organic compounds
(2,4-Dinitrophenyl)(1-methyl-1-nitroethyl)diazene
aDepartment of Chemistry and Chemical Engineering, Baoji College of Arts and Sciences, Baoji 721007, People's Republic of China
*Correspondence e-mail: chunlanyuan@126.com
In the title compound, C9H9N5O6, the azo group adopts a trans conformation and the dihedral angles between the two nitro groups and the benzene ring are 11.6 (3) and 21.3 (3)°.
Related literature
For general background, see: Hrabie et al. (1998); Batler & Williams (1993); Murad (1999); Ignarro (1999); Wang et al., (2002); Hrabie & Keefer (2002). For related compounds, see: Engel (1980); Katritzky et al., (2002). For the synthesis, see: Ueno & Umeda (1991); Zhang et al. (1992).
Experimental
Crystal data
|
Data collection: XSCANS (Siemens, 1996); cell XSCANS; data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536808034454/kp2190sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808034454/kp2190Isup2.hkl
A stock solutions were prepared by dissolving 0.5 mol acetone -2,4-dinitrophenylhydrazine in 100 mL dry CH2Cl2. NO was produced by the reaction of 1 mol H2SO4 solution with saturated NaNO2 aqueous solution. The former was added to the latter, which was stirred under an argon atmosphere. NO was carried by argon and purified by passing it through a series of scrubbing bottles containing 4 M NaOH, distilled water, and CaCl2 in turn. All the above bottles were under an argon atmosphere. The purified NO bubbled through a previously degassed stirred stock solution at room temperature for an appropriate time. After the reaction was completed, as indicated by TLC, the reaction mixture was dried with anhydrous MgSO4, concentrated in vacuum and purified by
on silica–gel (200–300 mesh, ethyl acetate–hexane) and the pure title compound was obtained.Data collection: XSCANS (Siemens, 1996); cell
XSCANS (Siemens, 1996); data reduction: SHELXTL (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C9H9N5O6 | F(000) = 1168 |
Mr = 283.21 | Dx = 1.512 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 13.495 (4) Å | Cell parameters from 33 reflections |
b = 12.847 (4) Å | θ = 4.3–13.5° |
c = 14.362 (3) Å | µ = 0.13 mm−1 |
β = 92.18 (3)° | T = 298 K |
V = 2488.1 (12) Å3 | Prism, yellow |
Z = 8 | 0.50 × 0.36 × 0.26 mm |
Siemens P4 diffractometer | Rint = 0.063 |
Radiation source: fine-focus sealed tube | θmax = 25.6°, θmin = 2.2° |
Graphite monochromator | h = −16→11 |
ω scans | k = −11→15 |
9672 measured reflections | l = −17→17 |
2336 independent reflections | 3 standard reflections every 97 reflections |
1026 reflections with I > 2σ(I) | intensity decay: 0.9% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.060 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.204 | H-atom parameters constrained |
S = 0.85 | w = 1/[σ2(Fo2) + (0.1218P)2] where P = (Fo2 + 2Fc2)/3 |
2336 reflections | (Δ/σ)max < 0.001 |
183 parameters | Δρmax = 0.30 e Å−3 |
0 restraints | Δρmin = −0.21 e Å−3 |
C9H9N5O6 | V = 2488.1 (12) Å3 |
Mr = 283.21 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 13.495 (4) Å | µ = 0.13 mm−1 |
b = 12.847 (4) Å | T = 298 K |
c = 14.362 (3) Å | 0.50 × 0.36 × 0.26 mm |
β = 92.18 (3)° |
Siemens P4 diffractometer | Rint = 0.063 |
9672 measured reflections | 3 standard reflections every 97 reflections |
2336 independent reflections | intensity decay: 0.9% |
1026 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.060 | 0 restraints |
wR(F2) = 0.204 | H-atom parameters constrained |
S = 0.85 | Δρmax = 0.30 e Å−3 |
2336 reflections | Δρmin = −0.21 e Å−3 |
183 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.4199 (4) | 0.4172 (3) | 0.3171 (2) | 0.175 (2) | |
O2 | 0.3274 (3) | 0.4313 (2) | 0.1933 (2) | 0.1333 (13) | |
O3 | 0.2968 (2) | 0.1231 (3) | 0.00469 (19) | 0.1178 (11) | |
O4 | 0.2871 (3) | −0.0239 (4) | 0.0731 (3) | 0.170 (2) | |
O5 | 0.4965 (3) | 0.1031 (3) | 0.6134 (3) | 0.1268 (13) | |
O6 | 0.5905 (3) | 0.2187 (3) | 0.6742 (2) | 0.1470 (15) | |
N1 | 0.3952 (2) | 0.2560 (2) | 0.42044 (18) | 0.0693 (8) | |
N2 | 0.4630 (2) | 0.2226 (2) | 0.46842 (17) | 0.0692 (8) | |
N3 | 0.3672 (3) | 0.3804 (3) | 0.2542 (3) | 0.1072 (13) | |
N4 | 0.3057 (2) | 0.0686 (4) | 0.0723 (2) | 0.0964 (11) | |
N5 | 0.5245 (3) | 0.1903 (4) | 0.6209 (2) | 0.0946 (11) | |
C6 | 0.3831 (2) | 0.2084 (3) | 0.33028 (19) | 0.0553 (8) | |
C1 | 0.3611 (2) | 0.2680 (3) | 0.2510 (2) | 0.0622 (8) | |
C2 | 0.3345 (2) | 0.2222 (3) | 0.1672 (2) | 0.0653 (9) | |
H2 | 0.3181 | 0.2624 | 0.1150 | 0.078* | |
C3 | 0.3330 (2) | 0.1171 (3) | 0.1629 (2) | 0.0669 (9) | |
C4 | 0.3567 (3) | 0.0556 (3) | 0.2382 (2) | 0.0825 (11) | |
H4 | 0.3564 | −0.0166 | 0.2327 | 0.099* | |
C5 | 0.3809 (2) | 0.1023 (3) | 0.3226 (2) | 0.0698 (10) | |
H5 | 0.3959 | 0.0613 | 0.3746 | 0.084* | |
C7 | 0.4696 (3) | 0.2740 (3) | 0.5614 (2) | 0.0692 (9) | |
C9 | 0.3722 (3) | 0.2914 (4) | 0.6046 (2) | 0.1031 (15) | |
H9A | 0.3377 | 0.3472 | 0.5729 | 0.155* | |
H9B | 0.3829 | 0.3091 | 0.6691 | 0.155* | |
H9C | 0.3331 | 0.2290 | 0.5996 | 0.155* | |
C8 | 0.5338 (5) | 0.3655 (4) | 0.5534 (3) | 0.138 (2) | |
H8A | 0.5940 | 0.3458 | 0.5246 | 0.207* | |
H8B | 0.5492 | 0.3931 | 0.6144 | 0.207* | |
H8C | 0.5001 | 0.4175 | 0.5161 | 0.207* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O4 | 0.268 (6) | 0.114 (3) | 0.119 (3) | 0.047 (3) | −0.093 (3) | −0.048 (2) |
O3 | 0.131 (3) | 0.162 (3) | 0.0577 (16) | −0.004 (2) | −0.0226 (16) | −0.0110 (19) |
O2 | 0.202 (4) | 0.089 (2) | 0.106 (2) | 0.006 (2) | −0.039 (2) | 0.0264 (19) |
O1 | 0.322 (6) | 0.098 (3) | 0.101 (2) | −0.070 (3) | −0.063 (3) | 0.019 (2) |
O5 | 0.158 (3) | 0.100 (2) | 0.121 (3) | 0.022 (2) | −0.008 (2) | 0.023 (2) |
O6 | 0.139 (3) | 0.206 (4) | 0.092 (2) | 0.056 (3) | −0.042 (2) | −0.039 (2) |
N1 | 0.083 (2) | 0.0711 (19) | 0.0524 (15) | 0.0135 (15) | −0.0088 (13) | −0.0039 (14) |
N2 | 0.081 (2) | 0.0789 (19) | 0.0475 (14) | 0.0009 (15) | −0.0033 (13) | −0.0047 (13) |
N3 | 0.163 (4) | 0.088 (3) | 0.069 (2) | −0.032 (2) | −0.022 (2) | 0.014 (2) |
N4 | 0.103 (3) | 0.115 (3) | 0.070 (2) | 0.028 (2) | −0.0264 (18) | −0.025 (2) |
N5 | 0.102 (3) | 0.128 (3) | 0.0527 (18) | 0.028 (2) | −0.0128 (17) | −0.009 (2) |
C1 | 0.067 (2) | 0.067 (2) | 0.0529 (18) | −0.0033 (16) | 0.0005 (14) | 0.0048 (16) |
C2 | 0.058 (2) | 0.094 (3) | 0.0433 (16) | 0.0026 (18) | −0.0024 (13) | 0.0062 (17) |
C3 | 0.059 (2) | 0.090 (3) | 0.0503 (18) | 0.0127 (18) | −0.0119 (14) | −0.0124 (18) |
C4 | 0.095 (3) | 0.077 (2) | 0.074 (2) | 0.021 (2) | −0.0187 (19) | −0.015 (2) |
C5 | 0.081 (2) | 0.072 (2) | 0.0556 (19) | 0.0187 (18) | −0.0126 (16) | −0.0002 (17) |
C6 | 0.0500 (18) | 0.071 (2) | 0.0450 (16) | 0.0055 (15) | −0.0011 (13) | −0.0048 (15) |
C7 | 0.091 (3) | 0.070 (2) | 0.0452 (16) | 0.0022 (19) | −0.0056 (16) | −0.0030 (16) |
C9 | 0.117 (4) | 0.132 (4) | 0.060 (2) | 0.046 (3) | 0.001 (2) | −0.022 (2) |
C8 | 0.200 (6) | 0.122 (4) | 0.090 (3) | −0.068 (4) | −0.020 (3) | −0.015 (3) |
O1—N3 | 1.227 (4) | C3—C4 | 1.368 (5) |
O2—N3 | 1.201 (4) | C4—C5 | 1.381 (4) |
O3—N4 | 1.200 (4) | C4—H4 | 0.9300 |
O4—N4 | 1.215 (5) | C5—H5 | 0.9300 |
O5—N5 | 1.186 (4) | C6—C5 | 1.368 (5) |
O6—N5 | 1.209 (4) | C6—C1 | 1.395 (4) |
N1—N2 | 1.203 (3) | C7—C8 | 1.467 (6) |
N1—C6 | 1.436 (4) | C7—C9 | 1.493 (5) |
N2—C7 | 1.489 (4) | C9—H9A | 0.9600 |
N3—C1 | 1.447 (5) | C9—H9B | 0.9600 |
N4—C3 | 1.478 (4) | C9—H9C | 0.9600 |
N5—C7 | 1.544 (5) | C8—H8A | 0.9600 |
C1—C2 | 1.375 (4) | C8—H8B | 0.9600 |
C2—C3 | 1.351 (5) | C8—H8C | 0.9600 |
C2—H2 | 0.9300 | ||
O3—N4—O4 | 124.4 (4) | C3—C4—H4 | 120.6 |
O3—N4—C3 | 118.7 (4) | C5—C4—H4 | 120.6 |
O4—N4—C3 | 116.7 (4) | C6—C5—C4 | 120.5 (3) |
O2—N3—O1 | 124.0 (4) | C6—C5—H5 | 119.7 |
O2—N3—C1 | 119.7 (3) | C4—C5—H5 | 119.7 |
O1—N3—C1 | 116.1 (4) | C8—C7—N2 | 107.5 (3) |
N2—N1—C6 | 115.0 (3) | C8—C7—C8 | 116.4 (4) |
N1—N2—C7 | 111.9 (3) | N2—C7—C8 | 107.5 (3) |
O5—N5—O6 | 124.5 (4) | C8—C7—N5 | 109.2 (4) |
O5—N5—C7 | 117.6 (3) | N2—C7—N5 | 101.5 (3) |
O6—N5—C7 | 117.8 (4) | C9—C7—N5 | 106.6 (3) |
C5—C6—C1 | 118.5 (3) | C7—C9—H9A | 109.5 |
C5—C6—N1 | 119.9 (3) | C7—C9—H9B | 109.5 |
C1—C6—N1 | 121.0 (3) | H9A—C9—H9B | 109.5 |
C2—C1—C6 | 121.3 (3) | C7—C9—H9C | 109.5 |
C2—C1—N3 | 117.9 (3) | H9A—C9—H9C | 109.5 |
C6—C1—N3 | 120.8 (3) | H9B—C9—H9C | 109.5 |
C3—C2—C1 | 118.1 (3) | C7—C8—H8A | 109.5 |
C3—C2—H2 | 121.0 | C7—C8—H8B | 109.5 |
C2—C2—H2 | 121.0 | H8A—C8—H8B | 109.5 |
C2—C3—C4 | 122.6 (3) | C7—C8—H8C | 109.5 |
C2—C3—N4 | 117.7 (3) | H8A—C8—H8C | 109.5 |
C4—C3—N4 | 119.7 (4) | H8B—C8—H8C | 109.5 |
C3—C4—C5 | 118.9 (4) |
Experimental details
Crystal data | |
Chemical formula | C9H9N5O6 |
Mr | 283.21 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 298 |
a, b, c (Å) | 13.495 (4), 12.847 (4), 14.362 (3) |
β (°) | 92.18 (3) |
V (Å3) | 2488.1 (12) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.13 |
Crystal size (mm) | 0.50 × 0.36 × 0.26 |
Data collection | |
Diffractometer | Siemens P4 diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9672, 2336, 1026 |
Rint | 0.063 |
(sin θ/λ)max (Å−1) | 0.607 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.060, 0.204, 0.85 |
No. of reflections | 2336 |
No. of parameters | 183 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.30, −0.21 |
Computer programs: XSCANS (Siemens, 1996), SHELXTL (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Acknowledgements
I am grateful for the financial support from the industrialization foster (No. 06JC25) of Shaanxi Province and the main project (No. 04JS37) of the Key Laboratory of Shaanxi Province, People's Republic of China.
References
Batler, A. R. & Williams, D. L. H. (1993). J. Chem. Soc. 22, 233–241. Google Scholar
Engel, P. S. (1980). Chem. Rev. 80, 99–150. CrossRef CAS Web of Science Google Scholar
Hrabie, J. A. & Keefer, L. K. (2002). Chem. Rev. 102, 1135–1154. Web of Science CrossRef PubMed CAS Google Scholar
Hrabie, J. A., Srinivasan, A., George, C. & Keefer, L. K. (1998). Tetrahedron Lett. 39, 5933–5936. Web of Science CSD CrossRef CAS Google Scholar
Ignarro, L. J. (1999). Angew. Chem. Int. Ed. 38, 1882–1892. CrossRef CAS Google Scholar
Katritzky, A. R., Nair, S. K., Garcia, V. R. & Xu, Y. J. (2002). J. Org. Chem. 67, 8237–8238. Web of Science CrossRef PubMed CAS Google Scholar
Murad, F. A. (1999). Angew. Chem. Int. Ed. 38, 1856–1868. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Ueno, K. & Umeda, T. (1991). J. Chromatogr. 585, 225–231. CrossRef CAS Web of Science Google Scholar
Wang, P. G., Xian, M., Tang, X. P., Wu, X. J., Wen, Z., Cai, T. W. & Janczuk, A. J. (2002). Chem. Rev. 102, 1091–1134. Web of Science CrossRef PubMed CAS Google Scholar
Zhang, J., Hertzler, R. L. & Eisenbrun, E. J. (1992). J. Chem. Educ. 69, 1037–1044. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The important roles of nitric oxide (NO) in atmospheric processes (Hrabie et al., 1998) and in biological events (Batler & Williams, 1993; Murad, 1999; Ignarro, 1999) have known for quite a time. The intensive researches have been directed toward reactions of NO with biological molecules ( Wang et al., 2002; Hrabie & Keefer, 2002). Azoalkanes can be widely used as thermal free radical initiators (Engel, 1980) and some of azoalkanes are specific intermediate in organic synthesis ( Katritzky et al., 2002). In this paper, a new compound of azoalkanes 1-(2,4-dinitrophenyl)azo-2-nitropropylamine, (I), was prepared and its single crystals structure determined.
The structure of (I) (Fig. 1), 1-(2,4-dinitrophenyl)azo-2-nitropropylamine, consists of 2,4-dinitrophenyl and nitropropane linked by an azo group. In three NO2, the bonds of O4/N4/O3 are normal (1.202 Å) but the bonds of the N3-O1 and N5-O6 are 1.227 and 1.230 Å, respectively. It is obviously much longer than that of N5-O5(1.180Å), due to effects of azo double bond. The double N1═N2 connects 2,4-dinitrophenyl and nitropropane.The bond lengths of N2-C7 (1.484Å) is longer than that of N1-C6 (1.433 Å).