organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-Imino­dipyridinium bis­­(hydrogen phthalate)

aLyman Briggs College, Department of Chemistry, Michigan State University, East Lansing, MI 48825, USA
*Correspondence e-mail: laduca@msu.edu

(Received 26 September 2008; accepted 1 October 2008; online 22 October 2008)

In the title salt, C10H11N32+·2C8H5O4, doubly protonated 4,4′-dipyridylamine (dpa) cations participate in N—H⋯O hydrogen bonding with two hydrogen phthalate anions to form a neutral unit. Both anions contain an intramolecular O—H⋯O hydrogen bond. In the crystal structure, these units form two-dimensional layers through ππ stacking inter­actions with a centroid-to-centroid distance of 3.763 (3) Å. In turn, these layers aggregate in three dimensions by additional N—H⋯O hydrogen bonding. The assignment to the noncentrosymmetric space group P1 is corroborated by chemically unreasonable aromatic ring bond distances and poor K scale factor distributions for a disordered model in the centrosymmetric P[\overline{1}] space group.

Related literature

For the crystal structure of dpa, see: Cordes et al. (2006[Cordes, D. B., Hanton, L. R. & Spicer, M. D. (2006). Inorg. Chem. 45, 7651-7664.]). For a chiral dpa-containing coordination polymer, see: Montney et al. (2007[Montney, M. R., Mallika Krishnan, S., Patel, N. M., Supkowski, R. M. & LaDuca, R. L. (2007). Cryst. Growth Des. 7, 1145-1153.]). For carboxylic acid/imine co-crystals, see: Horiuchi et al. (2005[Horiuchi, S., Ishii, F., Kumai, R., Okimoto, Y., Tachibana, H., Nagaora, N. & Tokura, Y. (2005). Nat. Mater. 4, 163-166.]); Bhogala & Nangia (2003[Bhogala, B. R. & Nangia, A. (2003). Cryst. Growth Des. 3, 547-554.]). For charge-separated hydrogen bonding, see: Steiner (2002[Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.]). For the preparation of dpa, see: Zapf et al. (1998[Zapf, P. J., LaDuca, R. L., Rarig, R. S., Johnson, K. M. III & Zubieta, J. (1998). Inorg. Chem. 37, 3411-3414.]).

[Scheme 1]

Experimental

Crystal data
  • C10H11N32+·2C8H5O4

  • Mr = 503.46

  • Triclinic, P 1

  • a = 7.858 (2) Å

  • b = 8.101 (2) Å

  • c = 9.601 (3) Å

  • α = 85.673 (5)°

  • β = 85.186 (5)°

  • γ = 68.834 (4)°

  • V = 567.3 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 (2) K

  • 0.75 × 0.60 × 0.30 mm

Data collection
  • Bruker SMART 1K diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.831, Tmax = 0.967

  • 6282 measured reflections

  • 2513 independent reflections

  • 2269 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.170

  • S = 1.06

  • 2513 reflections

  • 349 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O2 1.07 (9) 1.37 (9) 2.386 (6) 155 (7)
O6—H7A⋯O7 1.03 (8) 1.37 (8) 2.396 (6) 172 (7)
N1—H1N⋯O1 0.86 (6) 1.90 (6) 2.757 (6) 177 (7)
N2—H2N⋯O6 0.85 (6) 2.00 (6) 2.834 (5) 167 (7)
N3—H3N⋯O8i 0.92 (5) 1.88 (5) 2.794 (5) 172 (5)
Symmetry code: (i) x, y-1, z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART . Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalMaker (Palmer, 2005[Palmer, D. (2005). CrystalMaker. CrystalMaker Software Ltd, Bicester, Oxfordshire, England.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Co-crystals containing carboxylic acids and imines have exhibited enticing physical properties such as ferroelectricity (Horiuchi et al., 2005). Proton transfer between carboxylic acid and pyridine components has been observed in this class of co-crystals (Bhogala & Nangia, 2003). Charge-separated hydrogen bonding interactions serve to promote the stability of these co-crystals (Steiner, 2002). Because of locked conformation between its pyridyl rings in the solid-state, crystals of pure dpa are noncentrosymmetric (Cordes et al., 2006). Coordination polymers containing dpa have been observed to crystallize in noncentrosymmetric space groups (Montney et al., 2007). Thus we have sought to prepare chiral dpa-containing co-crystals.

The asymmetric unit of the title salt contains a doubly protonated [H2dpa]2+ dication, and two hydrogen phthalate ([phtH]-) ions (Fig. 1). The similar C—O bond lengths at the carboxylate termini marked by C17 and C28 indicate the presence of delocalized π bonds. On the other hand the C—O bond distances at C18 and C27 show greater CO and C—O single bond character.

Each [H2dpa]2+ dication is linked to [Hpht]- anions on either side to form neutral [H2dpa][[Hpht]2 units, via N—H···O hydrogen bonding donation from both of its pyridinium termini to [Hpht]- carboxylate oxygen atoms. These neutral units then engage in ππ stacking between pyridyl and benzene rings (centroid-to-centroid distance = 3.763 Å) to construct pseudo two-dimensional layer patterns that lie parallel to the (101) crystal planes (Fig. 2).

The [H2dpa][[Hpht]2 layers are connected into the pseudo three-dimensional structure of the title compound via N—H···O hydrogen bonding mechanisms instilled by the central amine units of the [H2dpa]2+ dications (Fig. 3). Geometric parameters for the hydrogen bonding interactions are given in Table 1.

The assignment to the noncentrosymmetric space group P1 is corroborated by chemically unreasonable aromatic ring bond distances (1.0 and 1.7 Å) and poor K scale factors distributions for a disordered model in the centrosymmetric P1 space group.

Related literature top

For the crystal structure of dpa, see: Cordes et al. (2006). For a chiral dpa-containing coordination polymer, see: Montney et al. (2007). For carboxylic acid/imine co-crystals, see: Horiuchi et al. (2005); Bhogala & Nangia (2003). For charge-separated hydrogen bonding, see: Steiner (2002). For the preparation of dpa, see: Zapf et al. (1998).

Experimental top

Phthalic acid was obtained commercially. 4,4'-dipyridylamine was prepared via a published procedure (Zapf et al., 1998). A mixture of phthalic acid (96 mg, 0.58 mmol) and 4,4'-dipyridylamine (50 mg, 0.29 mmol) was placed in 10.0 g water (550 mmol) in a 25 ml beaker. The solution was then heated to boiling. Large colourless blocks of the title compound were isolated after the solution was cooled to 298K and allowed to stand undisturbed for 3 d.

Refinement top

All H atoms bound to C atoms were placed in calculated positions, with C—H = 0.95 Å and refined in riding mode with Uiso = 1.2Ueq(C). All H atoms bound to O and N atoms were found via Fourier difference map and refined with Uiso = 1.2Ueq(N) or 1.2Ueq(O). The pyridinium N—H bonds were restrained with N—H = 0.89 (2) Å and the amine N—H bond was restrained with N—H = 0.85 (2) Å. The O—H distances were allowed to refine. In the absence of significant anomalous dispersion effects Friedel pairs were merged prior to the final refinement.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (Palmer, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Asymmetric unit of the title compound, showing 50% probability ellipsoids and atom numbering scheme. Hydrogen atoms are represented as short gray sticks. Color codes: light-blue N, red O, black C. Hydrogen bonding is shown as dashed lines.
[Figure 2] Fig. 2. A pseudo layer in the title compound. Color codes: light-blue N, red O, black C, pink H. Hydrogen bonding is shown as dashed lines.
[Figure 3] Fig. 3. Packing diagram illustrating the stacking of layers to form the 3-D crystal structure of the title compound. Hydrogen bonding is shown as dashed lines.
4,4'-Iminodipyridinium bis(hydrogen phthalate) top
Crystal data top
C10H11N32+·2C8H5O4Z = 1
Mr = 503.46F(000) = 262
Triclinic, P1Dx = 1.474 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.858 (2) ÅCell parameters from 6282 reflections
b = 8.101 (2) Åθ = 2.1–28.0°
c = 9.601 (3) ŵ = 0.11 mm1
α = 85.673 (5)°T = 293 K
β = 85.186 (5)°Block, colourless
γ = 68.834 (4)°0.75 × 0.60 × 0.30 mm
V = 567.3 (3) Å3
Data collection top
Bruker SMART 1K
diffractometer
2513 independent reflections
Radiation source: fine-focus sealed tube2269 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
ω scansθmax = 28.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.831, Tmax = 0.967k = 1010
6282 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.170H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0871P)2 + 0.2863P]
where P = (Fo2 + 2Fc2)/3
2513 reflections(Δ/σ)max < 0.001
349 parametersΔρmax = 0.56 e Å3
6 restraintsΔρmin = 0.32 e Å3
Crystal data top
C10H11N32+·2C8H5O4γ = 68.834 (4)°
Mr = 503.46V = 567.3 (3) Å3
Triclinic, P1Z = 1
a = 7.858 (2) ÅMo Kα radiation
b = 8.101 (2) ŵ = 0.11 mm1
c = 9.601 (3) ÅT = 293 K
α = 85.673 (5)°0.75 × 0.60 × 0.30 mm
β = 85.186 (5)°
Data collection top
Bruker SMART 1K
diffractometer
2513 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2269 reflections with I > 2σ(I)
Tmin = 0.831, Tmax = 0.967Rint = 0.014
6282 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0606 restraints
wR(F2) = 0.170H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.56 e Å3
2513 reflectionsΔρmin = 0.32 e Å3
349 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.9711 (7)0.8965 (7)1.1049 (4)0.0832 (14)
O20.7469 (5)0.7612 (6)1.2383 (5)0.0712 (12)
O30.6750 (5)0.5656 (7)1.4411 (6)0.0824 (14)
H3A0.691 (11)0.624 (10)1.337 (9)0.099*
O40.8021 (6)0.3983 (6)1.5649 (5)0.0780 (13)
O50.3019 (7)1.2225 (8)0.2453 (5)0.0926 (17)
O60.0684 (5)1.3566 (6)0.1220 (5)0.0709 (12)
H7A0.043 (9)1.430 (9)0.028 (8)0.085*
O70.0087 (5)1.5473 (6)0.0843 (5)0.0802 (13)
O80.1036 (5)1.7269 (5)0.2062 (4)0.0654 (10)
N10.6896 (8)0.9599 (7)0.9469 (5)0.0655 (14)
H1N0.780 (6)0.944 (9)0.995 (6)0.079*
N20.0792 (9)1.2304 (7)0.3688 (5)0.0760 (18)
H2N0.047 (10)1.285 (8)0.299 (5)0.091*
N30.2299 (5)0.9798 (5)0.7185 (4)0.0495 (8)
H3N0.121 (5)0.902 (6)0.751 (6)0.059*
C10.7118 (7)1.0624 (9)0.8305 (7)0.0714 (17)
H10.82891.12820.80310.086*
C20.5601 (8)1.0716 (7)0.7497 (5)0.0605 (14)
H20.57471.14240.66740.073*
C30.3924 (6)0.9770 (7)0.7916 (5)0.0533 (12)
C40.3767 (8)0.8754 (8)0.9177 (6)0.0689 (16)
H40.26250.81220.95170.083*
C50.5320 (10)0.8709 (8)0.9894 (6)0.0713 (16)
H50.52260.80091.07180.086*
C60.0413 (8)1.1117 (8)0.4402 (7)0.0668 (15)
H60.16431.08110.41150.080*
C70.0060 (7)1.0321 (7)0.5539 (6)0.0607 (13)
H70.08430.94710.60420.073*
C80.1878 (8)1.0729 (6)0.5996 (5)0.0517 (11)
C90.3186 (7)1.1998 (8)0.5237 (6)0.0618 (14)
H90.44241.23130.55000.074*
C100.2574 (9)1.2797 (8)0.4051 (6)0.0697 (15)
H100.34141.36730.35170.084*
C111.0440 (6)0.7547 (6)1.3134 (4)0.0392 (9)
C121.2276 (6)0.8392 (7)1.2857 (5)0.0508 (11)
H121.25730.91501.20650.061*
C131.3670 (7)0.8140 (8)1.3720 (7)0.0642 (14)
H131.48810.87141.35020.077*
C141.3265 (7)0.7059 (8)1.4877 (6)0.0639 (15)
H141.42030.69221.54770.077*
C151.1462 (7)0.6149 (7)1.5178 (5)0.0547 (12)
H151.12070.53801.59670.066*
C161.0025 (6)0.6360 (5)1.4328 (4)0.0384 (9)
C170.9122 (7)0.8067 (6)1.2125 (5)0.0493 (11)
C180.8166 (7)0.5225 (7)1.4825 (6)0.0586 (12)
C210.3638 (5)1.3702 (5)0.0345 (4)0.0391 (9)
C220.5473 (7)1.2878 (7)0.0605 (5)0.0535 (12)
H220.57971.21250.13960.064*
C230.6836 (7)1.3158 (8)0.0294 (7)0.0640 (14)
H230.80601.25670.01200.077*
C240.6362 (7)1.4317 (9)0.1449 (6)0.0632 (14)
H240.72591.45350.20480.076*
C250.4570 (7)1.5131 (7)0.1694 (5)0.0539 (12)
H250.42651.58920.24830.065*
C260.3158 (6)1.4886 (6)0.0825 (4)0.0420 (9)
C270.2367 (8)1.3142 (7)0.1443 (5)0.0548 (12)
C280.1238 (6)1.5967 (6)0.1279 (5)0.0488 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.080 (3)0.110 (4)0.055 (2)0.037 (3)0.000 (2)0.034 (2)
O20.044 (2)0.090 (3)0.076 (3)0.0278 (18)0.0088 (17)0.023 (2)
O30.0427 (19)0.099 (3)0.106 (3)0.030 (2)0.022 (2)0.032 (3)
O40.081 (3)0.072 (3)0.072 (3)0.020 (2)0.018 (2)0.032 (2)
O50.083 (3)0.134 (5)0.058 (2)0.047 (3)0.000 (2)0.048 (3)
O60.046 (2)0.083 (3)0.079 (3)0.0271 (18)0.0162 (18)0.022 (2)
O70.0424 (18)0.088 (3)0.108 (3)0.0269 (18)0.0145 (19)0.040 (2)
O80.054 (2)0.064 (2)0.071 (2)0.0164 (17)0.0107 (17)0.0269 (18)
N10.071 (3)0.081 (3)0.061 (3)0.051 (3)0.032 (2)0.020 (2)
N20.125 (5)0.062 (3)0.051 (2)0.054 (3)0.037 (3)0.000 (2)
N30.0458 (17)0.056 (2)0.0426 (18)0.0175 (15)0.0023 (14)0.0135 (15)
C10.040 (3)0.084 (4)0.082 (4)0.008 (3)0.013 (2)0.014 (3)
C20.084 (4)0.056 (3)0.039 (2)0.024 (3)0.011 (2)0.018 (2)
C30.045 (2)0.070 (3)0.050 (3)0.028 (2)0.0135 (19)0.015 (2)
C40.063 (3)0.066 (3)0.051 (3)0.006 (2)0.005 (2)0.010 (2)
C50.098 (5)0.059 (3)0.049 (3)0.025 (3)0.005 (3)0.018 (2)
C60.054 (3)0.066 (3)0.083 (4)0.028 (2)0.018 (3)0.015 (3)
C70.049 (3)0.067 (3)0.057 (3)0.009 (2)0.007 (2)0.003 (2)
C80.076 (3)0.043 (2)0.038 (2)0.027 (2)0.011 (2)0.0008 (17)
C90.044 (2)0.078 (4)0.063 (3)0.021 (2)0.007 (2)0.014 (3)
C100.082 (4)0.058 (3)0.058 (3)0.012 (3)0.018 (3)0.014 (2)
C110.037 (2)0.048 (2)0.0359 (19)0.0200 (17)0.0010 (16)0.0031 (16)
C120.040 (2)0.059 (3)0.051 (3)0.016 (2)0.0064 (19)0.009 (2)
C130.036 (2)0.077 (4)0.077 (4)0.018 (2)0.004 (2)0.002 (3)
C140.047 (3)0.078 (4)0.076 (4)0.037 (3)0.015 (2)0.001 (3)
C150.060 (3)0.065 (3)0.048 (3)0.036 (2)0.006 (2)0.009 (2)
C160.041 (2)0.041 (2)0.038 (2)0.0194 (17)0.0055 (16)0.0053 (16)
C170.054 (3)0.055 (3)0.041 (2)0.025 (2)0.0030 (19)0.0045 (19)
C180.054 (3)0.057 (3)0.064 (3)0.019 (2)0.012 (2)0.009 (2)
C210.038 (2)0.040 (2)0.039 (2)0.0150 (16)0.0002 (16)0.0020 (16)
C220.051 (3)0.058 (3)0.052 (3)0.020 (2)0.016 (2)0.014 (2)
C230.034 (2)0.077 (3)0.083 (4)0.024 (2)0.004 (2)0.002 (3)
C240.047 (3)0.088 (4)0.061 (3)0.037 (3)0.015 (2)0.004 (3)
C250.050 (3)0.065 (3)0.049 (3)0.027 (2)0.001 (2)0.014 (2)
C260.0350 (19)0.052 (2)0.041 (2)0.0199 (17)0.0055 (16)0.0010 (18)
C270.062 (3)0.058 (3)0.045 (2)0.026 (2)0.015 (2)0.004 (2)
C280.042 (2)0.051 (2)0.051 (2)0.0165 (18)0.0068 (18)0.013 (2)
Geometric parameters (Å, º) top
O1—C171.238 (6)C7—C81.385 (7)
O2—C171.257 (6)C7—H70.9300
O2—H3A1.37 (9)C8—C91.376 (8)
O3—C181.305 (7)C9—C101.403 (8)
O3—H3A1.07 (9)C9—H90.9300
O4—C181.210 (6)C10—H100.9300
O5—C271.206 (7)C11—C121.395 (6)
O6—C271.273 (7)C11—C161.420 (6)
O6—H7A1.03 (8)C11—C171.507 (6)
O7—C281.273 (6)C12—C131.383 (7)
O7—H7A1.37 (8)C12—H120.9300
O8—C281.218 (6)C13—C141.347 (8)
N1—C51.271 (9)C13—H130.9300
N1—C11.325 (9)C14—C151.385 (8)
N1—H1N0.86 (6)C14—H140.9300
N2—C61.282 (9)C15—C161.391 (6)
N2—C101.333 (9)C15—H150.9300
N2—H2N0.85 (6)C16—C181.513 (7)
N3—C81.403 (5)C21—C221.388 (6)
N3—C31.411 (5)C21—C261.404 (6)
N3—H3N0.92 (5)C21—C271.547 (6)
C1—C21.389 (9)C22—C231.391 (7)
C1—H10.9300C22—H220.9300
C2—C31.342 (8)C23—C241.382 (9)
C2—H20.9300C23—H230.9300
C3—C41.400 (7)C24—C251.355 (8)
C4—C51.361 (9)C24—H240.9300
C4—H40.9300C25—C261.394 (6)
C5—H50.9300C25—H250.9300
C6—C71.321 (9)C26—C281.527 (6)
C6—H60.9300
C17—O2—H3A114 (4)C13—C12—C11122.2 (4)
C18—O3—H3A110 (4)C13—C12—H12118.9
C27—O6—H7A109 (4)C11—C12—H12118.9
C28—O7—H7A109 (3)C14—C13—C12119.7 (5)
C5—N1—C1121.9 (5)C14—C13—H13120.2
C5—N1—H1N116 (5)C12—C13—H13120.2
C1—N1—H1N122 (5)C13—C14—C15120.4 (5)
C6—N2—C10122.0 (5)C13—C14—H14119.8
C6—N2—H2N120 (5)C15—C14—H14119.8
C10—N2—H2N118 (5)C14—C15—C16121.4 (5)
C8—N3—C3135.3 (4)C14—C15—H15119.3
C8—N3—H3N108 (4)C16—C15—H15119.3
C3—N3—H3N117 (4)C15—C16—C11118.6 (4)
N1—C1—C2119.9 (5)C15—C16—C18113.1 (4)
N1—C1—H1120.0C11—C16—C18128.3 (4)
C2—C1—H1120.0O1—C17—O2121.0 (5)
C3—C2—C1119.2 (5)O1—C17—C11118.5 (5)
C3—C2—H2120.4O2—C17—C11120.5 (4)
C1—C2—H2120.4O4—C18—O3120.8 (5)
C2—C3—C4118.6 (5)O4—C18—C16119.8 (5)
C2—C3—N3123.6 (5)O3—C18—C16119.3 (5)
C4—C3—N3117.8 (5)C22—C21—C26118.9 (4)
C5—C4—C3118.6 (5)C22—C21—C27112.6 (4)
C5—C4—H4120.7C26—C21—C27128.5 (4)
C3—C4—H4120.7C21—C22—C23121.3 (4)
N1—C5—C4121.8 (5)C21—C22—H22119.4
N1—C5—H5119.1C23—C22—H22119.4
C4—C5—H5119.1C24—C23—C22119.6 (5)
N2—C6—C7121.3 (5)C24—C23—H23120.2
N2—C6—H6119.4C22—C23—H23120.2
C7—C6—H6119.4C25—C24—C23118.9 (4)
C6—C7—C8121.1 (5)C25—C24—H24120.5
C6—C7—H7119.4C23—C24—H24120.5
C8—C7—H7119.4C24—C25—C26123.4 (4)
C9—C8—C7118.2 (4)C24—C25—H25118.3
C9—C8—N3123.2 (5)C26—C25—H25118.3
C7—C8—N3118.5 (5)C25—C26—C21117.8 (4)
C8—C9—C10117.3 (5)C25—C26—C28114.7 (4)
C8—C9—H9121.4C21—C26—C28127.5 (3)
C10—C9—H9121.4O5—C27—O6121.4 (5)
N2—C10—C9120.1 (5)O5—C27—C21119.0 (5)
N2—C10—H10119.9O6—C27—C21119.4 (4)
C9—C10—H10119.9O8—C28—O7122.3 (5)
C12—C11—C16117.7 (4)O8—C28—C26118.4 (4)
C12—C11—C17114.6 (4)O7—C28—C26119.3 (4)
C16—C11—C17127.7 (4)
C5—N1—C1—C21.5 (9)C12—C11—C16—C18177.2 (5)
N1—C1—C2—C30.6 (9)C17—C11—C16—C184.8 (8)
C1—C2—C3—C41.4 (8)C12—C11—C17—O110.2 (7)
C1—C2—C3—N3178.7 (5)C16—C11—C17—O1171.7 (5)
C8—N3—C3—C23.8 (8)C12—C11—C17—O2169.0 (5)
C8—N3—C3—C4173.6 (5)C16—C11—C17—O29.0 (8)
C2—C3—C4—C52.7 (9)C15—C16—C18—O417.3 (7)
N3—C3—C4—C5179.9 (5)C11—C16—C18—O4162.1 (5)
C1—N1—C5—C40.2 (10)C15—C16—C18—O3159.4 (5)
C3—C4—C5—N11.9 (10)C11—C16—C18—O321.3 (8)
C10—N2—C6—C70.1 (10)C26—C21—C22—C232.2 (8)
N2—C6—C7—C80.5 (9)C27—C21—C22—C23177.6 (5)
C6—C7—C8—C90.4 (8)C21—C22—C23—C241.9 (9)
C6—C7—C8—N3178.0 (5)C22—C23—C24—C251.3 (10)
C3—N3—C8—C91.6 (8)C23—C24—C25—C261.2 (10)
C3—N3—C8—C7176.7 (5)C24—C25—C26—C211.4 (8)
C7—C8—C9—C100.3 (8)C24—C25—C26—C28178.6 (5)
N3—C8—C9—C10178.6 (5)C22—C21—C26—C251.9 (7)
C6—N2—C10—C90.8 (9)C27—C21—C26—C25177.9 (5)
C8—C9—C10—N20.9 (9)C22—C21—C26—C28178.1 (5)
C16—C11—C12—C131.7 (7)C27—C21—C26—C282.1 (8)
C17—C11—C12—C13176.5 (5)C22—C21—C27—O56.8 (7)
C11—C12—C13—C140.6 (9)C26—C21—C27—O5173.4 (6)
C12—C13—C14—C152.4 (9)C22—C21—C27—O6168.9 (5)
C13—C14—C15—C161.9 (9)C26—C21—C27—O610.9 (8)
C14—C15—C16—C110.4 (7)C25—C26—C28—O820.4 (7)
C14—C15—C16—C18179.0 (5)C21—C26—C28—O8159.6 (5)
C12—C11—C16—C152.2 (6)C25—C26—C28—O7158.8 (5)
C17—C11—C16—C15175.9 (5)C21—C26—C28—O721.2 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O21.07 (9)1.37 (9)2.386 (6)155 (7)
O6—H7A···O71.03 (8)1.37 (8)2.396 (6)172 (7)
N1—H1N···O10.86 (6)1.90 (6)2.757 (6)177 (7)
N2—H2N···O60.85 (6)2.00 (6)2.834 (5)167 (7)
N3—H3N···O8i0.92 (5)1.88 (5)2.794 (5)172 (5)
Symmetry code: (i) x, y1, z+1.

Experimental details

Crystal data
Chemical formulaC10H11N32+·2C8H5O4
Mr503.46
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.858 (2), 8.101 (2), 9.601 (3)
α, β, γ (°)85.673 (5), 85.186 (5), 68.834 (4)
V3)567.3 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.75 × 0.60 × 0.30
Data collection
DiffractometerBruker SMART 1K
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.831, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
6282, 2513, 2269
Rint0.014
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.170, 1.06
No. of reflections2513
No. of parameters349
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.56, 0.32

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalMaker (Palmer, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O21.07 (9)1.37 (9)2.386 (6)155 (7)
O6—H7A···O71.03 (8)1.37 (8)2.396 (6)172 (7)
N1—H1N···O10.86 (6)1.90 (6)2.757 (6)177 (7)
N2—H2N···O60.85 (6)2.00 (6)2.834 (5)167 (7)
N3—H3N···O8i0.92 (5)1.88 (5)2.794 (5)172 (5)
Symmetry code: (i) x, y1, z+1.
 

Acknowledgements

We gratefully acknowledge Michigan State University for funding this work. We thank Dr Richard J. Staples for helpful discussions.

References

First citationBhogala, B. R. & Nangia, A. (2003). Cryst. Growth Des. 3, 547–554.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2001). SMART . Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCordes, D. B., Hanton, L. R. & Spicer, M. D. (2006). Inorg. Chem. 45, 7651–7664.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHoriuchi, S., Ishii, F., Kumai, R., Okimoto, Y., Tachibana, H., Nagaora, N. & Tokura, Y. (2005). Nat. Mater. 4, 163–166.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMontney, M. R., Mallika Krishnan, S., Patel, N. M., Supkowski, R. M. & LaDuca, R. L. (2007). Cryst. Growth Des. 7, 1145–1153.  Web of Science CSD CrossRef CAS Google Scholar
First citationPalmer, D. (2005). CrystalMaker. CrystalMaker Software Ltd, Bicester, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.  Web of Science CrossRef CAS Google Scholar
First citationZapf, P. J., LaDuca, R. L., Rarig, R. S., Johnson, K. M. III & Zubieta, J. (1998). Inorg. Chem. 37, 3411–3414.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds