (12)
H120.94350.19260.38410.081*
C130.8832 (4)0.2547 (4)0.4624 (2)0.0629 (12)
H130.87540.30800.43200.075*
C140.8542 (3)0.2472 (4)0.5364 (2)0.0516 (9)
H140.82740.29580.55550.062*
C150.9145 (4)0.6185 (4)0.5806 (2)0.0550 (10)
H150.99420.65870.56750.066*
C160.8437 (4)0.6645 (4)0.5591 (2)0.0636 (12)
H160.87600.73580.53340.076*
C170.7270 (4)0.6045 (4)0.5759 (2)0.0627 (12)
H170.67770.63350.56160.075*
C180.6827 (3)0.5002 (4)0.6144 (2)0.0591 (11)
H180.60260.45700.62630.071*
C190.7572 (3)0.4610 (3)0.6349 (2)0.0535 (9)
H190.72620.39030.66120.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0445 (2)0.03796 (14)0.04239 (18)0.02224 (11)0.00869 (17)0.00434 (9)
N10.0392 (17)0.0368 (16)0.0340 (15)0.0144 (14)0.0019 (12)0.0033 (12)
N20.0437 (16)0.0396 (16)0.0347 (15)0.0179 (13)0.0072 (13)0.0058 (14)
N30.0448 (18)0.0430 (17)0.0494 (17)0.0236 (15)0.0064 (13)0.0045 (14)
O10.0692 (18)0.0398 (14)0.0459 (15)0.0271 (13)0.0147 (13)0.0067 (12)
O20.080 (2)0.0438 (15)0.0434 (15)0.0254 (14)0.0077 (13)0.0107 (13)
O30.0734 (19)0.0376 (13)0.0493 (14)0.0223 (15)0.0222 (15)0.0080 (11)
O40.118 (3)0.081 (2)0.066 (2)0.070 (2)0.0278 (19)0.0082 (17)
C10.0388 (19)0.041 (2)0.041 (2)0.0226 (17)0.0035 (16)0.0036 (17)
C20.042 (2)0.049 (2)0.0364 (18)0.0282 (17)0.0029 (15)0.0027 (16)
C30.044 (2)0.056 (2)0.042 (2)0.0290 (18)0.0009 (16)0.0031 (18)
C40.065 (3)0.066 (3)0.042 (2)0.040 (2)0.0030 (19)0.012 (2)
C50.074 (3)0.092 (4)0.037 (2)0.055 (3)0.005 (2)0.006 (2)
C60.064 (3)0.073 (3)0.048 (2)0.048 (2)0.0070 (19)0.011 (2)
C70.055 (2)0.049 (2)0.049 (2)0.0344 (19)0.0047 (17)0.0020 (17)
C80.0341 (18)0.0382 (17)0.0420 (17)0.0133 (15)0.0033 (15)0.0030 (14)
C90.038 (2)0.0391 (17)0.0363 (16)0.0113 (17)0.0027 (16)0.0017 (13)
C100.063 (3)0.049 (2)0.047 (2)0.025 (2)0.005 (2)0.0025 (18)
C110.077 (3)0.076 (3)0.046 (2)0.033 (3)0.011 (2)0.011 (2)
C120.065 (3)0.073 (3)0.039 (2)0.016 (2)0.004 (2)0.006 (2)
C130.065 (3)0.061 (2)0.040 (2)0.014 (2)0.010 (2)0.0026 (18)
C140.047 (2)0.044 (2)0.050 (2)0.0129 (17)0.0035 (18)0.0011 (19)
C150.050 (2)0.056 (2)0.060 (3)0.027 (2)0.0090 (18)0.012 (2)
C160.069 (3)0.067 (3)0.062 (2)0.040 (2)0.007 (2)0.025 (2)
C170.065 (3)0.088 (3)0.053 (2)0.051 (3)0.006 (2)0.002 (2)
C180.041 (2)0.074 (3)0.062 (3)0.028 (2)0.0012 (19)0.007 (2)
C190.048 (2)0.044 (2)0.063 (2)0.0198 (19)0.0099 (19)0.0037 (19)
Geometric parameters (Å, º) top
Cd1—N12.331 (3)C5—H50.9300
Cd1—N1i2.331 (3)C6—C71.387 (5)
Cd1—N3i2.337 (3)C6—H60.9300
Cd1—N32.337 (3)C7—H70.9300
Cd1—O12.389 (2)C8—C91.482 (4)
Cd1—O1i2.389 (2)C9—C101.382 (5)
N1—C81.307 (4)C9—C141.389 (5)
N1—N21.397 (4)C10—C111.404 (5)
N2—C11.320 (4)C11—C121.371 (6)
N2—H20.8600C11—H110.9300
N3—C151.332 (5)C12—C131.346 (6)
N3—C191.333 (5)C12—H120.9300
O1—C11.245 (4)C13—C141.380 (5)
O2—C31.357 (4)C13—H130.9300
O2—H2A0.8200C14—H140.9300
O3—C81.271 (4)C15—C161.385 (6)
O4—C101.371 (5)C15—H150.9300
O4—H40.8200C16—C171.352 (6)
C1—C21.490 (5)C16—H160.9300
C2—C71.385 (5)C17—C181.372 (6)
C2—C31.399 (5)C17—H170.9300
C3—C41.384 (5)C18—C191.356 (6)
C4—C51.380 (6)C18—H180.9300
C4—H4A0.9300C19—H190.9300
C5—C61.372 (6)
N1—Cd1—N1i89.45 (14)C5—C6—C7118.8 (4)
N1—Cd1—N3i145.80 (9)C5—C6—H6120.6
N1i—Cd1—N3i99.48 (10)C7—C6—H6120.6
N1—Cd1—N399.48 (10)C2—C7—C6122.2 (4)
N1i—Cd1—N3145.80 (9)C2—C7—H7118.9
N3i—Cd1—N391.48 (14)C6—C7—H7118.9
N1—Cd1—O168.64 (9)O3—C8—N1124.5 (3)
N1i—Cd1—O1125.88 (9)O3—C8—C9119.0 (3)
N3i—Cd1—O179.62 (9)N1—C8—C9116.4 (3)
N3—Cd1—O187.84 (9)C10—C9—C14117.9 (3)
N1—Cd1—O1i125.88 (9)C10—C9—C8120.1 (3)
N1i—Cd1—O1i68.64 (9)C14—C9—C8121.9 (3)
N3i—Cd1—O1i87.84 (9)O4—C10—C9122.1 (3)
N3—Cd1—O1i79.62 (9)O4—C10—C11117.1 (4)
O1—Cd1—O1i162.04 (12)C9—C10—C11120.7 (4)
C8—N1—N2112.2 (3)C12—C11—C10118.9 (4)
C8—N1—Cd1131.0 (2)C12—C11—H11120.5
N2—N1—Cd1111.44 (19)C10—C11—H11120.5
C1—N2—N1119.7 (3)C13—C12—C11121.0 (4)
C1—N2—H2120.1C13—C12—H12119.5
N1—N2—H2120.1C11—C12—H12119.5
C15—N3—C19117.2 (3)C12—C13—C14120.4 (4)
C15—N3—Cd1120.9 (2)C12—C13—H13119.8
C19—N3—Cd1121.7 (2)C14—C13—H13119.8
C1—O1—Cd1113.9 (2)C13—C14—C9120.9 (4)
C3—O2—H2A109.5C13—C14—H14119.6
C10—O4—H4109.5C9—C14—H14119.6
O1—C1—N2121.1 (3)N3—C15—C16122.3 (4)
O1—C1—C2120.4 (3)N3—C15—H15118.8
N2—C1—C2118.5 (3)C16—C15—H15118.8
C7—C2—C3118.0 (3)C17—C16—C15119.2 (4)
C7—C2—C1117.0 (3)C17—C16—H16120.4
C3—C2—C1124.9 (3)C15—C16—H16120.4
O2—C3—C4121.0 (4)C16—C17—C18118.8 (4)
O2—C3—C2119.2 (3)C16—C17—H17120.6
C4—C3—C2119.8 (4)C18—C17—H17120.6
C5—C4—C3120.8 (4)C19—C18—C17119.1 (4)
C5—C4—H4A119.6C19—C18—H18120.5
C3—C4—H4A119.6C17—C18—H18120.5
C6—C5—C4120.4 (4)N3—C19—C18123.3 (4)
C6—C5—H5119.8N3—C19—H19118.3
C4—C5—H5119.8C18—C19—H19118.3
N1i—Cd1—N1—C839.3 (3)C7—C2—C3—C40.2 (5)
N3i—Cd1—N1—C8145.5 (3)C1—C2—C3—C4177.0 (4)
N3—Cd1—N1—C8107.5 (3)O2—C3—C4—C5178.7 (4)
O1—Cd1—N1—C8168.6 (3)C2—C3—C4—C50.7 (6)
O1i—Cd1—N1—C823.6 (3)C3—C4—C5—C61.4 (6)
N1i—Cd1—N1—N2112.3 (2)C4—C5—C6—C71.2 (6)
N3i—Cd1—N1—N26.1 (3)C3—C2—C7—C60.4 (5)
N3—Cd1—N1—N2100.9 (2)C1—C2—C7—C6177.5 (3)
O1—Cd1—N1—N217.02 (19)C5—C6—C7—C20.3 (6)
O1i—Cd1—N1—N2175.09 (18)N2—N1—C8—O31.8 (5)
C8—N1—N2—C1172.8 (3)Cd1—N1—C8—O3149.6 (3)
Cd1—N1—N2—C115.7 (3)N2—N1—C8—C9180.0 (3)
N1—Cd1—N3—C15164.9 (3)Cd1—N1—C8—C928.6 (4)
N1i—Cd1—N3—C1561.7 (4)O3—C8—C9—C1030.0 (5)
N3i—Cd1—N3—C1547.6 (3)N1—C8—C9—C10148.3 (3)
O1—Cd1—N3—C15127.1 (3)O3—C8—C9—C14150.3 (4)
O1i—Cd1—N3—C1539.9 (3)N1—C8—C9—C1431.4 (5)
N1—Cd1—N3—C1920.6 (3)C14—C9—C10—O4175.9 (4)
N1i—Cd1—N3—C19123.8 (3)C8—C9—C10—O44.4 (6)
N3i—Cd1—N3—C19126.9 (3)C14—C9—C10—C114.1 (6)
O1—Cd1—N3—C1947.3 (3)C8—C9—C10—C11175.6 (4)
O1i—Cd1—N3—C19145.6 (3)O4—C10—C11—C12177.2 (4)
N1—Cd1—O1—C119.5 (2)C9—C10—C11—C122.9 (7)
N1i—Cd1—O1—C153.3 (3)C10—C11—C12—C130.1 (7)
N3i—Cd1—O1—C1147.5 (3)C11—C12—C13—C141.6 (7)
N3—Cd1—O1—C1120.5 (2)C12—C13—C14—C90.2 (6)
O1i—Cd1—O1—C1166.0 (2)C10—C9—C14—C132.6 (5)
Cd1—O1—C1—N219.3 (4)C8—C9—C14—C13177.1 (3)
Cd1—O1—C1—C2160.3 (2)C19—N3—C15—C162.3 (6)
N1—N2—C1—O12.6 (5)Cd1—N3—C15—C16172.4 (3)
N1—N2—C1—C2177.0 (3)N3—C15—C16—C172.1 (6)
O1—C1—C2—C71.1 (5)C15—C16—C17—C180.6 (6)
N2—C1—C2—C7178.5 (3)C16—C17—C18—C190.5 (6)
O1—C1—C2—C3178.0 (3)C15—N3—C19—C181.2 (6)
N2—C1—C2—C31.6 (5)Cd1—N3—C19—C18173.5 (3)
C7—C2—C3—O2179.6 (3)C17—C18—C19—N30.2 (7)
C1—C2—C3—O23.5 (5)
Symmetry code: (i) x+2, x+y+1, z+4/3.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O30.821.922.638 (4)145
N2—H2···O20.861.942.624 (4)135
O2—H2A···O3ii0.821.882.639 (3)153
Symmetry code: (ii) xy, y, z+5/3.

Experimental details

Crystal data
Chemical formula[Cd(C14H11N2O4)2(C5H5N)2]
Mr813.10
Crystal system, space groupTrigonal, P3121
Temperature (K)298
a, c (Å)13.038 (1), 18.069 (3)
V3)2660.0 (5)
Z3
Radiation typeMo Kα
µ (mm1)0.68
Crystal size (mm)0.40 × 0.38 × 0.35
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.773, 0.797
No. of measured, independent and
observed [I > 2σ(I)] reflections
13955, 3146, 2750
Rint0.033
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.071, 1.00
No. of reflections3146
No. of parameters241
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.90, 0.32
Absolute structureFlack (1983), 1353 Friedel pairs
Absolute structure parameter0.06 (3)

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cd1—N12.331 (3)O1—C11.245 (4)
Cd1—N32.337 (3)O2—C31.357 (4)
Cd1—O12.389 (2)O3—C81.271 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O30.821.922.638 (4)144.9
N2—H2···O20.861.942.624 (4)135.3
O2—H2A···O3i0.821.882.639 (3)152.7
Symmetry code: (i) xy, y, z+5/3.
 

Acknowledgements

The authors acknowledge the support of the National Natural Science Foundation of China (grant No. 20671048).

References

First citationBernhardt, P. V., Chin, P., Sharpe, P. C., Wang, J. C. & Richardson, D. R. (2005). Biol. Inorg. Chem. 10, 761–777.  Web of Science CSD CrossRef CAS Google Scholar
First citationChen, Y.-T., Dou, J.-M., Li, D.-C., Wang, D.-Q. & Zhu, Y.-H. (2007). Acta Cryst. E63, m2503–m2504.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDou, J. M., Liu, M. L., Li, D. C. & Wang, D. Q. (2006). Eur. J. Inorg. Chem. 23, 4866–4871.  Web of Science CSD CrossRef Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJohn, R. P., Park, J., Moon, D., Lee, K. & Lah, M. S. (2006). Chem. Commun. pp. 3699–3701.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds