metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 11| November 2008| Pages m1361-m1362

[N,N,N′,N′-Tetra­kis(benzimidazol-2-yl­meth­yl)cyclo­hexane-1,2-di­amine]­nickel(II) dinitrate dihydrate

aDepartment of Chemical and Biological Science, Xiangfan University, Xiangfan 441053, People's Republic of China
*Correspondence e-mail: blueice8250@yahoo.com.cn

(Received 23 September 2008; accepted 30 September 2008; online 4 October 2008)

In the title compound, [Ni(C38H38N10)](NO3)2·2H2O, the NiII ion is located on a crystallographic twofold rotation axis and is in a distorted octa­hedral coordination environment. The crystal structure is stablized by inter­molecular N—H⋯O and C—H⋯O hydrogen bonds, and weak C—H⋯π inter­actions. The O atoms of the unique nitrate ion are disordered over two sites with occupancies of 0.63 (1) and 0.37 (1). In addition, the O atom of the unique solvent water mol­ecule is disorded over two sites with equal occupancies.

Related literature

For background information, see: Oki et al. (1996[Oki, A. R., Sanchez, J., Morgan, R. J. & Ngai, L. (1996). Transition Met. Chem. 21, 43-48.]); Hendriks et al. (1982[Hendriks, M. J., Birker, J. M. W. L., van Rijn, J., Verschoor, G. C. & Reedijk, J. (1982). J. Am. Chem. Soc. 104, 3607-3617.]); Main (1992[Main, F. (1992). Coord. Chem. Rev. 120, 325-359.]); Zhao et al. (2005[Zhao, X.-Z., Meng, X.-G. & Liao, Z.-R. (2005). Chem. J. Chin. Univ. 26, 1194-1197.]). For the structure of the free ligand of the title compound, see: Li et al. (2005[Li, J., Meng, X.-G. & Liao, Z.-R. (2005). Acta Cryst. E61, o3421-o3423.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C38H38N10)](NO3)2·2H2O

  • Mr = 853.55

  • Monoclinic, C 2/c

  • a = 15.3395 (16) Å

  • b = 13.1695 (14) Å

  • c = 19.606 (2) Å

  • β = 98.501 (2)°

  • V = 3917.2 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.56 mm−1

  • T = 292 (2) K

  • 0.32 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.840, Tmax = 0.946

  • 10917 measured reflections

  • 3847 independent reflections

  • 2618 reflections with I > 2σ(I)

  • Rint = 0.074

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.133

  • S = 0.95

  • 3847 reflections

  • 303 parameters

  • 65 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ni1—N2 2.061 (2)
Ni1—N4 2.071 (3)
Ni1—N1 2.190 (3)
N2—Ni1—N2i 175.20 (15)
N2—Ni1—N4 90.83 (10)
N2—Ni1—N4i 91.53 (10)
N2—Ni1—N1i 81.44 (10)
N4—Ni1—N1i 79.11 (10)
N2—Ni1—N1 94.90 (10)
N4—Ni1—N1 158.69 (10)
N1i—Ni1—N1 81.47 (14)
Symmetry code: (i) [-x, y, -z+{\script{3\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids defined by atoms C7–C12 and C14–C19, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O1ii 0.86 1.94 2.774 (10) 165
N5—H5⋯O2iii 0.86 2.14 2.923 (7) 151
C4—H4B⋯O4 0.97 2.37 3.268 (12) 154
C11—H11⋯Cg1iv 0.93 2.73 3.542 147
C16—H16⋯Cg2v 0.93 2.79 3.680 160
Symmetry codes: (ii) x-1, y, z; (iii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iv) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z+1]; (v) -x-1, -y-1, -z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

N,N,N',N'-Tetrakis(2-benzimidazolymethyl) cyclohexane-1,2-diamine (CTB) is a polybenzimidazole ligand, which has the advantage that the basicity of the coordinating group approximates that of histidine (pKb: histidine = 7.96 and benzimidazole = 8.47; Main, 1992). Recently, studies of ligand CTB and its metal coordination compounds have been widely carried out (Li et al.,2005; Zhao et al., 2005). In a continuation of this work, the title compound, (I), was prepared as part of a series of syntheses to produce new benzimidazole derivatives. We report the crystal stucture of the title compound herein.

In the molecule structure of (I), the NiII ion is located on a crystallographic twofold rotation axis and is is coordinated by four benzimidazolyl(bzim) N atoms and two amino N atoms of the ligand CTB, in a distorted octahedral environment (Fig.1). The amino N atoms are slightly further away from the NiII ion than the benzimidazolyl N atoms. The Ni-N bond lengths are similar to the values reported in a related structure (Oki et al.,1996). As shown in Fig. 2, the crystal structure is stablized by intermolecular N—H···O, C—H···O hydrogen bonds and weak C—H···π interactions.

Related literature top

For background information, see: Oki et al. (1996); Hendriks et al. (1982); Main (1992); Zhao et al. (2005). For the structure of the free ligand of the title compound, see: Li et al. (2005).

Experimental top

All reagents and solvents were used as obtained without further purification. The ligand CTB was prepared according to literature methods (Hendriks et al., 1982). Compound (I) was synthesized by refluxing stoichiometric quantities (1:1 molar ratio) of CTB (0.64 g, 1 mmol) and nickel(II) dinitrate hexahydrate (0.29 g, 1 mmol) in 95% ethanol (30 ml) at 333 K for 6 h. The solution was cooled to room temperature, filtered and evaporated to obtain the product (yield 72%). Crystals of (I) were grown from an ethanol solution by slow evaporation.

Refinement top

In (I), the nitrate O atoms are disordered over two positions with the final refined occupancies of 0.63 (1):0.37 (1). Water atom O4 is also disordered over two positions with both the occupancies being set to 0.5. H atoms bonded to water molecules were not located and were not included in the refinement but are included in the molecular formula. All H atoms (except for H3A) were included in geometrical positions with C—H=0.97 Å (methylene), 0.93Å (aromatic), 0.86Å (imine) and all the Uisovalues were set 1.2 times of their carrier atoms. The positional parameters of atom H3A were refined.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The nitrate anions, water molecules and H atoms are omitted for clarity [symmetry code: (a) -x, y, -z+3/2].
[Figure 2] Fig. 2. Part of the crystal structure showing the linking of molecules by H-bonding and weak C—H···π interactions as dashed lines.
[N,N,N',N'-Tetrakis(benzimidazol-2- ylmethyl)cyclohexane-1,2-diamine]nickel(II) dinitrate dihydrate top
Crystal data top
[Ni(C38H38N10)](NO3)2·2H2OF(000) = 1784
Mr = 853.55Dx = 1.447 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2061 reflections
a = 15.3395 (16) Åθ = 2.4–22.1°
b = 13.1695 (14) ŵ = 0.57 mm1
c = 19.606 (2) ÅT = 292 K
β = 98.501 (2)°Plate, purple
V = 3917.2 (7) Å30.32 × 0.20 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
3847 independent reflections
Radiation source: fine-focus sealed tube2618 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
ϕ and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1817
Tmin = 0.840, Tmax = 0.946k = 1016
10917 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 0.95 w = 1/[σ2(Fo2) + (0.0618P)2]
where P = (Fo2 + 2Fc2)/3
3847 reflections(Δ/σ)max = 0.001
303 parametersΔρmax = 0.43 e Å3
65 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Ni(C38H38N10)](NO3)2·2H2OV = 3917.2 (7) Å3
Mr = 853.55Z = 4
Monoclinic, C2/cMo Kα radiation
a = 15.3395 (16) ŵ = 0.57 mm1
b = 13.1695 (14) ÅT = 292 K
c = 19.606 (2) Å0.32 × 0.20 × 0.10 mm
β = 98.501 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3847 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2618 reflections with I > 2σ(I)
Tmin = 0.840, Tmax = 0.946Rint = 0.074
10917 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05665 restraints
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 0.95Δρmax = 0.43 e Å3
3847 reflectionsΔρmin = 0.34 e Å3
303 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.00000.06922 (5)0.75000.0383 (2)
N10.08499 (16)0.1952 (2)0.79130 (13)0.0411 (7)
N20.03564 (16)0.0758 (2)0.65276 (12)0.0420 (7)
N30.01367 (17)0.1461 (2)0.54912 (12)0.0461 (7)
H30.00830.18520.51580.055*
N40.11459 (17)0.0078 (2)0.71196 (12)0.0419 (7)
N50.25584 (18)0.0113 (3)0.66910 (14)0.0552 (8)
H50.30630.04010.65860.066*
N60.8994 (3)0.3077 (5)0.4093 (3)0.139 (2)
O10.9736 (6)0.2879 (13)0.4445 (5)0.268 (8)0.630 (9)
O20.8880 (3)0.3273 (6)0.3471 (3)0.119 (3)0.630 (9)
O30.8392 (5)0.3165 (5)0.4456 (4)0.142 (3)0.630 (9)
O1'0.9621 (5)0.2465 (7)0.4281 (4)0.058 (3)0.370 (9)
O2'0.9055 (8)0.4029 (8)0.4173 (8)0.161 (7)0.370 (9)
O3'0.8270 (19)0.2712 (14)0.377 (3)0.29 (12)*0.370 (9)
O40.0215 (8)0.4055 (10)0.9433 (5)0.169 (6)0.50 (2)
O4'0.0237 (12)0.491 (2)0.9646 (10)0.279 (12)0.50 (2)
C10.0479 (3)0.4797 (3)0.7444 (2)0.0738 (12)
H1A0.07650.54120.76350.089*
H1B0.05120.47840.69540.089*
C20.0954 (2)0.3874 (3)0.7790 (2)0.0609 (10)
H2A0.15600.38730.77040.073*
H2B0.09580.39160.82840.073*
C30.0508 (2)0.2889 (3)0.75205 (18)0.0454 (8)
H3A0.063 (2)0.280 (2)0.7048 (16)0.054*
C40.0837 (2)0.2029 (3)0.86709 (16)0.0494 (9)
H4A0.13940.17900.89170.059*
H4B0.07670.27340.87950.059*
C50.1735 (2)0.1638 (3)0.77788 (18)0.0492 (9)
H5A0.21890.20390.80520.059*
H5B0.17870.17220.72950.059*
C60.0106 (2)0.1420 (3)0.61190 (15)0.0412 (8)
C70.0944 (2)0.0319 (3)0.61274 (15)0.0412 (8)
C80.1581 (2)0.0419 (3)0.62782 (19)0.0570 (10)
H80.16780.07350.67070.068*
C90.2069 (3)0.0668 (3)0.5766 (2)0.0644 (11)
H90.25020.11650.58520.077*
C100.1936 (3)0.0204 (3)0.51282 (19)0.0658 (11)
H100.22890.03860.48010.079*
C110.1299 (2)0.0515 (3)0.49675 (17)0.0561 (10)
H110.12040.08230.45360.067*
C120.0804 (2)0.0764 (3)0.54747 (15)0.0441 (8)
C130.1819 (2)0.0548 (3)0.70208 (16)0.0453 (8)
C140.2356 (2)0.0880 (3)0.65533 (18)0.0546 (10)
C150.2841 (3)0.1652 (4)0.6196 (2)0.0793 (14)
H150.34320.15660.60150.095*
C160.2408 (3)0.2551 (4)0.6122 (2)0.0862 (15)
H160.27100.30840.58830.103*
C170.1518 (3)0.2677 (3)0.6401 (2)0.0800 (14)
H170.12480.32980.63460.096*
C180.1031 (3)0.1913 (3)0.67524 (18)0.0601 (10)
H180.04390.20020.69310.072*
C190.1463 (2)0.1002 (3)0.68280 (16)0.0468 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0387 (4)0.0453 (4)0.0307 (3)0.0000.0044 (2)0.000
N10.0380 (15)0.0490 (17)0.0366 (14)0.0011 (13)0.0062 (11)0.0024 (13)
N20.0414 (15)0.0507 (17)0.0342 (14)0.0041 (14)0.0066 (11)0.0015 (14)
N30.0536 (17)0.0550 (18)0.0292 (14)0.0030 (15)0.0044 (12)0.0085 (13)
N40.0433 (16)0.0469 (17)0.0347 (15)0.0039 (14)0.0028 (12)0.0051 (13)
N50.0393 (17)0.071 (2)0.0544 (19)0.0096 (16)0.0027 (14)0.0030 (17)
N60.087 (4)0.119 (5)0.203 (8)0.000 (4)0.007 (5)0.038 (5)
O10.179 (10)0.317 (15)0.290 (14)0.021 (10)0.025 (9)0.206 (12)
O20.079 (4)0.176 (7)0.097 (4)0.031 (4)0.003 (3)0.091 (5)
O30.127 (6)0.125 (6)0.191 (7)0.023 (5)0.082 (5)0.025 (5)
O1'0.052 (5)0.076 (6)0.044 (4)0.027 (4)0.005 (3)0.023 (4)
O2'0.115 (9)0.170 (13)0.184 (13)0.027 (9)0.025 (8)0.000 (10)
O40.239 (11)0.123 (10)0.149 (8)0.023 (7)0.043 (7)0.076 (6)
O4'0.311 (17)0.28 (2)0.247 (17)0.064 (15)0.042 (12)0.007 (16)
C10.084 (3)0.050 (2)0.088 (3)0.011 (2)0.013 (3)0.001 (2)
C20.061 (2)0.053 (2)0.069 (3)0.011 (2)0.012 (2)0.003 (2)
C30.0481 (19)0.045 (2)0.0440 (19)0.0006 (17)0.0101 (16)0.0002 (17)
C40.047 (2)0.059 (2)0.0403 (19)0.0071 (18)0.0007 (15)0.0039 (17)
C50.0388 (19)0.058 (2)0.050 (2)0.0037 (17)0.0064 (15)0.0022 (18)
C60.0418 (18)0.047 (2)0.0339 (17)0.0018 (16)0.0043 (14)0.0007 (16)
C70.0434 (18)0.047 (2)0.0335 (17)0.0016 (16)0.0075 (14)0.0021 (15)
C80.060 (2)0.063 (3)0.049 (2)0.013 (2)0.0106 (18)0.0008 (19)
C90.063 (2)0.073 (3)0.059 (2)0.017 (2)0.0133 (19)0.008 (2)
C100.060 (3)0.094 (3)0.047 (2)0.002 (2)0.0188 (19)0.017 (2)
C110.059 (2)0.075 (3)0.0358 (18)0.004 (2)0.0118 (17)0.0019 (19)
C120.0461 (19)0.051 (2)0.0345 (17)0.0066 (18)0.0051 (14)0.0027 (16)
C130.0402 (19)0.059 (2)0.0372 (18)0.0065 (18)0.0069 (14)0.0005 (17)
C140.052 (2)0.068 (3)0.044 (2)0.016 (2)0.0081 (17)0.0011 (19)
C150.073 (3)0.094 (4)0.069 (3)0.042 (3)0.005 (2)0.005 (3)
C160.105 (4)0.079 (4)0.073 (3)0.048 (3)0.010 (3)0.014 (3)
C170.121 (4)0.055 (3)0.067 (3)0.024 (3)0.023 (3)0.009 (2)
C180.076 (3)0.058 (3)0.046 (2)0.008 (2)0.0063 (19)0.0029 (19)
C190.057 (2)0.053 (2)0.0319 (17)0.0085 (18)0.0091 (15)0.0018 (16)
Geometric parameters (Å, º) top
Ni1—N22.061 (2)C2—H2B0.9700
Ni1—N2i2.062 (2)C3—C3i1.549 (6)
Ni1—N42.071 (3)C3—H3A0.98 (3)
Ni1—N4i2.071 (3)C4—C6i1.485 (4)
Ni1—N1i2.190 (3)C4—H4A0.9700
Ni1—N12.190 (3)C4—H4B0.9700
N1—C51.479 (4)C5—C13i1.489 (5)
N1—C41.493 (4)C5—H5A0.9700
N1—C31.506 (4)C5—H5B0.9700
N2—C61.318 (4)C6—C4i1.485 (4)
N2—C71.404 (4)C7—C81.379 (5)
N3—C61.339 (4)C7—C121.395 (4)
N3—C121.378 (4)C8—C91.378 (5)
N3—H30.8600C8—H80.9300
N4—C131.313 (4)C9—C101.378 (5)
N4—C191.400 (4)C9—H90.9300
N5—C131.348 (4)C10—C111.364 (5)
N5—C141.379 (5)C10—H100.9300
N5—H50.8600C11—C121.378 (4)
N6—O21.233 (6)C11—H110.9300
N6—O31.252 (6)C13—C5i1.489 (5)
N6—O2'1.265 (8)C14—C151.387 (5)
N6—O1'1.267 (7)C14—C191.405 (5)
N6—O11.268 (7)C15—C161.375 (7)
N6—O3'1.286 (9)C15—H150.9300
O4'—O4'ii1.68 (4)C16—C171.403 (6)
C1—C1i1.519 (8)C16—H160.9300
C1—C21.524 (5)C17—C181.376 (5)
C1—H1A0.9700C17—H170.9300
C1—H1B0.9700C18—C191.389 (5)
C2—C31.524 (5)C18—H180.9300
C2—H2A0.9700
N2—Ni1—N2i175.20 (15)C2—C3—C3i114.5 (2)
N2—Ni1—N490.83 (10)N1—C3—H3A106.6 (19)
N2i—Ni1—N491.53 (10)C2—C3—H3A106.6 (19)
N2—Ni1—N4i91.53 (10)C3i—C3—H3A106.6 (19)
N2i—Ni1—N4i90.82 (10)C6i—C4—N1111.2 (3)
N4—Ni1—N4i121.31 (16)C6i—C4—H4A109.4
N2—Ni1—N1i81.44 (10)N1—C4—H4A109.4
N2i—Ni1—N1i94.90 (10)C6i—C4—H4B109.4
N4—Ni1—N1i79.11 (10)N1—C4—H4B109.4
N4i—Ni1—N1i158.69 (11)H4A—C4—H4B108.0
N2—Ni1—N194.90 (10)N1—C5—C13i105.6 (3)
N2i—Ni1—N181.43 (10)N1—C5—H5A110.6
N4—Ni1—N1158.69 (10)C13i—C5—H5A110.6
N4i—Ni1—N179.11 (10)N1—C5—H5B110.6
N1i—Ni1—N181.47 (14)C13i—C5—H5B110.6
C5—N1—C4110.1 (2)H5A—C5—H5B108.8
C5—N1—C3113.4 (2)N2—C6—N3112.8 (3)
C4—N1—C3113.5 (3)N2—C6—C4i123.3 (3)
C5—N1—Ni1103.5 (2)N3—C6—C4i123.8 (3)
C4—N1—Ni1108.93 (19)C8—C7—C12120.1 (3)
C3—N1—Ni1106.76 (18)C8—C7—N2131.6 (3)
C6—N2—C7105.4 (3)C12—C7—N2108.3 (3)
C6—N2—Ni1113.4 (2)C9—C8—C7117.1 (3)
C7—N2—Ni1141.2 (2)C9—C8—H8121.5
C6—N3—C12107.6 (3)C7—C8—H8121.5
C6—N3—H3126.2C8—C9—C10122.2 (4)
C12—N3—H3126.2C8—C9—H9118.9
C13—N4—C19105.5 (3)C10—C9—H9118.9
C13—N4—Ni1110.6 (2)C11—C10—C9121.4 (3)
C19—N4—Ni1142.9 (2)C11—C10—H10119.3
C13—N5—C14107.4 (3)C9—C10—H10119.3
C13—N5—H5126.3C10—C11—C12116.8 (3)
C14—N5—H5126.3C10—C11—H11121.6
O2—N6—O3122.3 (5)C12—C11—H11121.6
O2—N6—O2'85.0 (9)C11—C12—N3131.8 (3)
O3—N6—O2'83.4 (9)C11—C12—C7122.4 (3)
O2—N6—O1'114.3 (7)N3—C12—C7105.8 (3)
O3—N6—O1'119.1 (7)N4—C13—N5113.0 (3)
O2'—N6—O1'123.7 (6)N4—C13—C5i122.1 (3)
O2—N6—O1124.5 (6)N5—C13—C5i124.8 (3)
O3—N6—O1112.8 (6)N5—C14—C15132.4 (4)
O2'—N6—O195.3 (11)N5—C14—C19105.5 (3)
O2'—N6—O3'118.3 (7)C15—C14—C19122.0 (4)
O1'—N6—O3'117.9 (7)C16—C15—C14116.9 (4)
O1—N6—O3'146.2 (13)C16—C15—H15121.5
C1i—C1—C2110.1 (3)C14—C15—H15121.5
C1i—C1—H1A109.6C15—C16—C17121.2 (5)
C2—C1—H1A109.6C15—C16—H16119.4
C1i—C1—H1B109.6C17—C16—H16119.4
C2—C1—H1B109.6C18—C17—C16122.3 (5)
H1A—C1—H1B108.1C18—C17—H17118.9
C3—C2—C1111.4 (3)C16—C17—H17118.9
C3—C2—H2A109.4C17—C18—C19116.9 (4)
C1—C2—H2A109.4C17—C18—H18121.6
C3—C2—H2B109.4C19—C18—H18121.6
C1—C2—H2B109.4C18—C19—N4130.6 (3)
H2A—C2—H2B108.0C18—C19—C14120.8 (4)
N1—C3—C2114.5 (3)N4—C19—C14108.5 (3)
N1—C3—C3i107.3 (2)
N2—Ni1—N1—C555.5 (2)Ni1—N1—C5—C13i44.1 (3)
N2i—Ni1—N1—C5127.6 (2)C7—N2—C6—N30.9 (4)
N4—Ni1—N1—C5160.6 (2)Ni1—N2—C6—N3179.5 (2)
N4i—Ni1—N1—C535.10 (19)C7—N2—C6—C4i177.3 (3)
N1i—Ni1—N1—C5136.1 (2)Ni1—N2—C6—C4i2.3 (4)
N2—Ni1—N1—C4172.7 (2)C12—N3—C6—N20.9 (4)
N2i—Ni1—N1—C410.5 (2)C12—N3—C6—C4i177.3 (3)
N4—Ni1—N1—C482.3 (3)C6—N2—C7—C8179.7 (4)
N4i—Ni1—N1—C482.0 (2)Ni1—N2—C7—C80.2 (6)
N1i—Ni1—N1—C4106.8 (2)C6—N2—C7—C120.5 (4)
N2—Ni1—N1—C364.4 (2)Ni1—N2—C7—C12180.0 (3)
N2i—Ni1—N1—C3112.4 (2)C12—C7—C8—C91.3 (5)
N4—Ni1—N1—C340.6 (3)N2—C7—C8—C9178.5 (3)
N4i—Ni1—N1—C3155.1 (2)C7—C8—C9—C100.3 (6)
N1i—Ni1—N1—C316.12 (14)C8—C9—C10—C111.3 (6)
N4—Ni1—N2—C674.0 (2)C9—C10—C11—C120.8 (6)
N4i—Ni1—N2—C6164.6 (2)C10—C11—C12—N3178.2 (4)
N1i—Ni1—N2—C64.9 (2)C10—C11—C12—C70.8 (5)
N1—Ni1—N2—C685.4 (2)C6—N3—C12—C11178.2 (4)
N4—Ni1—N2—C7105.4 (3)C6—N3—C12—C70.5 (4)
N4i—Ni1—N2—C715.9 (3)C8—C7—C12—C111.9 (5)
N1i—Ni1—N2—C7175.7 (4)N2—C7—C12—C11178.0 (3)
N1—Ni1—N2—C795.1 (3)C8—C7—C12—N3179.8 (3)
N2—Ni1—N4—C1398.7 (2)N2—C7—C12—N30.0 (4)
N2i—Ni1—N4—C1377.1 (2)C19—N4—C13—N50.4 (4)
N4i—Ni1—N4—C13169.0 (2)Ni1—N4—C13—N5171.9 (2)
N1i—Ni1—N4—C1317.6 (2)C19—N4—C13—C5i176.2 (3)
N1—Ni1—N4—C137.0 (4)Ni1—N4—C13—C5i4.6 (4)
N2—Ni1—N4—C1967.7 (3)C14—N5—C13—N40.7 (4)
N2i—Ni1—N4—C19116.5 (3)C14—N5—C13—C5i175.7 (3)
N4i—Ni1—N4—C1924.6 (3)C13—N5—C14—C15175.8 (4)
N1i—Ni1—N4—C19148.8 (3)C13—N5—C14—C190.7 (4)
N1—Ni1—N4—C19173.5 (3)N5—C14—C15—C16176.1 (4)
C1i—C1—C2—C357.5 (5)C19—C14—C15—C160.1 (6)
C5—N1—C3—C273.2 (4)C14—C15—C16—C170.4 (6)
C4—N1—C3—C253.5 (4)C15—C16—C17—C180.8 (7)
Ni1—N1—C3—C2173.5 (2)C16—C17—C18—C190.7 (6)
C5—N1—C3—C3i158.5 (3)C17—C18—C19—N4176.0 (3)
C4—N1—C3—C3i74.8 (3)C17—C18—C19—C140.1 (5)
Ni1—N1—C3—C3i45.2 (3)C13—N4—C19—C18176.4 (3)
C1—C2—C3—N1171.0 (3)Ni1—N4—C19—C189.6 (6)
C1—C2—C3—C3i46.4 (5)C13—N4—C19—C140.1 (3)
C5—N1—C4—C6i126.7 (3)Ni1—N4—C19—C14166.7 (3)
C3—N1—C4—C6i104.9 (3)N5—C14—C19—C18177.2 (3)
Ni1—N1—C4—C6i13.8 (3)C15—C14—C19—C180.3 (5)
C4—N1—C5—C13i72.2 (3)N5—C14—C19—N40.5 (4)
C3—N1—C5—C13i159.4 (3)C15—C14—C19—N4176.5 (3)
Symmetry codes: (i) x, y, z+3/2; (ii) x, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O1iii0.861.942.774 (10)165
N5—H5···O2iv0.862.142.923 (7)151
C4—H4B···O40.972.373.268 (12)154
C11—H11···Cg1v0.932.733.542147
C16—H16···Cg2vi0.932.793.680160
Symmetry codes: (iii) x1, y, z; (iv) x+1/2, y+1/2, z+1; (v) x+1/2, y+1/2, z+1; (vi) x1, y1, z.

Experimental details

Crystal data
Chemical formula[Ni(C38H38N10)](NO3)2·2H2O
Mr853.55
Crystal system, space groupMonoclinic, C2/c
Temperature (K)292
a, b, c (Å)15.3395 (16), 13.1695 (14), 19.606 (2)
β (°) 98.501 (2)
V3)3917.2 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.57
Crystal size (mm)0.32 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.840, 0.946
No. of measured, independent and
observed [I > 2σ(I)] reflections
10917, 3847, 2618
Rint0.074
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.133, 0.95
No. of reflections3847
No. of parameters303
No. of restraints65
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.34

Computer programs: SMART (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Ni1—N22.061 (2)Ni1—N12.190 (3)
Ni1—N42.071 (3)
N2—Ni1—N2i175.20 (15)N4—Ni1—N1i79.11 (10)
N2—Ni1—N490.83 (10)N2—Ni1—N194.90 (10)
N2—Ni1—N4i91.53 (10)N4—Ni1—N1158.69 (10)
N2i—Ni1—N4i90.82 (10)N1i—Ni1—N181.47 (14)
N2—Ni1—N1i81.44 (10)
Symmetry code: (i) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O1ii0.861.942.774 (10)164.7
N5—H5···O2iii0.862.142.923 (7)150.6
C4—H4B···O40.972.373.268 (12)153.6
C11—H11···Cg1iv0.932.7273.542146.8
C16—H16···Cg2v0.932.7933.680160.3
Symmetry codes: (ii) x1, y, z; (iii) x+1/2, y+1/2, z+1; (iv) x+1/2, y+1/2, z+1; (v) x1, y1, z.
 

Acknowledgements

The authors are grateful to the Science Technology Research Programme of the Education Office of Hubei Province (grant No. Q20082509) for financial support.

References

First citationBruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHendriks, M. J., Birker, J. M. W. L., van Rijn, J., Verschoor, G. C. & Reedijk, J. (1982). J. Am. Chem. Soc. 104, 3607–3617.  CSD CrossRef CAS Web of Science Google Scholar
First citationLi, J., Meng, X.-G. & Liao, Z.-R. (2005). Acta Cryst. E61, o3421–o3423.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMain, F. (1992). Coord. Chem. Rev. 120, 325–359.  CrossRef Web of Science Google Scholar
First citationOki, A. R., Sanchez, J., Morgan, R. J. & Ngai, L. (1996). Transition Met. Chem. 21, 43–48.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, X.-Z., Meng, X.-G. & Liao, Z.-R. (2005). Chem. J. Chin. Univ. 26, 1194–1197.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 11| November 2008| Pages m1361-m1362
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds