metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{2-[(E)-benzyl­imino­meth­yl]-4,6-di­bromo­phenolato-κ2N,O}cobalt(II)

aSchool of Chemistry and Life Sciences, Maoming University, Guandu Second Road 139, Maoming 525000, Guangdong, People's Republic of China
*Correspondence e-mail: gdmmjw@yahoo.cn

(Received 2 October 2008; accepted 7 October 2008; online 15 October 2008)

In the title compound, [Co(C14H10Br2NO)2], the CoII ion is coordinated by an O and an N atom from two equivalent 2-[(E)-benzyl­imino­meth­yl]-4,6-dibromo­phenolate ligands, displaying a distorted tetra­hedral geometry. The CoII ion occupies a special position on a twofold rotation axis and thus the mol­ecular symmetry of the complex is C2. The two phenolate rings are perpendicular [89.8 (3)°].

Related literature

For general background on the applications of Schiff bases, see: Vigato et al. (2007[Vigato, P.A., Tamburini, S. & Bertolo, L. (2007). Coord. Chem. Rev. 251, 1311-1316.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C14H10Br2NO)2]

  • Mr = 795.03

  • Monoclinic, C 2/c

  • a = 23.875 (3) Å

  • b = 4.8190 (6) Å

  • c = 24.209 (3) Å

  • β = 105.8730 (1)°

  • V = 2679.1 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.64 mm−1

  • T = 296 (2) K

  • 0.30 × 0.26 × 0.22 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.165, Tmax = 0.232

  • 11046 measured reflections

  • 3094 independent reflections

  • 2627 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.172

  • S = 1.07

  • 3094 reflections

  • 168 parameters

  • H-atom parameters constrained

  • Δρmax = 0.98 e Å−3

  • Δρmin = −1.46 e Å−3

Table 1
Selected geometric parameters (Å, °)

Co1—O1 1.935 (4)
Co1—N1 2.005 (4)
O1i—Co1—O1 126.8 (2)
O1i—Co1—N1 94.16 (17)
O1—Co1—N1 113.29 (17)
N1—Co1—N1i 117.1 (3)
Symmetry code: (i) [-x, y, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: XP in SHELXTL.

Supporting information


Comment top

The Schiff bases are widely employed as ligands in coordination chemistry. The advantages of Schiff bases enable their use in the synthesis of metal complexes of interest in bioinorganic chemistry, catalysis, encapsulation, transport and separation processes, and magnetochemistry (Choi & Jeon, 2003). Salicylaldehyde and its derivatives are useful carbonyl precursors for the synthesis of a large variety of Schiff bases. In this paper we report on a new cobalt(II) complex (I).

In the title complex CoII atom is tetrahedrally coordinated by two O atoms and two N atoms from two 2-((E)-(benzylimino)methyl)-4,6-dibromophenol bidentate chelating ligand. The Co1—O1 distance of 1.935 (4) Å is shorter than the distance of Co1—N1 (2.005 (4) Å) (Table 1). The dihedral angle between two phenol rings is 89.8 (3)°.

Related literature top

For general background on the applications of Schiff bases, see: Choi & Jeon (2003). [Please check rephrasing]

Experimental top

To a solution containing 2 mmol (0.738 g) 2-((E)-(benzylimino)methyl)-4,6-dibromophenol dissolved in 20 mL ethanol, 1 mmol of CoCl2.6H2O (0.238 g) were added, and the resulting mixture was stirred for about 1 h. The slow evaporisation of the solvent after about 3 d yielded dark brown single crystals. Yield: 51.4%. Calcd. for C28H20Br4CoN2O2: C, 42.30; H, 2.54; N, 3.52; Found: C, 42.24; H, 3.41; N,3.46%.

Refinement top

All H atoms were located from difference Fourier syntheses, H atoms from the C—H groups were placed in geometrically idealized positions and constrained to ride on their parent atoms (C—H = 0.93 Å, 0.96 Å, 0.97 Å) and Uiso(H) values equal to 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: XP in SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing displacement ellipsoids drawn at the 30% probability level. [Symmetry code: (i) -x, y, -z+0.5]
Bis{2-[(E)-benzyliminomethyl]-4,6-dibromophenolato-κ2N,O}cobalt(II) top
Crystal data top
[Co(C14H10Br2NO)2]F(000) = 1540
Mr = 795.03Dx = 1.971 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2269 reflections
a = 23.875 (3) Åθ = 1.0–27.7°
b = 4.8190 (6) ŵ = 6.64 mm1
c = 24.209 (3) ÅT = 296 K
β = 105.873 (1)°Block, brown
V = 2679.1 (6) Å30.30 × 0.26 × 0.22 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
3094 independent reflections
Radiation source: fine-focus sealed tube2627 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 27.7°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 3030
Tmin = 0.165, Tmax = 0.232k = 66
11046 measured reflectionsl = 3031
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.172H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.1045P)2 + 20.5054P]
where P = (Fo2 + 2Fc2)/3
3094 reflections(Δ/σ)max < 0.001
168 parametersΔρmax = 0.98 e Å3
0 restraintsΔρmin = 1.46 e Å3
Crystal data top
[Co(C14H10Br2NO)2]V = 2679.1 (6) Å3
Mr = 795.03Z = 4
Monoclinic, C2/cMo Kα radiation
a = 23.875 (3) ŵ = 6.64 mm1
b = 4.8190 (6) ÅT = 296 K
c = 24.209 (3) Å0.30 × 0.26 × 0.22 mm
β = 105.873 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3094 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
2627 reflections with I > 2σ(I)
Tmin = 0.165, Tmax = 0.232Rint = 0.027
11046 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.172H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.1045P)2 + 20.5054P]
where P = (Fo2 + 2Fc2)/3
3094 reflectionsΔρmax = 0.98 e Å3
168 parametersΔρmin = 1.46 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.00000.9824 (2)0.25000.0481 (3)
Br10.25733 (3)0.73207 (15)0.14570 (3)0.0446 (2)
Br20.06423 (3)1.45190 (13)0.09822 (2)0.0389 (2)
O10.04168 (16)1.1622 (8)0.20173 (16)0.0316 (8)
N10.06936 (19)0.7651 (9)0.20554 (18)0.0269 (9)
C10.0898 (2)1.0738 (10)0.1927 (2)0.0260 (10)
C20.1095 (2)1.1793 (11)0.1464 (2)0.0285 (10)
C30.1595 (2)1.0865 (12)0.1339 (2)0.0313 (11)
H3A0.17071.16210.10320.038*
C40.1925 (2)0.8813 (13)0.1672 (2)0.0321 (11)
C50.1772 (2)0.7738 (12)0.2136 (2)0.0336 (11)
H5A0.20050.63950.23640.040*
C60.1268 (2)0.8649 (12)0.2269 (2)0.0281 (10)
C70.1144 (2)0.7334 (12)0.2242 (2)0.0309 (11)
H7A0.14250.61060.20370.037*
C80.0702 (3)0.6166 (12)0.1512 (2)0.0327 (11)
H8A0.09340.44920.14820.039*
H8B0.03090.56310.15170.039*
C90.0954 (3)0.7997 (11)0.1000 (2)0.0320 (11)
C100.1555 (3)0.8139 (16)0.0759 (3)0.0483 (16)
H10A0.18070.70550.09010.058*
C110.1773 (4)0.9955 (19)0.0296 (3)0.059 (2)
H11A0.21741.00610.01370.071*
C120.1433 (4)1.1523 (16)0.0075 (3)0.0555 (19)
H12A0.15931.27150.02290.067*
C130.0827 (4)1.1356 (17)0.0309 (3)0.0533 (17)
H13A0.05811.24260.01570.064*
C140.0597 (3)0.9608 (14)0.0764 (3)0.0420 (14)
H14A0.01950.95040.09150.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0443 (5)0.0596 (6)0.0428 (5)0.0000.0163 (4)0.000
Br10.0289 (3)0.0637 (4)0.0467 (4)0.0012 (2)0.0197 (3)0.0043 (3)
Br20.0460 (4)0.0389 (3)0.0348 (3)0.0015 (2)0.0160 (3)0.0099 (2)
O10.0320 (19)0.039 (2)0.0299 (19)0.0049 (16)0.0186 (16)0.0067 (16)
N10.027 (2)0.033 (2)0.021 (2)0.0010 (16)0.0071 (17)0.0003 (16)
C10.028 (2)0.030 (2)0.022 (2)0.0039 (19)0.0092 (19)0.0012 (18)
C20.033 (3)0.031 (3)0.024 (2)0.006 (2)0.011 (2)0.0022 (19)
C30.032 (3)0.038 (3)0.028 (3)0.010 (2)0.014 (2)0.005 (2)
C40.026 (2)0.042 (3)0.032 (3)0.004 (2)0.012 (2)0.006 (2)
C50.027 (3)0.044 (3)0.029 (3)0.001 (2)0.006 (2)0.000 (2)
C60.026 (2)0.038 (3)0.022 (2)0.002 (2)0.0078 (19)0.001 (2)
C70.027 (3)0.042 (3)0.023 (2)0.004 (2)0.006 (2)0.003 (2)
C80.041 (3)0.034 (3)0.025 (2)0.006 (2)0.013 (2)0.002 (2)
C90.045 (3)0.031 (3)0.023 (2)0.001 (2)0.013 (2)0.0074 (19)
C100.043 (4)0.061 (4)0.042 (4)0.007 (3)0.014 (3)0.004 (3)
C110.048 (4)0.076 (5)0.046 (4)0.016 (4)0.000 (3)0.003 (4)
C120.084 (6)0.051 (4)0.025 (3)0.005 (4)0.005 (3)0.001 (3)
C130.065 (5)0.056 (4)0.036 (3)0.011 (4)0.010 (3)0.006 (3)
C140.044 (3)0.052 (4)0.029 (3)0.007 (3)0.008 (3)0.000 (2)
Geometric parameters (Å, º) top
Co1—O1i1.935 (4)C6—C7i1.441 (7)
Co1—O11.935 (4)C7—C6i1.441 (7)
Co1—N12.005 (4)C7—H7A0.9300
Co1—N1i2.005 (4)C8—C91.505 (8)
Br1—C41.902 (5)C8—H8A0.9700
Br2—C21.888 (6)C8—H8B0.9700
O1—C11.298 (6)C9—C141.388 (8)
N1—C71.285 (7)C9—C101.396 (9)
N1—C81.493 (7)C10—C111.404 (11)
C1—C21.424 (7)C10—H10A0.9300
C1—C61.442 (7)C11—C121.323 (12)
C2—C31.383 (7)C11—H11A0.9300
C3—C41.379 (8)C12—C131.405 (11)
C3—H3A0.9300C12—H12A0.9300
C4—C51.376 (8)C13—C141.375 (10)
C5—C61.399 (8)C13—H13A0.9300
C5—H5A0.9300C14—H14A0.9300
O1i—Co1—O1126.8 (2)N1—C7—C6i127.9 (5)
O1i—Co1—N194.16 (17)N1—C7—H7A116.0
O1—Co1—N1113.29 (17)C6i—C7—H7A116.0
O1i—Co1—N1i113.29 (17)N1—C8—C9110.5 (4)
O1—Co1—N1i94.16 (17)N1—C8—H8A109.6
N1—Co1—N1i117.1 (3)C9—C8—H8A109.6
C1—O1—Co1125.4 (3)N1—C8—H8B109.6
C7—N1—C8116.2 (5)C9—C8—H8B109.6
C7—N1—Co1121.4 (4)H8A—C8—H8B108.1
C8—N1—Co1122.3 (4)C14—C9—C10118.5 (6)
O1—C1—C2120.9 (5)C14—C9—C8121.1 (6)
O1—C1—C6124.4 (4)C10—C9—C8120.5 (6)
C2—C1—C6114.7 (4)C9—C10—C11118.6 (7)
C3—C2—C1123.3 (5)C9—C10—H10A120.7
C3—C2—Br2118.2 (4)C11—C10—H10A120.7
C1—C2—Br2118.6 (4)C12—C11—C10123.0 (7)
C4—C3—C2119.6 (5)C12—C11—H11A118.5
C4—C3—H3A120.2C10—C11—H11A118.5
C2—C3—H3A120.2C11—C12—C13118.8 (7)
C5—C4—C3120.6 (5)C11—C12—H12A120.6
C5—C4—Br1120.0 (5)C13—C12—H12A120.6
C3—C4—Br1119.3 (4)C14—C13—C12120.0 (7)
C4—C5—C6120.6 (5)C14—C13—H13A120.0
C4—C5—H5A119.7C12—C13—H13A120.0
C6—C5—H5A119.7C13—C14—C9121.2 (7)
C5—C6—C7i115.6 (5)C13—C14—H14A119.4
C5—C6—C1121.2 (5)C9—C14—H14A119.4
C7i—C6—C1123.2 (5)
Symmetry code: (i) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Co(C14H10Br2NO)2]
Mr795.03
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)23.875 (3), 4.8190 (6), 24.209 (3)
β (°) 105.873 (1)
V3)2679.1 (6)
Z4
Radiation typeMo Kα
µ (mm1)6.64
Crystal size (mm)0.30 × 0.26 × 0.22
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.165, 0.232
No. of measured, independent and
observed [I > 2σ(I)] reflections
11046, 3094, 2627
Rint0.027
(sin θ/λ)max1)0.653
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.172, 1.07
No. of reflections3094
No. of parameters168
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.1045P)2 + 20.5054P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.98, 1.46

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Co1—O11.935 (4)Co1—N12.005 (4)
O1i—Co1—O1126.8 (2)O1—Co1—N1113.29 (17)
O1i—Co1—N194.16 (17)N1—Co1—N1i117.1 (3)
Symmetry code: (i) x, y, z+1/2.
 

Acknowledgements

We are grateful to the Starting Fund for the Doctoral Program of Maoming University for financial support.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVigato, P.A., Tamburini, S. & Bertolo, L. (2007). Coord. Chem. Rev. 251, 1311–1316.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds