metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[2,6-bis­­(pyrazol-1-yl-κN2)pyridine-κN1](nitrato-κ2O,O′)cadmium(II)]-μ-thio­cyanato-κ2N:S]

aDepartment of Chemistry and Chemical Engineering, Binzhou University, Binzhou 256603, People's Republic of China, and bDepartment of Chemistry, Shandong Normal University, Jinan 250014, People's Republic of China
*Correspondence e-mail: yangzhongnian1978@yahoo.com.cn

(Received 26 September 2008; accepted 7 October 2008; online 11 October 2008)

In the title crystal structure, [Cd(NCS)(NO3)(C11H9N5)]n, the unique CdII ion is coordinated in a distorted penta­gonal–bipyramidal environment. The axial thio­cyanate ligands act in a μ1,3-bridging mode to connect symmetry-related CdII ions into one-dimensional chains along [010]. In addition, there are inter­molecular C—H⋯O contacts between chains.

Related literature

For background information, see: Halcrow (2005[Halcrow, M. A. (2005). Coord. Chem. Rev. 249, 2880-2908.]); Shi et al. (2006[Shi, J. M., Sun, Y. M., Liu, Z., Liu, L. D., Shi, W. & Cheng, P. (2006). Dalton Trans. pp. 376-380.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(NCS)(NO3)(C11H9N5)]

  • Mr = 443.72

  • Monoclinic, P 21 /n

  • a = 8.4161 (15) Å

  • b = 11.817 (2) Å

  • c = 15.631 (3) Å

  • β = 99.673 (2)°

  • V = 1532.5 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.59 mm−1

  • T = 298 (2) K

  • 0.18 × 0.15 × 0.11 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.763, Tmax = 0.845

  • 8813 measured reflections

  • 3335 independent reflections

  • 2710 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.074

  • S = 1.02

  • 3335 reflections

  • 217 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cd1—N6 2.279 (3)
Cd1—N1 2.346 (3)
Cd1—O3 2.361 (2)
Cd1—N5 2.379 (3)
Cd1—N3 2.388 (2)
Cd1—O2 2.495 (2)
Cd1—S1i 2.7447 (9)
N6—Cd1—N1 93.43 (12)
N6—Cd1—O3 90.12 (11)
N1—Cd1—O3 136.31 (9)
N6—Cd1—N5 89.13 (10)
N1—Cd1—N5 134.53 (10)
O3—Cd1—N5 89.01 (9)
N6—Cd1—N3 100.47 (10)
N1—Cd1—N3 67.50 (9)
O3—Cd1—N3 153.74 (9)
N5—Cd1—N3 67.41 (9)
N6—Cd1—O2 81.17 (9)
N1—Cd1—O2 85.22 (9)
O3—Cd1—O2 52.36 (8)
N5—Cd1—O2 139.77 (9)
N3—Cd1—O2 152.71 (9)
N6—Cd1—S1i 173.33 (8)
N1—Cd1—S1i 86.04 (7)
O3—Cd1—S1i 85.71 (6)
N5—Cd1—S1i 95.98 (6)
N3—Cd1—S1i 85.49 (6)
O2—Cd1—S1i 92.16 (6)
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1ii 0.93 2.50 3.412 (5) 167
C4—H4⋯O2iii 0.93 2.47 3.370 (4) 164
C7—H7⋯O3iv 0.93 2.52 3.312 (5) 143
C10—H10⋯S1iv 0.93 2.83 3.723 (4) 160
Symmetry codes: (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Both the 2,6-bis(pyrazolyl)pyridine and thiocyanate ligands play an important role in modern coordination chemistry (Halcrow 2005; Shi et al. 2006), and our interest in complexes formed with these ligands led us to prepare the title complex and determine its crystal structure (I).

As shown in Fig. 1 the CdII ion is coordinated in a distorted pentagonal–bipyramidal environment with the 2,6-bis(pyrazolyl)pyridine and nitrate anion acting as chelating tridentate and bidentate ligands, respectively. The axial thiocyantate ligands bridge symmetry-related CdII ions [with a Cd···Cd separation of 6.1817 (10) Å] to form a one-dimensional `zigzag' chain along the b axis (Fig. 2). In addition, the crystal structure contains C—H···O and C—H···S short contacts between chains.

Related literature top

For background information, see: Halcrow (2005); Shi et al. (2006).

Experimental top

A 15 ml methanol solution containing 2,6-bis(pyrazolyl)pyridine (0.4140 g, 0.196 mmol) was added to 8 ml H2O solution of Cd(NO3)26H2O (0.0689 g, 0.200 mmol) and NaSCN (0.0324 g, 0.400 mmol), and the mixture was stirred for a few minutes. Colorless single crystals were obtained after the filtrate was allowed to stand at room temperature for a month.

Refinement top

All H atoms were placed in calculated positions with C—H = 0.93 Å and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of part of the structure of (I), with displacement ellipsoids drawn at the 30% probability level. [Symmetry codes: (i) -x + 3/2, y + 1/2, -z + 1/2; (ii) -x + 3/2, y - 1/2, -z + 1/2.]
[Figure 2] Fig. 2. Part of the one-dimensional chain of (I).
catena-Poly[[[2,6-bis(pyrazol-1-yl-κN2)pyridine-κN1](nitrato- κ2O,O')cadmium(II)]-µ-thiocyanato-κ2N:S] top
Crystal data top
[Cd(NCS)(NO3)(C11H9N5)]F(000) = 872
Mr = 443.72Dx = 1.923 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2732 reflections
a = 8.4161 (15) Åθ = 2.2–24.8°
b = 11.817 (2) ŵ = 1.59 mm1
c = 15.631 (3) ÅT = 298 K
β = 99.673 (2)°Block, colourless
V = 1532.5 (5) Å30.18 × 0.15 × 0.11 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
3335 independent reflections
Radiation source: fine-focus sealed tube2710 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 107
Tmin = 0.763, Tmax = 0.845k = 1514
8813 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0324P)2]
where P = (Fo2 + 2Fc2)/3
3335 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.53 e Å3
1 restraintΔρmin = 0.35 e Å3
Crystal data top
[Cd(NCS)(NO3)(C11H9N5)]V = 1532.5 (5) Å3
Mr = 443.72Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.4161 (15) ŵ = 1.59 mm1
b = 11.817 (2) ÅT = 298 K
c = 15.631 (3) Å0.18 × 0.15 × 0.11 mm
β = 99.673 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3335 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2710 reflections with I > 2σ(I)
Tmin = 0.763, Tmax = 0.845Rint = 0.034
8813 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0321 restraint
wR(F2) = 0.074H-atom parameters constrained
S = 1.02Δρmax = 0.53 e Å3
3335 reflectionsΔρmin = 0.35 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8278 (4)0.8449 (3)0.3362 (2)0.0413 (8)
C20.3464 (4)0.7893 (3)0.1478 (2)0.0507 (9)
H20.30420.76890.19680.061*
C30.2736 (5)0.8650 (3)0.0850 (3)0.0582 (11)
H30.17690.90340.08400.070*
C40.3722 (5)0.8708 (3)0.0265 (3)0.0550 (10)
H40.35690.91510.02340.066*
C50.6374 (4)0.7813 (2)0.01605 (19)0.0399 (8)
C60.6570 (5)0.8277 (3)0.0627 (2)0.0558 (10)
H60.57650.87080.09550.067*
C70.8005 (6)0.8073 (3)0.0903 (2)0.0654 (12)
H70.81870.83860.14230.078*
C80.9175 (5)0.7420 (3)0.0429 (2)0.0596 (11)
H81.01530.72860.06120.071*
C90.8833 (4)0.6968 (3)0.0337 (2)0.0428 (8)
C101.1325 (5)0.5770 (3)0.0743 (3)0.0666 (12)
H101.18040.58610.02530.080*
C111.1898 (5)0.5134 (3)0.1447 (3)0.0705 (12)
H111.28340.47010.15380.085*
C121.0793 (5)0.5266 (3)0.2001 (3)0.0633 (11)
H121.08850.49230.25430.076*
Cd10.69811 (3)0.631846 (17)0.194115 (13)0.03553 (9)
N10.9587 (4)0.5939 (2)0.16692 (19)0.0501 (7)
N20.9920 (4)0.6253 (2)0.08807 (19)0.0468 (7)
N30.7484 (3)0.7163 (2)0.06248 (15)0.0370 (6)
N40.4991 (3)0.8004 (2)0.05286 (16)0.0389 (6)
N50.4831 (3)0.7503 (2)0.12873 (16)0.0416 (6)
N60.7831 (5)0.7729 (3)0.29035 (19)0.0716 (12)
N70.6367 (3)0.5128 (2)0.34211 (16)0.0410 (6)
O10.6028 (3)0.4666 (2)0.40633 (16)0.0704 (8)
O20.7776 (3)0.5144 (2)0.32709 (14)0.0483 (6)
O30.5296 (3)0.5612 (2)0.28825 (14)0.0552 (6)
S10.89559 (11)0.94486 (6)0.40588 (5)0.0430 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.049 (2)0.0320 (17)0.0409 (17)0.0047 (15)0.0013 (15)0.0078 (14)
C20.049 (2)0.0420 (19)0.061 (2)0.0077 (17)0.0092 (18)0.0019 (16)
C30.042 (2)0.045 (2)0.083 (3)0.0052 (17)0.007 (2)0.0069 (19)
C40.056 (2)0.0379 (19)0.063 (2)0.0029 (18)0.015 (2)0.0093 (16)
C50.052 (2)0.0279 (15)0.0362 (16)0.0140 (15)0.0035 (15)0.0005 (13)
C60.074 (3)0.048 (2)0.0410 (19)0.017 (2)0.0016 (19)0.0085 (16)
C70.094 (3)0.064 (3)0.0368 (19)0.031 (3)0.007 (2)0.0046 (18)
C80.069 (3)0.061 (2)0.055 (2)0.026 (2)0.029 (2)0.0149 (19)
C90.050 (2)0.0376 (18)0.0404 (17)0.0173 (17)0.0064 (16)0.0060 (14)
C100.047 (2)0.063 (3)0.095 (3)0.014 (2)0.027 (2)0.032 (2)
C110.041 (2)0.053 (2)0.115 (4)0.005 (2)0.006 (2)0.024 (3)
C120.047 (2)0.057 (2)0.080 (3)0.010 (2)0.007 (2)0.010 (2)
Cd10.04344 (16)0.03132 (14)0.03132 (13)0.00301 (10)0.00483 (10)0.00214 (9)
N10.0439 (18)0.0509 (16)0.0541 (18)0.0074 (15)0.0047 (14)0.0011 (14)
N20.0382 (17)0.0452 (16)0.0589 (18)0.0105 (13)0.0133 (14)0.0136 (13)
N30.0421 (17)0.0308 (13)0.0372 (13)0.0067 (12)0.0037 (12)0.0000 (11)
N40.0430 (17)0.0294 (13)0.0402 (14)0.0014 (12)0.0045 (12)0.0026 (11)
N50.0474 (18)0.0340 (14)0.0419 (15)0.0001 (13)0.0032 (13)0.0025 (11)
N60.116 (3)0.0365 (17)0.0525 (18)0.0005 (18)0.015 (2)0.0097 (14)
N70.0462 (18)0.0433 (15)0.0339 (14)0.0003 (14)0.0076 (13)0.0010 (12)
O10.078 (2)0.0841 (19)0.0511 (15)0.0113 (16)0.0165 (14)0.0281 (14)
O20.0494 (15)0.0532 (15)0.0416 (11)0.0051 (12)0.0056 (11)0.0075 (9)
O30.0491 (15)0.0758 (17)0.0407 (13)0.0098 (13)0.0080 (11)0.0087 (12)
S10.0561 (6)0.0331 (4)0.0364 (4)0.0018 (4)0.0015 (4)0.0006 (3)
Geometric parameters (Å, º) top
C1—N61.135 (4)C10—C111.352 (6)
C1—S11.642 (4)C10—N21.362 (5)
C2—N51.319 (4)C10—H100.9300
C2—C31.391 (5)C11—C121.383 (6)
C2—H20.9300C11—H110.9300
C3—C41.336 (6)C12—N11.325 (4)
C3—H30.9300C12—H120.9300
C4—N41.362 (4)Cd1—N62.279 (3)
C4—H40.9300Cd1—N12.346 (3)
C5—N31.327 (4)Cd1—O32.361 (2)
C5—C61.383 (4)Cd1—N52.379 (3)
C5—N41.400 (4)Cd1—N32.388 (2)
C6—C71.370 (6)Cd1—O22.495 (2)
C6—H60.9300Cd1—S1i2.7447 (9)
C7—C81.367 (5)N1—N21.360 (4)
C7—H70.9300N4—N51.352 (3)
C8—C91.385 (5)N7—O11.218 (3)
C8—H80.9300N7—O21.247 (3)
C9—N31.310 (4)N7—O31.262 (3)
C9—N21.418 (4)S1—Cd1ii2.7447 (9)
N6—C1—S1177.5 (3)O3—Cd1—N589.01 (9)
N5—C2—C3111.3 (4)N6—Cd1—N3100.47 (10)
N5—C2—H2124.3N1—Cd1—N367.50 (9)
C3—C2—H2124.3O3—Cd1—N3153.74 (9)
C4—C3—C2105.4 (4)N5—Cd1—N367.41 (9)
C4—C3—H3127.3N6—Cd1—O281.17 (9)
C2—C3—H3127.3N1—Cd1—O285.22 (9)
C3—C4—N4107.9 (3)O3—Cd1—O252.36 (8)
C3—C4—H4126.1N5—Cd1—O2139.77 (9)
N4—C4—H4126.1N3—Cd1—O2152.71 (9)
N3—C5—C6122.5 (4)N6—Cd1—S1i173.33 (8)
N3—C5—N4115.2 (3)N1—Cd1—S1i86.04 (7)
C6—C5—N4122.3 (3)O3—Cd1—S1i85.71 (6)
C7—C6—C5117.0 (4)N5—Cd1—S1i95.98 (6)
C7—C6—H6121.5N3—Cd1—S1i85.49 (6)
C5—C6—H6121.5O2—Cd1—S1i92.16 (6)
C8—C7—C6121.4 (4)C12—N1—N2105.0 (3)
C8—C7—H7119.3C12—N1—Cd1136.2 (3)
C6—C7—H7119.3N2—N1—Cd1116.9 (2)
C7—C8—C9116.8 (4)N1—N2—C10110.1 (3)
C7—C8—H8121.6N1—N2—C9119.7 (3)
C9—C8—H8121.6C10—N2—C9130.1 (4)
N3—C9—C8123.2 (3)C9—N3—C5119.0 (3)
N3—C9—N2114.0 (3)C9—N3—Cd1120.8 (2)
C8—C9—N2122.8 (3)C5—N3—Cd1120.2 (2)
C11—C10—N2107.8 (4)N5—N4—C4110.1 (3)
C11—C10—H10126.1N5—N4—C5120.2 (2)
N2—C10—H10126.1C4—N4—C5129.6 (3)
C10—C11—C12105.1 (4)C2—N5—N4105.3 (3)
C10—C11—H11127.4C2—N5—Cd1137.6 (2)
C12—C11—H11127.4N4—N5—Cd1117.0 (2)
N1—C12—C11111.9 (4)C1—N6—Cd1177.7 (3)
N1—C12—H12124.0O1—N7—O2121.5 (3)
C11—C12—H12124.0O1—N7—O3120.9 (3)
N6—Cd1—N193.43 (12)O2—N7—O3117.6 (3)
N6—Cd1—O390.12 (11)N7—O2—Cd191.99 (17)
N1—Cd1—O3136.31 (9)N7—O3—Cd198.02 (19)
N6—Cd1—N589.13 (10)C1—S1—Cd1ii99.61 (11)
N1—Cd1—N5134.53 (10)
N5—C2—C3—C40.1 (4)N6—Cd1—N3—C587.3 (2)
C2—C3—C4—N40.5 (4)N1—Cd1—N3—C5176.7 (2)
N3—C5—C6—C72.4 (5)O3—Cd1—N3—C524.9 (3)
N4—C5—C6—C7177.1 (3)N5—Cd1—N3—C52.70 (19)
C5—C6—C7—C81.4 (5)O2—Cd1—N3—C5178.35 (18)
C6—C7—C8—C90.6 (5)S1i—Cd1—N3—C595.7 (2)
C7—C8—C9—N31.8 (5)C3—C4—N4—N50.7 (4)
C7—C8—C9—N2178.5 (3)C3—C4—N4—C5176.5 (3)
N2—C10—C11—C120.4 (4)N3—C5—N4—N52.6 (4)
C10—C11—C12—N10.3 (4)C6—C5—N4—N5178.0 (3)
C11—C12—N1—N20.1 (4)N3—C5—N4—C4172.9 (3)
C11—C12—N1—Cd1162.7 (3)C6—C5—N4—C46.6 (5)
N6—Cd1—N1—C1290.2 (3)C3—C2—N5—N40.3 (4)
O3—Cd1—N1—C123.6 (4)C3—C2—N5—Cd1175.3 (2)
N5—Cd1—N1—C12177.6 (3)C4—N4—N5—C20.6 (3)
N3—Cd1—N1—C12169.9 (4)C5—N4—N5—C2176.9 (3)
O2—Cd1—N1—C129.4 (3)C4—N4—N5—Cd1176.07 (19)
S1i—Cd1—N1—C1283.1 (3)C5—N4—N5—Cd10.2 (3)
N6—Cd1—N1—N2108.5 (2)N6—Cd1—N5—C272.3 (3)
O3—Cd1—N1—N2157.76 (18)N1—Cd1—N5—C2166.3 (3)
N5—Cd1—N1—N216.3 (3)O3—Cd1—N5—C217.8 (3)
N3—Cd1—N1—N28.6 (2)N3—Cd1—N5—C2174.1 (3)
O2—Cd1—N1—N2170.7 (2)O2—Cd1—N5—C22.8 (4)
S1i—Cd1—N1—N278.2 (2)S1i—Cd1—N5—C2103.4 (3)
C12—N1—N2—C100.1 (4)N6—Cd1—N5—N4102.9 (2)
Cd1—N1—N2—C10166.9 (2)N1—Cd1—N5—N49.0 (3)
C12—N1—N2—C9178.6 (3)O3—Cd1—N5—N4166.94 (19)
Cd1—N1—N2—C911.9 (3)N3—Cd1—N5—N41.21 (18)
C11—C10—N2—N10.4 (4)O2—Cd1—N5—N4178.12 (16)
C11—C10—N2—C9178.3 (3)S1i—Cd1—N5—N481.36 (19)
N3—C9—N2—N17.0 (4)O1—N7—O2—Cd1177.4 (3)
C8—C9—N2—N1172.7 (3)O3—N7—O2—Cd12.5 (3)
N3—C9—N2—C10171.5 (3)N6—Cd1—O2—N795.51 (19)
C8—C9—N2—C108.8 (5)N1—Cd1—O2—N7170.26 (18)
C8—C9—N3—C50.9 (4)O3—Cd1—O2—N71.52 (16)
N2—C9—N3—C5179.3 (2)N5—Cd1—O2—N717.5 (2)
C8—C9—N3—Cd1178.9 (2)N3—Cd1—O2—N7168.76 (17)
N2—C9—N3—Cd11.3 (3)S1i—Cd1—O2—N784.41 (17)
C6—C5—N3—C91.3 (4)O1—N7—O3—Cd1177.2 (3)
N4—C5—N3—C9178.2 (3)O2—N7—O3—Cd12.7 (3)
C6—C5—N3—Cd1176.8 (2)N6—Cd1—O3—N777.21 (19)
N4—C5—N3—Cd13.7 (3)N1—Cd1—O3—N717.9 (2)
N6—Cd1—N3—C994.7 (2)N5—Cd1—O3—N7166.34 (18)
N1—Cd1—N3—C95.3 (2)N3—Cd1—O3—N7168.29 (17)
O3—Cd1—N3—C9153.0 (2)O2—Cd1—O3—N71.52 (16)
N5—Cd1—N3—C9179.3 (2)S1i—Cd1—O3—N797.59 (17)
O2—Cd1—N3—C93.7 (3)N6—C1—S1—Cd1ii179 (100)
S1i—Cd1—N3—C982.3 (2)
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+3/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1iii0.932.503.412 (5)167
C4—H4···O2iv0.932.473.370 (4)164
C7—H7···O3v0.932.523.312 (5)143
C10—H10···S1v0.932.833.723 (4)160
Symmetry codes: (iii) x+1/2, y+1/2, z+1/2; (iv) x1/2, y+3/2, z1/2; (v) x+1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Cd(NCS)(NO3)(C11H9N5)]
Mr443.72
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)8.4161 (15), 11.817 (2), 15.631 (3)
β (°) 99.673 (2)
V3)1532.5 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.59
Crystal size (mm)0.18 × 0.15 × 0.11
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.763, 0.845
No. of measured, independent and
observed [I > 2σ(I)] reflections
8813, 3335, 2710
Rint0.034
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.074, 1.02
No. of reflections3335
No. of parameters217
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.35

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cd1—N62.279 (3)Cd1—N32.388 (2)
Cd1—N12.346 (3)Cd1—O22.495 (2)
Cd1—O32.361 (2)Cd1—S1i2.7447 (9)
Cd1—N52.379 (3)
N6—Cd1—N193.43 (12)N1—Cd1—O285.22 (9)
N6—Cd1—O390.12 (11)O3—Cd1—O252.36 (8)
N1—Cd1—O3136.31 (9)N5—Cd1—O2139.77 (9)
N6—Cd1—N589.13 (10)N3—Cd1—O2152.71 (9)
N1—Cd1—N5134.53 (10)N6—Cd1—S1i173.33 (8)
O3—Cd1—N589.01 (9)N1—Cd1—S1i86.04 (7)
N6—Cd1—N3100.47 (10)O3—Cd1—S1i85.71 (6)
N1—Cd1—N367.50 (9)N5—Cd1—S1i95.98 (6)
O3—Cd1—N3153.74 (9)N3—Cd1—S1i85.49 (6)
N5—Cd1—N367.41 (9)O2—Cd1—S1i92.16 (6)
N6—Cd1—O281.17 (9)
Symmetry code: (i) x+3/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1ii0.932.503.412 (5)167.4
C4—H4···O2iii0.932.473.370 (4)164.2
C7—H7···O3iv0.932.523.312 (5)142.5
C10—H10···S1iv0.932.833.723 (4)160.2
Symmetry codes: (ii) x+1/2, y+1/2, z+1/2; (iii) x1/2, y+3/2, z1/2; (iv) x+1/2, y+3/2, z1/2.
 

Acknowledgements

This work was supported by the Doctor's Foundation of Binzhou University.

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHalcrow, M. A. (2005). Coord. Chem. Rev. 249, 2880–2908.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, J. M., Sun, Y. M., Liu, Z., Liu, L. D., Shi, W. & Cheng, P. (2006). Dalton Trans. pp. 376–380.  CSD CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds