metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 11| November 2008| Pages m1408-m1409

Di-μ-chlorido-di­chlorido-bis­{μ-6,6′-di­meth­oxy-2,2′-[o-phenylenebis(nitrilo­methyl­idyne)]diphenolato}dilead(II)dizinc(II) N,N′-di­methyl­formamide disolvate

aSchool of Chemistry and Chemical Technology, Shandong University, Jinan 250100, People's Republic of China
*Correspondence e-mail: zhanglf@sdu.edu.cn

(Received 21 August 2008; accepted 10 October 2008; online 15 October 2008)

The title compound, [Pb2Zn2(C22H18N2O4)2Cl4]·2C3H7NO, was synthesized using a step-by-step method and has a slipped sandwich configuration. The coordination environment of the Zn2+ ion is distorted square-pyramidal and it is coordinated by N2O2 of the Schiff base ligand and chloride; each Pb2+ ion is coordinated by the four 6,6′-dimeth­oxy-2,2′-[o-phenyl­ene­bis(nitrilo­methyl­idyne)]diphenolate (L) O atoms and two chloride ions. The ZnIIPbII dinuclear unit, through an inversion-symmetry operation, forms a tetra­meric complex with double chloride bridges.

Related literature

For related literature, see: Karlin (1993[Karlin, K. D. (1993). Science, 261, 701-708.]); Korupoju et al. (2000[Korupoju, S. R., Mangayarkarasi, N., Ameerunisha, S., Valente, E. J. & Zacharias, P. S. (2000). J. Chem. Soc. Dalton Trans. pp. 2845-2852.]); Lo et al. (2004[Lo, W. K., Wong, W. K., Guo, J., Wong, W. Y., Li, K. F. & Cheah, K. W. (2004). Inorg. Chim. Acta, 357, 4510-4521.]); Ni et al. (2005[Ni, Z. H., Kou, H. Z., Zhao, Y. H., Zheng, L., Wang, R. J., Cui, A. L. & Sato, O. (2005). Inorg. Chem. 44, 2050-2059.]); Sui et al. (2007[Sui, Y., Sui, Y.-H., Luo, Q.-Y. & Wang, Y.-D. (2007). Acta Cryst. E63, m2277-m2278.]); Ward (2007[Ward, M. D. (2007). Coord. Chem. Rev. 251, 1663-1677.]).

[Scheme 1]

Experimental

Crystal data
  • [Pb2Zn2(C22H18N2O4)2Cl4]·2C3H7NO

  • Mr = 1581.88

  • Monoclinic, P 21 /c

  • a = 7.4955 (6) Å

  • b = 32.119 (3) Å

  • c = 11.2366 (9) Å

  • β = 95.729 (2)°

  • V = 2691.7 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 7.38 mm−1

  • T = 295 (2) K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.320, Tmax = 0.526 (expected range = 0.291–0.478)

  • 13373 measured reflections

  • 4719 independent reflections

  • 3176 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.066

  • S = 0.93

  • 4719 reflections

  • 336 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.64 e Å−3

Table 1
Selected geometric parameters (Å, °)

N1—Zn1 2.062 (5)
N2—Zn1 2.064 (5)
O1—Pb1 2.720 (5)
O2—Zn1 2.026 (4)
O2—Pb1 2.408 (4)
O3—Zn1 2.025 (4)
O3—Pb1 2.386 (4)
O4—Pb1 2.690 (5)
Zn1—Cl1 2.2544 (18)
Pb1—Cl2 2.6138 (18)
O3—Zn1—O2 80.49 (16)
O3—Zn1—N1 144.11 (18)
O2—Zn1—N1 88.19 (18)
O3—Zn1—N2 88.00 (18)
O2—Zn1—N2 141.06 (18)
N1—Zn1—N2 79.7 (2)
O3—Zn1—Cl1 107.95 (13)
O2—Zn1—Cl1 108.74 (13)
N1—Zn1—Cl1 107.94 (14)
N2—Zn1—Cl1 110.20 (15)
O3—Pb1—O2 66.18 (14)
O3—Pb1—Cl2 89.13 (11)
O2—Pb1—Cl2 91.86 (10)
O3—Pb1—O4 61.20 (14)
O2—Pb1—O4 127.37 (14)
Cl2—Pb1—O4 88.05 (11)
O3—Pb1—O1 126.94 (14)
O2—Pb1—O1 60.79 (14)
Cl2—Pb1—O1 94.14 (12)
O4—Pb1—O1 171.53 (14)

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: XP in SHELXTL.

Supporting information


Comment top

Heterometallic complexes have been intensively studied owing to their unique physical and chemical properties (Ward et al., 2007 and Ni et al., 2005). In addition, these compounds exist at the active sites of many metalloenzymes and play important roles in biological systems (Karlin, 1993). It is necessary to extend the application of heterometallic compounds. Herein, a novel heterometallic tetranuclear (ZnIIPbII)2 compound has been obtained using step-by-step method and its structure is depcited.

The compound I is a tetranuclear neutral complex with a slipped sandwich configuration (Fig. 1). Each Zn(II) is coordinated in a square-pyramidal geometry with the basal square formed by two nitrogen atoms and two oxygen atoms from L ligand, with the apical position occupied by terminal chlorine atom. The coordination environment of each Pb(II) is a distorted octahedral geometry composed of four oxygen atoms from ligand and two bridging chlorine atoms. Zn(II) and Pb(II) are connected via two bridging oxygen atoms of the ligand, and two Pb(II) atoms are connected by two bridging chlorine atoms. The bond lengths of Zn—O, Zn—N and Zn—Cl are normal (Korupoju et al., 2000). Through π-π interaction between the rings C9—C14 and C16—C21 [symmetry code; (i) -1 + x, y, z] with centroid distance of 3.730 (3) /A [Cg1··· Cg2i ] the discrete tetranuclear (ZnIIPbII)2 units forms a supramolecular structure (Fig. 2).

Related literature top

For related literature, see: Karlin (1993); Korupoju et al. (2000); Lo et al. (2004); Ni et al. (2005); Sui et al. (2007); Ward (2007).

Experimental top

The H2L ligand and complex ZnL was synthesized according to the literature (Lo et al., 2004; Sui et al. 2007). Synthesis of the compound I was obtained by allowing the mixure of ZnL (0.088 g, 0.2 mmol) and PbCl2.2H2O(0.063 g, 0.2 mmol) to be refluxed in the DMF solution, cooled down to room temperature, then filtered, and suitable yellow crystals were obtained by slow evaporation of the filtrate at room temperature (yield: about 45%).

Refinement top

All H-atoms bound to carbon were refined using a riding model with distance C—H = 0.93 Å, Uiso = 1.2Ueq (C) for aromatic atoms and C—H = 0.96 Å, Uiso = 1.5Ueq (C) for methyl atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: XP in SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level, solvate DMF molecules are ommited for clarity.
[Figure 2] Fig. 2. A view of crystal packing based on ππ interactions.
Di-µ-chlorido-dichlorido-bis{µ-6,6'-dimethoxy-2,2'-[o- phenylenebis(nitrilomethylidyne)]diphenolato}dilead(II)dizinc(II) N,N'-dimethylformamide disolvate top
Crystal data top
[Zn2Pb2(C22H18N2O4)2Cl4]·2C3H7NOF(000) = 1528
Mr = 1581.88Dx = 1.952 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3748 reflections
a = 7.4955 (6) Åθ = 1.9–26.5°
b = 32.119 (3) ŵ = 7.38 mm1
c = 11.2366 (9) ÅT = 295 K
β = 95.729 (2)°Block, yellow
V = 2691.7 (4) Å30.20 × 0.15 × 0.10 mm
Z = 2
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4719 independent reflections
Radiation source: fine-focus sealed tube3176 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
Detector resolution: 0 pixels mm-1θmax = 25.0°, θmin = 1.9°
ϕ and ω scansh = 87
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 3837
Tmin = 0.320, Tmax = 0.526l = 1312
13373 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.017P)2]
where P = (Fo2 + 2Fc2)/3
4719 reflections(Δ/σ)max = 0.001
336 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.64 e Å3
Crystal data top
[Zn2Pb2(C22H18N2O4)2Cl4]·2C3H7NOV = 2691.7 (4) Å3
Mr = 1581.88Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.4955 (6) ŵ = 7.38 mm1
b = 32.119 (3) ÅT = 295 K
c = 11.2366 (9) Å0.20 × 0.15 × 0.10 mm
β = 95.729 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4719 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3176 reflections with I > 2σ(I)
Tmin = 0.320, Tmax = 0.526Rint = 0.063
13373 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.066H-atom parameters constrained
S = 0.93Δρmax = 0.55 e Å3
4719 reflectionsΔρmin = 0.64 e Å3
336 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.1566 (10)0.0054 (2)0.1667 (6)0.067 (2)
H1A1.05030.01770.19260.100*
H1B1.24820.02630.16550.100*
H1C1.13000.00590.08790.100*
C21.3705 (10)0.0487 (2)0.2264 (6)0.0448 (19)
C31.4939 (10)0.0359 (2)0.1533 (6)0.054 (2)
H31.47540.01090.11180.065*
C41.6467 (10)0.0591 (2)0.1391 (6)0.057 (2)
H41.72870.05000.08780.068*
C51.6746 (9)0.0953 (2)0.2017 (6)0.0458 (19)
H51.77780.11060.19320.055*
C61.5510 (8)0.11026 (19)0.2791 (5)0.0309 (16)
C71.3931 (9)0.0871 (2)0.2908 (5)0.0339 (16)
C81.5982 (8)0.14809 (19)0.3455 (6)0.0349 (17)
H81.71410.15820.34330.042*
C91.5514 (8)0.20447 (19)0.4732 (5)0.0308 (16)
C101.7104 (8)0.22575 (19)0.4619 (6)0.0350 (17)
H101.78750.21670.40730.042*
C111.7534 (10)0.2602 (2)0.5317 (6)0.048 (2)
H111.86070.27400.52440.058*
C121.6408 (10)0.2745 (2)0.6123 (6)0.052 (2)
H121.67220.29780.65890.062*
C131.4798 (9)0.2540 (2)0.6236 (6)0.0427 (19)
H131.40190.26410.67630.051*
C141.4350 (8)0.21857 (19)0.5565 (5)0.0303 (16)
C151.1756 (9)0.1993 (2)0.6481 (6)0.0408 (18)
H151.20670.22020.70360.049*
C161.0212 (9)0.1750 (2)0.6657 (6)0.0363 (17)
C170.9185 (10)0.1873 (2)0.7569 (6)0.057 (2)
H170.95370.21070.80200.069*
C180.7699 (11)0.1665 (3)0.7822 (7)0.073 (3)
H180.70500.17570.84340.088*
C190.7150 (10)0.1318 (2)0.7177 (7)0.059 (2)
H190.61370.11730.73600.071*
C200.8083 (9)0.1183 (2)0.6266 (6)0.0422 (18)
C210.9628 (8)0.13985 (19)0.5965 (6)0.0322 (16)
C220.5984 (9)0.0631 (2)0.5684 (6)0.059 (2)
H22A0.58490.04000.51420.088*
H22B0.50060.08210.55100.088*
H22C0.59870.05320.64910.088*
C231.2723 (12)0.0874 (3)0.8580 (7)0.087 (3)
H23A1.39620.07980.87450.130*
H23B1.25430.10100.78170.130*
H23C1.19940.06280.85680.130*
C241.3274 (12)0.1533 (3)0.9737 (8)0.092 (3)
H24A1.45160.14590.98910.138*
H24B1.28990.16781.04170.138*
H24C1.31130.17100.90460.138*
C251.0834 (13)0.1067 (3)1.0144 (8)0.082 (3)
H251.05380.12531.07290.099*
N11.4929 (7)0.16881 (15)0.4072 (4)0.0302 (12)
N21.2753 (7)0.19497 (15)0.5626 (4)0.0341 (13)
N31.2211 (9)0.1160 (2)0.9524 (6)0.069 (2)
O11.2183 (7)0.02728 (14)0.2479 (4)0.0568 (14)
O21.2672 (5)0.09841 (12)0.3583 (4)0.0358 (11)
O31.0450 (6)0.12607 (12)0.5055 (4)0.0411 (12)
O40.7656 (6)0.08411 (14)0.5550 (4)0.0484 (13)
O50.9982 (10)0.0763 (2)0.9986 (7)0.126 (3)
Zn11.22386 (10)0.15710 (2)0.41482 (7)0.0330 (2)
Pb11.00874 (4)0.060131 (8)0.40830 (2)0.04083 (10)
Cl11.0695 (2)0.19248 (6)0.26480 (16)0.0515 (5)
Cl21.1909 (2)0.02574 (6)0.59314 (17)0.0555 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.079 (6)0.048 (5)0.072 (6)0.013 (4)0.002 (5)0.025 (5)
C20.053 (5)0.046 (5)0.037 (4)0.000 (4)0.012 (4)0.010 (4)
C30.062 (6)0.042 (5)0.059 (5)0.006 (4)0.016 (5)0.025 (4)
C40.057 (5)0.058 (5)0.058 (5)0.003 (4)0.024 (4)0.027 (5)
C50.034 (4)0.061 (5)0.043 (5)0.006 (4)0.008 (4)0.001 (4)
C60.034 (4)0.029 (4)0.032 (4)0.005 (3)0.011 (3)0.002 (3)
C70.038 (4)0.033 (4)0.029 (4)0.008 (3)0.000 (3)0.005 (3)
C80.027 (4)0.032 (4)0.046 (4)0.006 (3)0.006 (4)0.007 (3)
C90.025 (4)0.037 (4)0.031 (4)0.003 (3)0.000 (3)0.002 (3)
C100.029 (4)0.039 (4)0.036 (4)0.004 (3)0.002 (3)0.002 (3)
C110.045 (5)0.043 (5)0.054 (5)0.016 (4)0.004 (4)0.002 (4)
C120.051 (5)0.051 (5)0.054 (5)0.007 (4)0.012 (4)0.014 (4)
C130.042 (5)0.038 (4)0.049 (5)0.002 (3)0.009 (4)0.000 (4)
C140.030 (4)0.030 (4)0.030 (4)0.002 (3)0.004 (3)0.003 (3)
C150.046 (5)0.038 (4)0.040 (4)0.006 (3)0.012 (4)0.003 (3)
C160.043 (4)0.035 (4)0.033 (4)0.001 (3)0.016 (4)0.002 (3)
C170.057 (5)0.053 (5)0.065 (6)0.007 (4)0.025 (5)0.018 (4)
C180.076 (6)0.073 (7)0.081 (7)0.017 (5)0.056 (5)0.017 (5)
C190.047 (5)0.063 (6)0.073 (6)0.014 (4)0.031 (5)0.007 (5)
C200.035 (4)0.046 (5)0.046 (5)0.004 (3)0.009 (4)0.003 (4)
C210.026 (4)0.034 (4)0.038 (4)0.005 (3)0.011 (3)0.004 (3)
C220.050 (5)0.063 (5)0.063 (5)0.020 (4)0.010 (4)0.012 (4)
C230.084 (7)0.093 (7)0.088 (7)0.016 (6)0.037 (6)0.029 (6)
C240.101 (8)0.070 (7)0.101 (8)0.049 (6)0.007 (6)0.013 (6)
C250.089 (8)0.074 (7)0.090 (7)0.029 (6)0.043 (6)0.018 (6)
N10.029 (3)0.029 (3)0.033 (3)0.000 (3)0.007 (3)0.001 (3)
N20.032 (3)0.034 (3)0.038 (3)0.006 (2)0.011 (3)0.001 (3)
N30.067 (5)0.073 (5)0.068 (5)0.018 (4)0.017 (4)0.010 (4)
O10.069 (4)0.044 (3)0.060 (3)0.015 (3)0.018 (3)0.023 (3)
O20.034 (3)0.030 (3)0.045 (3)0.002 (2)0.013 (2)0.005 (2)
O30.043 (3)0.033 (3)0.051 (3)0.003 (2)0.023 (2)0.003 (2)
O40.035 (3)0.046 (3)0.065 (3)0.012 (2)0.013 (3)0.004 (3)
O50.115 (6)0.114 (7)0.158 (7)0.039 (5)0.063 (5)0.014 (5)
Zn10.0303 (4)0.0303 (4)0.0393 (5)0.0020 (3)0.0080 (4)0.0011 (4)
Pb10.03765 (16)0.03548 (16)0.05010 (18)0.00722 (14)0.00808 (13)0.00237 (15)
Cl10.0443 (11)0.0581 (13)0.0522 (12)0.0087 (9)0.0043 (10)0.0121 (10)
Cl20.0504 (12)0.0521 (12)0.0621 (13)0.0162 (9)0.0032 (10)0.0058 (10)
Geometric parameters (Å, º) top
C1—O11.437 (7)C17—C181.354 (10)
C1—H1A0.9600C17—H170.9300
C1—H1B0.9600C18—C191.370 (9)
C1—H1C0.9600C18—H180.9300
C2—C31.361 (9)C19—C201.367 (9)
C2—O11.373 (8)C19—H190.9300
C2—C71.432 (8)C20—O41.379 (7)
C3—C41.389 (9)C20—C211.420 (8)
C3—H30.9300C21—O31.321 (7)
C4—C51.365 (9)C22—O41.444 (7)
C4—H40.9300C22—H22A0.9600
C5—C61.416 (8)C22—H22B0.9600
C5—H50.9300C22—H22C0.9600
C6—C71.415 (8)C23—N31.483 (9)
C6—C81.451 (8)C23—H23A0.9600
C7—O21.319 (7)C23—H23B0.9600
C8—N11.286 (7)C23—H23C0.9600
C8—H80.9300C24—N31.446 (9)
C9—C101.391 (8)C24—H24A0.9600
C9—N11.411 (7)C24—H24B0.9600
C9—C141.416 (8)C24—H24C0.9600
C10—C111.375 (8)C25—O51.172 (9)
C10—H100.9300C25—N31.335 (10)
C11—C121.377 (9)C25—H250.9300
C11—H110.9300N1—Zn12.062 (5)
C12—C131.392 (9)N2—Zn12.064 (5)
C12—H120.9300O1—Pb12.720 (5)
C13—C141.389 (8)O2—Zn12.026 (4)
C13—H130.9300O2—Pb12.408 (4)
C14—N21.424 (7)O3—Zn12.025 (4)
C15—N21.283 (7)O3—Pb12.386 (4)
C15—C161.426 (8)O4—Pb12.690 (5)
C15—H150.9300Zn1—Cl12.2544 (18)
C16—C171.399 (9)Pb1—Cl22.6138 (18)
C16—C211.416 (8)
O1—C1—H1A109.5O3—C21—C20118.4 (6)
O1—C1—H1B109.5C16—C21—C20118.2 (6)
H1A—C1—H1B109.5O4—C22—H22A109.5
O1—C1—H1C109.5O4—C22—H22B109.5
H1A—C1—H1C109.5H22A—C22—H22B109.5
H1B—C1—H1C109.5O4—C22—H22C109.5
C3—C2—O1125.5 (7)H22A—C22—H22C109.5
C3—C2—C7120.8 (7)H22B—C22—H22C109.5
O1—C2—C7113.7 (6)N3—C23—H23A109.5
C2—C3—C4121.7 (7)N3—C23—H23B109.5
C2—C3—H3119.2H23A—C23—H23B109.5
C4—C3—H3119.2N3—C23—H23C109.5
C5—C4—C3118.9 (7)H23A—C23—H23C109.5
C5—C4—H4120.5H23B—C23—H23C109.5
C3—C4—H4120.5N3—C24—H24A109.5
C4—C5—C6122.0 (7)N3—C24—H24B109.5
C4—C5—H5119.0H24A—C24—H24B109.5
C6—C5—H5119.0N3—C24—H24C109.5
C7—C6—C5118.9 (6)H24A—C24—H24C109.5
C7—C6—C8123.7 (6)H24B—C24—H24C109.5
C5—C6—C8117.3 (6)O5—C25—N3123.1 (10)
O2—C7—C6124.2 (6)O5—C25—H25118.5
O2—C7—C2118.2 (6)N3—C25—H25118.5
C6—C7—C2117.6 (6)C8—N1—C9121.9 (5)
N1—C8—C6125.4 (6)C8—N1—Zn1125.7 (4)
N1—C8—H8117.3C9—N1—Zn1112.3 (4)
C6—C8—H8117.3C15—N2—C14122.3 (6)
C10—C9—N1125.1 (6)C15—N2—Zn1126.2 (5)
C10—C9—C14119.6 (6)C14—N2—Zn1111.4 (4)
N1—C9—C14115.3 (5)C25—N3—C24122.8 (8)
C11—C10—C9119.8 (6)C25—N3—C23120.2 (7)
C11—C10—H10120.1C24—N3—C23117.1 (7)
C9—C10—H10120.1C2—O1—C1118.4 (5)
C10—C11—C12121.3 (7)C2—O1—Pb1117.8 (4)
C10—C11—H11119.3C1—O1—Pb1122.2 (4)
C12—C11—H11119.3C7—O2—Zn1125.6 (4)
C11—C12—C13119.7 (7)C7—O2—Pb1129.2 (4)
C11—C12—H12120.1Zn1—O2—Pb1104.13 (17)
C13—C12—H12120.1C21—O3—Zn1127.4 (4)
C14—C13—C12120.2 (7)C21—O3—Pb1127.7 (4)
C14—C13—H13119.9Zn1—O3—Pb1104.90 (17)
C12—C13—H13119.9C20—O4—C22117.7 (5)
C13—C14—C9119.3 (6)C20—O4—Pb1117.0 (4)
C13—C14—N2124.7 (6)C22—O4—Pb1125.3 (4)
C9—C14—N2116.0 (5)O3—Zn1—O280.49 (16)
N2—C15—C16125.8 (6)O3—Zn1—N1144.11 (18)
N2—C15—H15117.1O2—Zn1—N188.19 (18)
C16—C15—H15117.1O3—Zn1—N288.00 (18)
C17—C16—C21117.8 (6)O2—Zn1—N2141.06 (18)
C17—C16—C15117.4 (6)N1—Zn1—N279.7 (2)
C21—C16—C15124.8 (6)O3—Zn1—Cl1107.95 (13)
C18—C17—C16122.6 (7)O2—Zn1—Cl1108.74 (13)
C18—C17—H17118.7N1—Zn1—Cl1107.94 (14)
C16—C17—H17118.7N2—Zn1—Cl1110.20 (15)
C17—C18—C19120.1 (7)O3—Pb1—O266.18 (14)
C17—C18—H18120.0O3—Pb1—Cl289.13 (11)
C19—C18—H18120.0O2—Pb1—Cl291.86 (10)
C20—C19—C18120.3 (7)O3—Pb1—O461.20 (14)
C20—C19—H19119.8O2—Pb1—O4127.37 (14)
C18—C19—H19119.8Cl2—Pb1—O488.05 (11)
C19—C20—O4125.7 (7)O3—Pb1—O1126.94 (14)
C19—C20—C21121.0 (7)O2—Pb1—O160.79 (14)
O4—C20—C21113.4 (6)Cl2—Pb1—O194.14 (12)
O3—C21—C16123.4 (6)O4—Pb1—O1171.53 (14)

Experimental details

Crystal data
Chemical formula[Zn2Pb2(C22H18N2O4)2Cl4]·2C3H7NO
Mr1581.88
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)7.4955 (6), 32.119 (3), 11.2366 (9)
β (°) 95.729 (2)
V3)2691.7 (4)
Z2
Radiation typeMo Kα
µ (mm1)7.38
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.320, 0.526
No. of measured, independent and
observed [I > 2σ(I)] reflections
13373, 4719, 3176
Rint0.063
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.066, 0.93
No. of reflections4719
No. of parameters336
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.64

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
N1—Zn12.062 (5)O3—Zn12.025 (4)
N2—Zn12.064 (5)O3—Pb12.386 (4)
O1—Pb12.720 (5)O4—Pb12.690 (5)
O2—Zn12.026 (4)Zn1—Cl12.2544 (18)
O2—Pb12.408 (4)Pb1—Cl22.6138 (18)
O3—Zn1—O280.49 (16)O3—Pb1—O266.18 (14)
O3—Zn1—N1144.11 (18)O3—Pb1—Cl289.13 (11)
O2—Zn1—N188.19 (18)O2—Pb1—Cl291.86 (10)
O3—Zn1—N288.00 (18)O3—Pb1—O461.20 (14)
O2—Zn1—N2141.06 (18)O2—Pb1—O4127.37 (14)
N1—Zn1—N279.7 (2)Cl2—Pb1—O488.05 (11)
O3—Zn1—Cl1107.95 (13)O3—Pb1—O1126.94 (14)
O2—Zn1—Cl1108.74 (13)O2—Pb1—O160.79 (14)
N1—Zn1—Cl1107.94 (14)Cl2—Pb1—O194.14 (12)
N2—Zn1—Cl1110.20 (15)O4—Pb1—O1171.53 (14)
 

Acknowledgements

This work was supported by the Natural Science Foundation of China and the Post-Doctoral Innovation Project of Shandong Province.

References

First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKarlin, K. D. (1993). Science, 261, 701–708.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKorupoju, S. R., Mangayarkarasi, N., Ameerunisha, S., Valente, E. J. & Zacharias, P. S. (2000). J. Chem. Soc. Dalton Trans. pp. 2845–2852.  Web of Science CSD CrossRef Google Scholar
First citationLo, W. K., Wong, W. K., Guo, J., Wong, W. Y., Li, K. F. & Cheah, K. W. (2004). Inorg. Chim. Acta, 357, 4510–4521.  Web of Science CSD CrossRef CAS Google Scholar
First citationNi, Z. H., Kou, H. Z., Zhao, Y. H., Zheng, L., Wang, R. J., Cui, A. L. & Sato, O. (2005). Inorg. Chem. 44, 2050–2059.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSui, Y., Sui, Y.-H., Luo, Q.-Y. & Wang, Y.-D. (2007). Acta Cryst. E63, m2277–m2278.  CrossRef IUCr Journals Google Scholar
First citationWard, M. D. (2007). Coord. Chem. Rev. 251, 1663–1677.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 11| November 2008| Pages m1408-m1409
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds