metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 11| November 2008| Pages m1372-m1373

(O,O′-Di­ethyl di­thio­phosphato-κ2S,S′)(hydridotripyrazol-1-ylborato-κ3N2,N2′,N2′′)(tri­phenyl­phosphine-κP)ruthenium(II)

aDepartment of Chemical Engineering, Tatung University, Taipei 104, Taiwan, and bDepartment of Chemistry, Chung-Yuan Christian University, Chung-Li 320, Taiwan
*Correspondence e-mail: yhlo@ttu.edu.tw

(Received 16 September 2008; accepted 1 October 2008; online 9 October 2008)

Reaction of [Ru(Tp)Cl(PPh3)2] {where Tp is hydridotri­pyrazol­yl­borate, BH[C3H3N2)3)]} with NH4[S2P(OEt)2] in methanol afforded the title compound, [Ru(C9H10BN6)(C4H10O2PS2)(C18H15P)], in which the RuII ion is in a slightly disorted octa­hedral coordination environment. The [S2P(OEt)2] ligand coordinates in a chelating mode with two similar Ru—S bond lengths and a slightly acute S—Ru—S angle. The atoms of both –OCH2CH3 groups of the diethyl dithio­phosphate ligand are disordered over two sites with approximate occupancies of 0.76 and 0.24.

Related literature

For related structures, see: Alock et al. (1992[Alock, N. W., Burns, I. D., Claire, K. S. & Hill, A. F. (1992). Inorg. Chem. 31, 2906-2908.]); Burrows (2001[Burrows, A. D. (2001). CrystEngComm, 46, 1-5.]); Hidai et al. (2000[Hidai, M., Kuwata, S. & Mizobe, Y. (2000). Acc. Chem. Res. 33, 46-52.]); Gemel et al. (1996[Gemel, C., Trimmel, G., Slugovc, C., Kremel, S., Mereiter, K., Schmid, R. & Kirchner, K. (1996). Organometallics, 15, 3998-4004.]); Jain & Jakkal (1996[Jain, V. K. & Jakkal, V. S. (1996). J. Organomet. Chem. 515, 81-87.]); Meno et al. (1995[Meno, M., Pramanik, A., Bag, N. & Chakravorty, A. (1995). J. Chem. Soc. Dalton Trans. pp. 1543-1547.]); Pavlik et al. (2005[Pavlik, S., Mereiter, K., Puchberger, M. & Kirchner, K. (2005). Organometallics, 24, 3561-3575.]); Sellmann et al. (1999[Sellmann, D., Utz, J. & Heineman, F. W. (1999). Eur. J. Inorg. Chem. 2, 341-346.]); Slugovc et al. (1998[Slugovc, C., Mereiter, K., Schmidt, R. & Kirchner, K. (1998). Organometallics, 17, 827-831.]); Vit & Zdrazil (1989[Vit, Z. & Zdrazil, M. (1989). J. Catal. 119, 1-9.]).

[Scheme 1]

Experimental

Crystal data
  • [Ru(C9H10BN6)(C4H10O2PS2)(C18H15P)]

  • Mr = 761.59

  • Monoclinic, P 21 /c

  • a = 12.4408 (2) Å

  • b = 13.7386 (2) Å

  • c = 20.3775 (3) Å

  • β = 99.676 (1)°

  • V = 3433.36 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.71 mm−1

  • T = 200 (2) K

  • 0.42 × 0.3 × 0.15 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.755, Tmax = 0.901

  • 24009 measured reflections

  • 6265 independent reflections

  • 5601 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.093

  • S = 1.05

  • 6265 reflections

  • 449 parameters

  • 42 restraints

  • H-atom parameters constrained

  • Δρmax = 1.43 e Å−3

  • Δρmin = −0.62 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ru1—N3 2.086 (2)
Ru1—N1 2.088 (2)
Ru1—N5 2.144 (3)
Ru1—P1 2.3171 (8)
Ru1—S1 2.4540 (8)
Ru1—S2 2.4635 (8)
N3—Ru1—N1 90.09 (9)
N3—Ru1—N5 83.57 (10)
N1—Ru1—N5 84.88 (10)
N3—Ru1—P1 90.07 (7)
N1—Ru1—P1 90.63 (7)
N5—Ru1—P1 172.20 (7)
N3—Ru1—S1 170.14 (7)
N1—Ru1—S1 93.07 (7)
N5—Ru1—S1 87.41 (7)
P1—Ru1—S1 99.23 (3)
N3—Ru1—S2 94.61 (7)
N1—Ru1—S2 169.78 (7)
N5—Ru1—S2 86.63 (7)
P1—Ru1—S2 98.42 (3)
S1—Ru1—S2 80.86 (3)

Data collection: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The chemistry of transition metal sulfur compounds has attracted interest for their importance in the field of catalysts, metalloenzymes, and materialprecursor (Hidai et al.,2000). In recent years there has been an increased interest in ruthenium sulfurcomplexes, in part because of the high catalytic activity of RuS2 in various hydrotreating processes (Vit & Zdrazil, 1989). As a part of this development, many examples of ruthenium thiolate complexes have been reported, however, the ruthenium complexes with dithio ligands are relatively rare (Sellmann et al., 1999). On the other hand, ruthenium(II)hydridotripyrazolylborate complexes, Ru(Tp), are of interest for stoichiometricand catalytic transformations of organic molecules (Pavlik et al., 2005). The complex [Ru(Tp)Cl(PPh3)2] (Alock et al., 1992) has been used as the starting material for the synthesis of several complexes because of its substitutionally labile chloride and phosphines (Burrows, 2001). In order to aquire a better understanding of the coordination chemistry of RuS2,we have studied the ruthenium phosphine complex containing the ligands hydrotris(pyrazolyl)borate (Tp) and [NH4][S2P(OEt)2]. Interaction of [Ru(Tp)Cl(PPh3)2] with [NH4][S2P(OEt)2] in MeOH afforded the title compound {Ru(Tp)(PPh3)[S2P(OEt)2]} (I). The 31P NMRspectrum of (I) in CDCl3 shows two intense singletsat 50.8 and 105.7 p.p.m., assignable to PPh3 and [S2P(OEt)2],respectively. The FAB mass spectrum of (I) shows the molecular ions {Ru(Tp)(PPh3)[S2P(OEt)2]} with the characteristic isotopic distribution patterns. The crystal structure of (I) was established by X-ray crystallography. In the title compound, the environment about the RuII ion is slightly distorted octahedral and the bite angle of the Tp ligand produces an average N—Ru—N angle of ca. 86° only slightly distorted from 90°. The three Ru—N(Tp) bond lengths are slightly longer than the average distance of 2.038 Å in other ruthenium Tp complexes (Gemel et al.1996; Slugovc et al.1998). The [S2P(OEt)2]ligand chelates the ruthenium centre with two nearly equal Ru—S bonds and the S—Ru—S angle is slightly acute. The Ru—S bond lengths in (I) are comparable to those in [(η6-p-cymene)Ru{S2P(OMe)2}(PPh3)][BPh4][av. 2.4311 (12) Å] with a chelated dithiophosphate ligand (Jain & Jakkal, 1996), but slightly longer than for cis-[Ru(S2CNEt2)2(PPh3)2][av. 2.3952 (5) Å] with chelated dithiocarbamate (Meno et al.., 1995). The Ru—P bond length in (I) agrees well with those in related ruthenium(II) complexes with PPh3 ligands (Jain & Jakkal, 1996, Meno et al., 1995).

Related literature top

For related structures, see: Alock et al. (1992); Burrows (2001); Hidai et al. (2000); Gemel et al. (1996); Jain & Jakkal (1996); Meno et al. (1995); Pavlik et al. (2005); Sellmann et al. (1999); Slugovc et al. (1998); Vit & Zdrazil (1989).

Experimental top

The synthesis of the title compound (I) was carried out as follows. To a solution of [Ru(Tp)Cl(PPh3)2](3.95 g,4.50 mmol) in MeOH (20 ml), an excess of [NH4][S2P(OEt)2] (1.82 g, 9.00 mmol) were added. The reaction mixture was stirred for a further 8 h at room temperature. The solvent was dried under vacuum and 20 ml of CH2Cl2 was added to the residue. The product was dissolved in CH2Cl2 and other salts such as [NH4][S2P(OEt)2] and NH4Cl precipitated. After filtration, the solvent was dried under vacuum to give the title compound (I) (3.27 g, 95% yield). Spectroscopic analysis: IR (KBr, cm-1): ν(BH)2468 cm-1.1H NMR (CDCl3, 303 K, d,p.p.m.): d 7.92 (d, JH—H = 2.3 Hz, 1H, Tp),7.83 (d, JH—H = 2.3 Hz, 1H, Tp), 7.71 (d, JH—H =2.3 Hz, 1H, Tp), 7.4–6.9 (m, Tp, Ph), 6.83 (d, JH—H = 2.3 Hz,1H, Tp), 5.81 (d, JH—H = 2.2 Hz, 1H, Tp), 5.66 (d, JH—H= 2.2 Hz, 1H, Tp), 5.63 (t, JH—H = 2.2 Hz, 1H, Tp), 5.54(t, JH—H = 2.2 Hz, 1H, Tp), 4.16 (q, JH—H =7.2 Hz, 2H, OCH2), 3.11 (q, JH—H = 7.2 Hz, 2H, OCH2),1.32(t, JH—H = 7.2 Hz, 3H, CH3), 0.79 (t, JH—H= 7.2 Hz, 3H, CH3).13C NMR (CDCl3,303 K, d, p.p.m.): 146.7–104.6 (m, PPh3, Tp), 60.6,61.4 (d, OCH2, 2JP—C = 10 Hz), 15.5,15.9 (d, OCH2CH3, 3JP—C= 8.4 Hz). 31P NMR (CDCl3, 303 K, d,p.p.m.): d 105.7 (PS2), 50.9 (s, PPh3). MS (m/z,Ru102): 762.2 (M+), 500.1(M+ - PPh3). Anal. Calcdfor C31H35BN6O2P2RuS2:C, 48.89; H, 4.63; N, 11.03. Found: C, 48.73; H,4.61; N, 11.02. The bright-yellow crystalsof (I) for X-ray structure analysis were obtained by recrystallization of the crude product from dichloromethane-hexane.

Refinement top

H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 - 0.97 Å and Uiso(H) = 1.2 or 1.5Ueq(C), B—H = 0.98 Å and Uiso(H) = 1.2Ueq(C). The atoms of both -OCH2CH3 groups of the diethyldithiophosphato ligand are disordered over two sites with refined occupancies of 0.764 (3) and 0.236 (3).

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing displacement ellipsoids at the 35% level and H atoms having arbitrary radius. The disorder is not shown.
(O,O'-Diethyl dithiophosphato-κ2S,S')(hydridotripyrazol-1-ylborato-κ3N2,N2',N2'')(triphenylphosphine-κP)ruthenium(II) top
Crystal data top
[Ru(C9H10BN6)(C4H10O2PS2)(C18H15P)]F(000) = 1560
Mr = 761.59Dx = 1.473 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 32408 reflections
a = 12.4408 (2) Åθ = 2.0–25.4°
b = 13.7386 (2) ŵ = 0.71 mm1
c = 20.3775 (3) ÅT = 200 K
β = 99.676 (1)°Prism, yellow
V = 3433.36 (9) Å30.42 × 0.3 × 0.15 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
6265 independent reflections
Radiation source: fine-focus sealed tube5601 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 9 pixels mm-1θmax = 25.4°, θmin = 2.4°
CCD rotation images, thick slices scansh = 1114
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 1616
Tmin = 0.755, Tmax = 0.901l = 2424
24009 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0373P)2 + 5.0939P]
where P = (Fo2 + 2Fc2)/3
6265 reflections(Δ/σ)max = 0.001
449 parametersΔρmax = 1.43 e Å3
42 restraintsΔρmin = 0.62 e Å3
Crystal data top
[Ru(C9H10BN6)(C4H10O2PS2)(C18H15P)]V = 3433.36 (9) Å3
Mr = 761.59Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.4408 (2) ŵ = 0.71 mm1
b = 13.7386 (2) ÅT = 200 K
c = 20.3775 (3) Å0.42 × 0.3 × 0.15 mm
β = 99.676 (1)°
Data collection top
Nonius KappaCCD
diffractometer
6265 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
5601 reflections with I > 2σ(I)
Tmin = 0.755, Tmax = 0.901Rint = 0.051
24009 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03642 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.05Δρmax = 1.43 e Å3
6265 reflectionsΔρmin = 0.62 e Å3
449 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ru10.685497 (18)0.068530 (16)0.255762 (11)0.02384 (9)
S10.79384 (7)0.17427 (6)0.19498 (4)0.0388 (2)
S20.74769 (7)0.05385 (6)0.18210 (4)0.03638 (19)
P10.81369 (6)0.03972 (6)0.35016 (4)0.02612 (17)
P20.84695 (7)0.05178 (7)0.16235 (4)0.0369 (2)
N10.6227 (2)0.18566 (18)0.30252 (12)0.0289 (5)
N20.5136 (2)0.18862 (18)0.30454 (13)0.0324 (6)
N30.57667 (19)0.02517 (18)0.29151 (12)0.0272 (5)
N40.47495 (19)0.00904 (18)0.29637 (13)0.0301 (6)
N50.5506 (2)0.09368 (19)0.17715 (13)0.0314 (6)
N60.4510 (2)0.11145 (19)0.19433 (14)0.0339 (6)
C10.6649 (3)0.2667 (2)0.33239 (16)0.0351 (7)
H1A0.73830.28350.33840.042*
C20.5841 (3)0.3225 (3)0.35311 (19)0.0454 (9)
H2A0.59220.38220.37490.054*
C30.4901 (3)0.2709 (2)0.33460 (17)0.0406 (8)
H3A0.42120.28970.34170.049*
C40.5802 (3)0.1169 (2)0.31240 (15)0.0307 (7)
H4A0.64010.15790.31400.037*
C50.4826 (3)0.1432 (2)0.33140 (17)0.0396 (8)
H5A0.46470.20300.34800.048*
C60.4181 (3)0.0622 (2)0.32047 (17)0.0371 (7)
H6A0.34690.05710.32840.045*
C70.5363 (3)0.0975 (3)0.11105 (17)0.0410 (8)
H7A0.59090.08720.08580.049*
C80.4285 (3)0.1189 (3)0.08504 (19)0.0493 (9)
H8A0.39780.12630.04050.059*
C90.3772 (3)0.1267 (3)0.13905 (18)0.0445 (9)
H9A0.30370.14030.13780.053*
C100.7727 (2)0.0899 (2)0.42642 (15)0.0295 (6)
C110.8439 (3)0.1437 (2)0.47297 (15)0.0351 (7)
H11A0.91540.15350.46670.042*
C120.8085 (3)0.1827 (3)0.52858 (17)0.0419 (8)
H12A0.85660.21860.55930.050*
C130.7026 (3)0.1686 (3)0.53855 (17)0.0437 (8)
H13A0.67890.19580.57540.052*
C140.6322 (3)0.1137 (3)0.49359 (17)0.0427 (8)
H14A0.56140.10260.50090.051*
C150.6662 (3)0.0751 (2)0.43786 (16)0.0354 (7)
H15A0.61770.03890.40770.042*
C160.8413 (2)0.0886 (2)0.37420 (16)0.0300 (6)
C170.8813 (3)0.1501 (2)0.32978 (17)0.0389 (8)
H17A0.88710.12720.28760.047*
C180.9128 (3)0.2447 (3)0.34695 (19)0.0441 (8)
H18A0.93950.28450.31650.053*
C190.9043 (3)0.2796 (2)0.40899 (19)0.0446 (9)
H19A0.92650.34270.42100.054*
C200.8628 (3)0.2207 (3)0.45330 (19)0.0464 (9)
H20A0.85530.24480.49490.056*
C210.8320 (3)0.1256 (2)0.43639 (17)0.0387 (8)
H21A0.80490.08630.46700.046*
C220.9557 (2)0.0851 (2)0.35834 (15)0.0314 (7)
C231.0452 (3)0.0291 (3)0.38653 (17)0.0386 (8)
H23A1.03440.03350.40150.046*
C241.1505 (3)0.0660 (3)0.39243 (19)0.0470 (9)
H24A1.20960.02730.41020.056*
C251.1676 (3)0.1587 (3)0.37228 (19)0.0515 (10)
H25A1.23810.18330.37670.062*
C261.0798 (3)0.2161 (3)0.34532 (19)0.0494 (9)
H26A1.09120.27940.33180.059*
C270.9746 (3)0.1791 (3)0.33844 (17)0.0406 (8)
H27A0.91600.21800.32020.049*
O10.9685 (2)0.0388 (3)0.20330 (16)0.0485 (8)0.764 (3)
C281.0361 (4)0.0397 (4)0.1920 (3)0.0657 (16)0.764 (3)
H28A1.02540.05240.14460.079*0.764 (3)
H28B1.01240.09710.21340.079*0.764 (3)
C291.1497 (4)0.0264 (6)0.2152 (5)0.079 (2)0.764 (3)
H29A1.18840.08390.20590.118*0.764 (3)
H29B1.16190.01490.26230.118*0.764 (3)
H29C1.17530.02830.19290.118*0.764 (3)
O1A0.9713 (4)0.0320 (9)0.1572 (5)0.0479 (13)0.236 (3)
C29A1.1270 (19)0.061 (2)0.2317 (18)0.079 (2)0.236 (3)
H29D1.15920.05650.27790.118*0.236 (3)
H29E1.18270.05270.20470.118*0.236 (3)
H29F1.09280.12290.22290.118*0.236 (3)
C28A1.0470 (15)0.0148 (15)0.2162 (8)0.0648 (19)0.236 (3)
H28C1.00290.01080.25110.078*0.236 (3)
H28D1.08780.07500.22410.078*0.236 (3)
O20.8764 (3)0.0499 (3)0.08958 (13)0.0458 (9)0.764 (3)
C300.7920 (4)0.0556 (4)0.0330 (2)0.0476 (13)0.764 (3)
H30A0.74720.11240.03660.057*0.764 (3)
H30B0.74590.00170.03110.057*0.764 (3)
C310.8393 (18)0.0618 (10)0.0271 (6)0.068 (3)0.764 (3)
H31A0.78210.06490.06500.102*0.764 (3)
H31B0.88350.00540.03050.102*0.764 (3)
H31C0.88350.11930.02550.102*0.764 (3)
O2A0.8154 (9)0.0724 (8)0.0839 (2)0.0467 (13)0.236 (3)
C30A0.8201 (17)0.0081 (12)0.0299 (7)0.0487 (17)0.236 (3)
H30C0.74930.02300.01930.058*0.236 (3)
H30D0.87210.04260.04620.058*0.236 (3)
C31A0.848 (7)0.042 (4)0.032 (2)0.068 (3)0.236 (3)
H31D0.84310.01040.06300.102*0.236 (3)
H31E0.92070.06770.02410.102*0.236 (3)
H31F0.79790.09290.04970.102*0.236 (3)
B10.4383 (3)0.1100 (3)0.26828 (19)0.0346 (8)
H10.36240.12240.27290.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.01928 (13)0.02232 (13)0.03081 (14)0.00061 (9)0.00673 (9)0.00169 (9)
S10.0393 (5)0.0347 (4)0.0454 (5)0.0073 (4)0.0159 (4)0.0054 (4)
S20.0374 (5)0.0309 (4)0.0439 (4)0.0032 (3)0.0155 (4)0.0018 (3)
P10.0202 (4)0.0268 (4)0.0319 (4)0.0005 (3)0.0060 (3)0.0010 (3)
P20.0284 (4)0.0498 (5)0.0346 (4)0.0018 (4)0.0116 (3)0.0028 (4)
N10.0237 (13)0.0267 (13)0.0369 (13)0.0020 (10)0.0065 (10)0.0017 (11)
N20.0264 (13)0.0298 (13)0.0422 (14)0.0062 (11)0.0093 (11)0.0007 (11)
N30.0212 (12)0.0268 (13)0.0352 (13)0.0004 (10)0.0087 (10)0.0018 (10)
N40.0188 (12)0.0309 (13)0.0418 (14)0.0007 (10)0.0091 (10)0.0009 (11)
N50.0249 (13)0.0314 (14)0.0374 (14)0.0034 (11)0.0036 (11)0.0022 (11)
N60.0230 (13)0.0311 (14)0.0460 (15)0.0043 (11)0.0007 (11)0.0036 (12)
C10.0347 (18)0.0277 (16)0.0428 (18)0.0022 (14)0.0059 (14)0.0026 (14)
C20.050 (2)0.0291 (17)0.057 (2)0.0076 (16)0.0108 (17)0.0077 (16)
C30.0376 (19)0.0357 (18)0.050 (2)0.0108 (15)0.0133 (15)0.0032 (15)
C40.0298 (16)0.0252 (15)0.0382 (16)0.0014 (13)0.0084 (13)0.0010 (13)
C50.0370 (19)0.0324 (17)0.052 (2)0.0065 (15)0.0159 (15)0.0062 (15)
C60.0289 (17)0.0407 (19)0.0445 (18)0.0050 (14)0.0137 (14)0.0022 (15)
C70.042 (2)0.0434 (19)0.0359 (17)0.0025 (16)0.0016 (15)0.0014 (15)
C80.046 (2)0.054 (2)0.043 (2)0.0011 (18)0.0077 (17)0.0042 (17)
C90.0290 (18)0.044 (2)0.055 (2)0.0008 (15)0.0078 (16)0.0037 (17)
C100.0292 (16)0.0264 (15)0.0337 (16)0.0032 (13)0.0071 (12)0.0046 (12)
C110.0312 (17)0.0372 (18)0.0366 (16)0.0011 (14)0.0044 (13)0.0006 (14)
C120.046 (2)0.0407 (19)0.0390 (18)0.0037 (16)0.0087 (15)0.0093 (15)
C130.051 (2)0.045 (2)0.0383 (18)0.0001 (17)0.0157 (16)0.0076 (15)
C140.0345 (19)0.052 (2)0.0451 (19)0.0007 (16)0.0173 (15)0.0001 (16)
C150.0321 (17)0.0408 (18)0.0333 (16)0.0035 (14)0.0059 (13)0.0023 (14)
C160.0194 (14)0.0302 (16)0.0390 (16)0.0006 (12)0.0008 (12)0.0025 (13)
C170.0341 (18)0.0380 (18)0.0455 (19)0.0100 (15)0.0091 (15)0.0048 (15)
C180.0373 (19)0.0357 (18)0.059 (2)0.0068 (15)0.0070 (16)0.0009 (16)
C190.0356 (19)0.0291 (17)0.066 (2)0.0029 (15)0.0017 (17)0.0054 (16)
C200.054 (2)0.0369 (19)0.047 (2)0.0029 (17)0.0046 (17)0.0127 (16)
C210.0406 (19)0.0347 (18)0.0403 (18)0.0024 (15)0.0053 (15)0.0012 (14)
C220.0236 (15)0.0388 (17)0.0331 (16)0.0042 (13)0.0082 (12)0.0025 (13)
C230.0268 (17)0.0458 (19)0.0428 (18)0.0000 (15)0.0045 (14)0.0017 (15)
C240.0233 (17)0.067 (3)0.051 (2)0.0018 (16)0.0071 (15)0.0041 (18)
C250.0287 (19)0.077 (3)0.051 (2)0.0171 (19)0.0119 (16)0.010 (2)
C260.046 (2)0.052 (2)0.052 (2)0.0224 (18)0.0136 (17)0.0027 (17)
C270.0346 (18)0.0390 (19)0.0474 (19)0.0065 (15)0.0049 (15)0.0012 (15)
O10.0291 (16)0.072 (2)0.0457 (19)0.0045 (16)0.0094 (15)0.0087 (18)
C280.053 (3)0.060 (4)0.080 (4)0.007 (3)0.001 (3)0.006 (3)
C290.034 (3)0.103 (7)0.103 (6)0.015 (4)0.018 (3)0.009 (5)
O1A0.029 (2)0.070 (3)0.046 (3)0.005 (2)0.012 (2)0.007 (3)
C29A0.034 (3)0.103 (7)0.103 (6)0.015 (4)0.018 (3)0.009 (5)
C28A0.053 (4)0.059 (4)0.079 (5)0.008 (4)0.001 (4)0.008 (4)
O20.0285 (19)0.077 (2)0.0354 (15)0.0102 (19)0.0145 (15)0.0088 (15)
C300.048 (3)0.053 (4)0.040 (2)0.001 (3)0.003 (2)0.002 (3)
C310.090 (5)0.079 (7)0.038 (3)0.026 (6)0.021 (3)0.010 (4)
O2A0.032 (3)0.076 (3)0.036 (2)0.012 (3)0.017 (2)0.009 (2)
C30A0.050 (4)0.054 (4)0.041 (3)0.001 (3)0.002 (3)0.001 (3)
C31A0.090 (5)0.079 (7)0.038 (3)0.026 (6)0.021 (3)0.010 (4)
B10.0216 (17)0.0350 (19)0.047 (2)0.0031 (15)0.0065 (15)0.0024 (16)
Geometric parameters (Å, º) top
Ru1—N32.086 (2)C15—H15A0.9300
Ru1—N12.088 (2)C16—C211.388 (4)
Ru1—N52.144 (3)C16—C171.390 (5)
Ru1—P12.3171 (8)C17—C181.385 (5)
Ru1—S12.4540 (8)C17—H17A0.9300
Ru1—S22.4635 (8)C18—C191.372 (5)
S1—P21.9643 (13)C18—H18A0.9300
S2—P21.9899 (12)C19—C201.376 (5)
P1—C161.846 (3)C19—H19A0.9300
P1—C101.848 (3)C20—C211.389 (5)
P1—C221.854 (3)C20—H20A0.9300
P2—O21.587 (3)C21—H21A0.9300
P2—O1A1.591 (4)C22—C271.386 (5)
P2—O2A1.607 (4)C22—C231.396 (5)
P2—O11.609 (3)C23—C241.391 (5)
N1—C11.334 (4)C23—H23A0.9300
N1—N21.366 (3)C24—C251.366 (6)
N2—C31.341 (4)C24—H24A0.9300
N2—B11.535 (5)C25—C261.383 (6)
N3—C41.329 (4)C25—H25A0.9300
N3—N41.369 (3)C26—C271.389 (5)
N4—C61.347 (4)C26—H26A0.9300
N4—B11.540 (4)C27—H27A0.9300
N5—C71.330 (4)O1—C281.409 (5)
N5—N61.365 (4)C28—C291.424 (6)
N6—C91.344 (4)C28—H28A0.9700
N6—B11.541 (5)C28—H28B0.9700
C1—C21.384 (5)C29—H29A0.9600
C1—H1A0.9300C29—H29B0.9600
C2—C31.366 (5)C29—H29C0.9600
C2—H2A0.9300O1A—C28A1.416 (6)
C3—H3A0.9300C29A—C28A1.435 (6)
C4—C51.383 (4)C29A—H29D0.9600
C4—H4A0.9300C29A—H29E0.9600
C5—C61.368 (5)C29A—H29F0.9600
C5—H5A0.9300C28A—H28C0.9700
C6—H6A0.9300C28A—H28D0.9700
C7—C81.388 (5)O2—C301.426 (4)
C7—H7A0.9300C30—C311.446 (5)
C8—C91.366 (5)C30—H30A0.9700
C8—H8A0.9300C30—H30B0.9700
C9—H9A0.9300C31—H31A0.9600
C10—C111.396 (4)C31—H31B0.9600
C10—C151.399 (4)C31—H31C0.9600
C11—C121.390 (5)O2A—C30A1.420 (6)
C11—H11A0.9300C30A—C31A1.438 (6)
C12—C131.380 (5)C30A—H30C0.9700
C12—H12A0.9300C30A—H30D0.9700
C13—C141.381 (5)C31A—H31D0.9600
C13—H13A0.9300C31A—H31E0.9600
C14—C151.383 (5)C31A—H31F0.9600
C14—H14A0.9300B1—H10.9800
N3—Ru1—N190.09 (9)C14—C15—H15A119.7
N3—Ru1—N583.57 (10)C10—C15—H15A119.7
N1—Ru1—N584.88 (10)C21—C16—C17117.8 (3)
N3—Ru1—P190.07 (7)C21—C16—P1123.5 (2)
N1—Ru1—P190.63 (7)C17—C16—P1118.6 (2)
N5—Ru1—P1172.20 (7)C18—C17—C16121.5 (3)
N3—Ru1—S1170.14 (7)C18—C17—H17A119.2
N1—Ru1—S193.07 (7)C16—C17—H17A119.2
N5—Ru1—S187.41 (7)C19—C18—C17119.9 (3)
P1—Ru1—S199.23 (3)C19—C18—H18A120.0
N3—Ru1—S294.61 (7)C17—C18—H18A120.0
N1—Ru1—S2169.78 (7)C18—C19—C20119.6 (3)
N5—Ru1—S286.63 (7)C18—C19—H19A120.2
P1—Ru1—S298.42 (3)C20—C19—H19A120.2
S1—Ru1—S280.86 (3)C19—C20—C21120.6 (3)
P2—S1—Ru184.74 (4)C19—C20—H20A119.7
P2—S2—Ru183.95 (4)C21—C20—H20A119.7
C16—P1—C10101.43 (14)C16—C21—C20120.6 (3)
C16—P1—C2299.51 (14)C16—C21—H21A119.7
C10—P1—C22101.07 (14)C20—C21—H21A119.7
C16—P1—Ru1117.05 (10)C27—C22—C23118.1 (3)
C10—P1—Ru1112.69 (10)C27—C22—P1119.6 (2)
C22—P1—Ru1121.98 (10)C23—C22—P1122.3 (2)
O1A—P2—O2A92.4 (6)C24—C23—C22120.6 (3)
O2—P2—O197.94 (17)C24—C23—H23A119.7
O2A—P2—O1125.9 (4)C22—C23—H23A119.7
O2—P2—S1118.31 (15)C25—C24—C23120.4 (4)
O1A—P2—S1123.7 (4)C25—C24—H24A119.8
O2A—P2—S198.4 (4)C23—C24—H24A119.8
O1—P2—S1105.05 (13)C24—C25—C26119.9 (3)
O2—P2—S2115.21 (13)C24—C25—H25A120.0
O1A—P2—S2122.1 (4)C26—C25—H25A120.0
O2A—P2—S2105.9 (4)C25—C26—C27119.9 (4)
O1—P2—S2112.03 (14)C25—C26—H26A120.0
S1—P2—S2107.51 (5)C27—C26—H26A120.0
C1—N1—N2106.2 (2)C22—C27—C26121.0 (3)
C1—N1—Ru1134.7 (2)C22—C27—H27A119.5
N2—N1—Ru1119.14 (19)C26—C27—H27A119.5
C3—N2—N1109.4 (3)C28—O1—P2122.3 (3)
C3—N2—B1130.7 (3)O1—C28—C29115.8 (6)
N1—N2—B1119.5 (2)O1—C28—H28A108.3
C4—N3—N4106.5 (2)C29—C28—H28A108.3
C4—N3—Ru1135.1 (2)O1—C28—H28B108.3
N4—N3—Ru1118.39 (18)C29—C28—H28B108.3
C6—N4—N3109.0 (2)H28A—C28—H28B107.4
C6—N4—B1130.5 (3)C28—C29—H29A109.5
N3—N4—B1120.1 (2)C28—C29—H29B109.5
C7—N5—N6106.2 (3)H29A—C29—H29B109.5
C7—N5—Ru1135.9 (2)C28—C29—H29C109.5
N6—N5—Ru1117.86 (19)H29A—C29—H29C109.5
C9—N6—N5109.5 (3)H29B—C29—H29C109.5
C9—N6—B1130.8 (3)C28A—O1A—P2119.2 (11)
N5—N6—B1119.6 (2)C28A—C29A—H29D109.5
N1—C1—C2110.6 (3)C28A—C29A—H29E109.5
N1—C1—H1A124.7H29D—C29A—H29E109.5
C2—C1—H1A124.7C28A—C29A—H29F109.5
C3—C2—C1105.1 (3)H29D—C29A—H29F109.5
C3—C2—H2A127.5H29E—C29A—H29F109.5
C1—C2—H2A127.5O1A—C28A—C29A130 (2)
N2—C3—C2108.8 (3)O1A—C28A—H28C104.7
N2—C3—H3A125.6C29A—C28A—H28C104.7
C2—C3—H3A125.6O1A—C28A—H28D104.7
N3—C4—C5110.7 (3)C29A—C28A—H28D104.7
N3—C4—H4A124.6H28C—C28A—H28D105.7
C5—C4—H4A124.6C30—O2—P2120.1 (3)
C6—C5—C4105.1 (3)O2—C30—C31109.8 (10)
C6—C5—H5A127.5O2—C30—H30A109.7
C4—C5—H5A127.5C31—C30—H30A109.7
N4—C6—C5108.7 (3)O2—C30—H30B109.7
N4—C6—H6A125.6C31—C30—H30B109.7
C5—C6—H6A125.6H30A—C30—H30B108.2
N5—C7—C8110.6 (3)C30—C31—H31A109.5
N5—C7—H7A124.7C30—C31—H31B109.5
C8—C7—H7A124.7H31A—C31—H31B109.5
C9—C8—C7105.1 (3)C30—C31—H31C109.5
C9—C8—H8A127.4H31A—C31—H31C109.5
C7—C8—H8A127.4H31B—C31—H31C109.5
N6—C9—C8108.5 (3)C30A—O2A—P2128.8 (11)
N6—C9—H9A125.7O2A—C30A—C31A121 (3)
C8—C9—H9A125.7O2A—C30A—H30C107.0
C11—C10—C15118.3 (3)C31A—C30A—H30C107.0
C11—C10—P1122.4 (2)O2A—C30A—H30D107.0
C15—C10—P1119.3 (2)C31A—C30A—H30D107.0
C12—C11—C10120.5 (3)H30C—C30A—H30D106.7
C12—C11—H11A119.8C30A—C31A—H31D109.5
C10—C11—H11A119.8C30A—C31A—H31E109.5
C13—C12—C11120.4 (3)H31D—C31A—H31E109.5
C13—C12—H12A119.8C30A—C31A—H31F109.5
C11—C12—H12A119.8H31D—C31A—H31F109.5
C12—C13—C14119.6 (3)H31E—C31A—H31F109.5
C12—C13—H13A120.2N2—B1—N4109.7 (3)
C14—C13—H13A120.2N2—B1—N6107.9 (3)
C13—C14—C15120.5 (3)N4—B1—N6107.6 (3)
C13—C14—H14A119.8N2—B1—H1110.5
C15—C14—H14A119.8N4—B1—H1110.5
C14—C15—C10120.7 (3)N6—B1—H1110.5

Experimental details

Crystal data
Chemical formula[Ru(C9H10BN6)(C4H10O2PS2)(C18H15P)]
Mr761.59
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)12.4408 (2), 13.7386 (2), 20.3775 (3)
β (°) 99.676 (1)
V3)3433.36 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.71
Crystal size (mm)0.42 × 0.3 × 0.15
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.755, 0.901
No. of measured, independent and
observed [I > 2σ(I)] reflections
24009, 6265, 5601
Rint0.051
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.093, 1.05
No. of reflections6265
No. of parameters449
No. of restraints42
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.43, 0.62

Computer programs: COLLECT (Nonius, 1999), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Ru1—N32.086 (2)Ru1—P12.3171 (8)
Ru1—N12.088 (2)Ru1—S12.4540 (8)
Ru1—N52.144 (3)Ru1—S22.4635 (8)
N3—Ru1—N190.09 (9)N5—Ru1—S187.41 (7)
N3—Ru1—N583.57 (10)P1—Ru1—S199.23 (3)
N1—Ru1—N584.88 (10)N3—Ru1—S294.61 (7)
N3—Ru1—P190.07 (7)N1—Ru1—S2169.78 (7)
N1—Ru1—P190.63 (7)N5—Ru1—S286.63 (7)
N5—Ru1—P1172.20 (7)P1—Ru1—S298.42 (3)
N3—Ru1—S1170.14 (7)S1—Ru1—S280.86 (3)
N1—Ru1—S193.07 (7)
 

Acknowledgements

This research was supported by the National Science Council, Taiwan (NSC 97-2113-M-036–001-MY2), and in part by the project of the specific research fields in Tatung University, Taiwan (B96-C07-081), and the project of the specific research fields in Chung Yuan Christian University, Taiwan, under grant No. CYCU-97-CR-CH. We also thank Mr Ting Shen Kuo (Department of Chemistry, National Taiwan Normal University) for his assistance in X-ray single-crystal structure analysis.

References

First citationAlock, N. W., Burns, I. D., Claire, K. S. & Hill, A. F. (1992). Inorg. Chem. 31, 2906–2908.  Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBurrows, A. D. (2001). CrystEngComm, 46, 1–5.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGemel, C., Trimmel, G., Slugovc, C., Kremel, S., Mereiter, K., Schmid, R. & Kirchner, K. (1996). Organometallics, 15, 3998–4004.  CSD CrossRef CAS Web of Science Google Scholar
First citationHidai, M., Kuwata, S. & Mizobe, Y. (2000). Acc. Chem. Res. 33, 46–52.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJain, V. K. & Jakkal, V. S. (1996). J. Organomet. Chem. 515, 81–87.  CSD CrossRef CAS Web of Science Google Scholar
First citationMeno, M., Pramanik, A., Bag, N. & Chakravorty, A. (1995). J. Chem. Soc. Dalton Trans. pp. 1543–1547.  Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPavlik, S., Mereiter, K., Puchberger, M. & Kirchner, K. (2005). Organometallics, 24, 3561–3575.  Web of Science CSD CrossRef CAS Google Scholar
First citationSellmann, D., Utz, J. & Heineman, F. W. (1999). Eur. J. Inorg. Chem. 2, 341–346.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSlugovc, C., Mereiter, K., Schmidt, R. & Kirchner, K. (1998). Organometallics, 17, 827–831.  Web of Science CSD CrossRef CAS Google Scholar
First citationVit, Z. & Zdrazil, M. (1989). J. Catal. 119, 1–9.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 11| November 2008| Pages m1372-m1373
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds