metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[tris­­[μ2-2-(pyrazol-1-yl)pyrazine]hexa-μ1,3-thio­cyanato-tricadmium(II)]

aDepartment of Chemistry, Shandong Normal University, Jinan 250014, People's Republic of China
*Correspondence e-mail: shijingmin1955@yahoo.com.cn

(Received 26 September 2008; accepted 7 October 2008; online 11 October 2008)

The asymmetric unit of the title crystal structure, [Cd3(NCS)6(C7H6N4)2]n, contains two independent CdII ions, one of which is located on a crystallographic inversion center. Each independent CdII ion is in a slightly distorted octa­hedral coordination environment, but the disortion from ideally octa­hedral is greater in the environment of the CdII ion on a general position. Both thio­cyanate ligands act as bridges connecting independent CdII ions, and the 2-(pyrazol-1-yl)pyrazine ligands chelate one CdII ion in a bidentate mode while the remaining N atom of the pyrazine ring coordinates to a symmetry-related CdII ion, forming a two-dimensional structure parallel to (211).

Related literature

For background information, see: Shi, Sun, Liu et al. (2006[Shi, J.-M., Sun, Y.-M., Liu, Z., Liu, L.-D., Shi, W. & Cheng, P. (2006). Dalton Trans. pp. 376-380.]); Shi, Sun, Zhang et al. (2006[Shi, J.-M., Sun, Y.-M., Zhang, X., Yi, L., Cheng, P. & Liu, L.-D. (2006). J. Phys. Chem. A, 110, 7677-7681.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd3(NCS)6(C7H6N4)2]

  • Mr = 978.00

  • Triclinic, [P \overline 1]

  • a = 7.0309 (9) Å

  • b = 8.6178 (12) Å

  • c = 13.7373 (18) Å

  • α = 87.889 (2)°

  • β = 85.173 (2)°

  • γ = 68.060 (2)°

  • V = 769.32 (18) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 2.50 mm−1

  • T = 298 (2) K

  • 0.38 × 0.16 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.450, Tmax = 0.788

  • 4043 measured reflections

  • 2805 independent reflections

  • 2625 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.056

  • S = 1.06

  • 2805 reflections

  • 196 parameters

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—N2 2.286 (3)
Cd1—N7i 2.426 (2)
Cd1—S2 2.6832 (8)
Cd2—N1ii 2.244 (2)
Cd2—N3 2.303 (3)
Cd2—N5 2.385 (2)
Cd2—N4 2.436 (2)
Cd2—S1 2.6603 (9)
Cd2—S3 2.7427 (8)
Symmetry codes: (i) x+1, y-1, z; (ii) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

For a considerable time, interest has focused on polymeric coordination compounds because such new coordination polymers may afford new materials with useful properties, such as catalytic activity, micro-porosity, electrical conductivity, non-linear optical activity and magnetic coupling behavior. The thiocyanide anion is a very common bridging ligand and many muti-nuclear complexes containing this ligand have been reported. Some of these complexes exhibit interesting magnetic coupling properties (Shi, Sun, Liu et al., 2006; Shi, Sun, Zhang et al., 2006)). The 2-(pyrazole-1-yl)-pyrazine molecule can act as a bridge ligand due to its structural character and up till now no crystal structures of complexes with this ligand have been reported. Under the motivation of preparing new coordination polymers containing mixed bridging ligands, we have synthesized the title coordination polymer and herein we report its crystal structure (I).

Fig. 1 shows the coordination around each independent CdII ion. Atom Cd1 is located on a crystallographic inversion center. In the crystal structure thiocyanade anions act as bridging ligands and connect symmetry related CdII ions [with Cd···Cd = 5.8122 (6)Å for Cd1···Cd2 and 5.7411 (7) Å for Cd2···Cd2ii; symmetry code: (ii) -x+1, -y+1, -z+1] forming an eight-membered ring which acts as a repeat unit of the structure in one-dimension [Fig. 2]. The 2-(pyrazole-1-yl)-pyrazine ligand functions as a tridentate bridging ligand and coordinates to symmetry related CdII ions [with a Cd···Cd separation of 7.6144 (7)Å] connecting the structure further into two-dimensions. Figure 2 also shows that in the two-dimensional structure there are two different types of rings formed by the 2-(pyrazole-1-yl)-pyrazine bridging ligand. An 18-membered ring consists of four CdII ions, two thiocyanato ligands and two 2-(pyrazole-1-yl)-pyrazine bridging ligands while a 26-membered ring consists of two 2-(pyrazole-1-yl)-pyrazine bridging ligands, four thiocyanade ligands and six CdII ions. The 18-membered rings and the 26-membered rings are arranged alternately in the two-dimensional structure.

Related literature top

For background information, see: Shi, Sun, Liu et al. (2006); Shi, Sun, Zhang et al. (2006).

Experimental top

7 ml 3-(pyrazole-2-yloxy)-pyridine (0.0365 g, 0.250 mmol) methanol solution, 7 ml C d(ClO4)26H2O (0.1048 g, 0.250 mmol) H2O solution and 4 ml NaSCN (0.0405 g, 0.500 mmol) H2O solution were mixed together and stirred for a few minutes. Colorless single crystals were obtained after allowing the filtrate to stand at room temperature for four months.

Refinement top

All H atoms were placed in calculated positions and refined as riding with (C—H = 0.93 Å) and Uiso = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Coordination around the two independent CdII ions in (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level [symmetry codes: (i) x-1, y+1, z (ii) -x+1, -y+1, -z+1 (iii) -x+1, -y, -z (iv) x+1, y-1, z (v) -x, -y+1, -z].
[Figure 2] Fig. 2. Part of the two-dimensional sheet structure of (I).
Poly[tris[µ2-2-(pyrazol-1-yl)pyrazine]hexa-µ1,3-thiocyanato- tricadmium(II)] top
Crystal data top
[Cd3(NCS)6(C7H6N4)2]Z = 1
Mr = 978.00F(000) = 470
Triclinic, P1Dx = 2.111 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0309 (9) ÅCell parameters from 3404 reflections
b = 8.6178 (12) Åθ = 2.6–28.2°
c = 13.7373 (18) ŵ = 2.50 mm1
α = 87.889 (2)°T = 298 K
β = 85.173 (2)°Bar, colorless
γ = 68.060 (2)°0.38 × 0.16 × 0.10 mm
V = 769.32 (18) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
2805 independent reflections
Radiation source: fine-focus sealed tube2625 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
ϕ and ω scansθmax = 25.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 48
Tmin = 0.450, Tmax = 0.788k = 1010
4043 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0271P)2 + 0.3586P]
where P = (Fo2 + 2Fc2)/3
2805 reflections(Δ/σ)max = 0.001
196 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
[Cd3(NCS)6(C7H6N4)2]γ = 68.060 (2)°
Mr = 978.00V = 769.32 (18) Å3
Triclinic, P1Z = 1
a = 7.0309 (9) ÅMo Kα radiation
b = 8.6178 (12) ŵ = 2.50 mm1
c = 13.7373 (18) ÅT = 298 K
α = 87.889 (2)°0.38 × 0.16 × 0.10 mm
β = 85.173 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2805 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2625 reflections with I > 2σ(I)
Tmin = 0.450, Tmax = 0.788Rint = 0.013
4043 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.056H-atom parameters constrained
S = 1.06Δρmax = 0.61 e Å3
2805 reflectionsΔρmin = 0.51 e Å3
196 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0009 (4)0.7101 (4)0.49099 (19)0.0358 (6)
H10.05640.64780.54560.043*
C20.1423 (5)0.8730 (4)0.4948 (2)0.0402 (7)
H20.19900.93780.55020.048*
C30.1821 (5)0.9178 (4)0.4006 (2)0.0383 (7)
H30.27251.02000.37880.046*
C40.0578 (4)0.7640 (3)0.24350 (18)0.0260 (5)
C50.1109 (5)0.6225 (4)0.1068 (2)0.0381 (7)
H50.22390.53970.07580.046*
C60.0462 (5)0.7197 (4)0.0532 (2)0.0388 (7)
H60.03680.70190.01370.047*
C70.5004 (4)0.6931 (3)0.4694 (2)0.0312 (6)
C80.2476 (4)0.1598 (3)0.21816 (19)0.0309 (6)
C90.6045 (4)0.3004 (4)0.1046 (2)0.0369 (7)
C130.2187 (4)0.8625 (3)0.18960 (19)0.0311 (6)
H130.33190.94540.22060.037*
Cd10.50000.00000.00000.02922 (9)
Cd20.35673 (3)0.47371 (2)0.314014 (13)0.02935 (8)
N10.5156 (4)0.6693 (3)0.55123 (18)0.0419 (6)
N20.5526 (4)0.2304 (3)0.04926 (19)0.0445 (6)
N30.2614 (4)0.2620 (3)0.26533 (18)0.0438 (6)
N40.1055 (3)0.6441 (3)0.20341 (16)0.0298 (5)
N50.0489 (3)0.6539 (3)0.40006 (16)0.0311 (5)
N60.0646 (3)0.7848 (3)0.34443 (15)0.0292 (5)
N70.2124 (3)0.8392 (3)0.09389 (16)0.0325 (5)
S10.67535 (14)0.40534 (14)0.18169 (7)0.0617 (3)
S20.22912 (12)0.01127 (9)0.15191 (5)0.03591 (17)
S30.47355 (13)0.73397 (10)0.35252 (5)0.04143 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0406 (16)0.0454 (16)0.0255 (14)0.0200 (14)0.0055 (12)0.0002 (12)
C20.0428 (17)0.0477 (17)0.0322 (15)0.0193 (14)0.0024 (13)0.0120 (13)
C30.0397 (16)0.0325 (15)0.0388 (16)0.0084 (13)0.0025 (13)0.0082 (12)
C40.0233 (13)0.0304 (13)0.0244 (13)0.0100 (11)0.0017 (10)0.0002 (10)
C50.0332 (15)0.0398 (16)0.0282 (14)0.0017 (13)0.0024 (12)0.0046 (12)
C60.0380 (16)0.0445 (16)0.0243 (14)0.0040 (13)0.0039 (12)0.0001 (12)
C70.0316 (14)0.0281 (13)0.0344 (16)0.0105 (11)0.0082 (12)0.0009 (11)
C80.0312 (15)0.0360 (15)0.0247 (13)0.0121 (12)0.0023 (11)0.0042 (12)
C90.0312 (15)0.0371 (15)0.0368 (16)0.0075 (13)0.0061 (12)0.0059 (13)
C130.0250 (13)0.0337 (14)0.0285 (14)0.0036 (11)0.0035 (11)0.0007 (11)
Cd10.02909 (16)0.03095 (15)0.02367 (15)0.00539 (12)0.00732 (11)0.00178 (11)
Cd20.02855 (12)0.03169 (12)0.02402 (12)0.00559 (9)0.00708 (8)0.00237 (8)
N10.0545 (16)0.0386 (14)0.0348 (14)0.0171 (12)0.0183 (12)0.0057 (11)
N20.0539 (17)0.0435 (15)0.0377 (14)0.0203 (13)0.0023 (12)0.0115 (12)
N30.0551 (17)0.0472 (15)0.0326 (13)0.0228 (13)0.0010 (12)0.0081 (12)
N40.0251 (11)0.0327 (12)0.0280 (12)0.0062 (10)0.0057 (9)0.0008 (9)
N50.0288 (12)0.0353 (12)0.0266 (11)0.0088 (10)0.0045 (9)0.0028 (9)
N60.0260 (11)0.0327 (12)0.0263 (11)0.0072 (9)0.0057 (9)0.0008 (9)
N70.0271 (12)0.0367 (12)0.0283 (12)0.0053 (10)0.0056 (10)0.0032 (10)
S10.0419 (5)0.0957 (7)0.0566 (5)0.0359 (5)0.0139 (4)0.0407 (5)
S20.0423 (4)0.0402 (4)0.0301 (4)0.0209 (3)0.0007 (3)0.0051 (3)
S30.0571 (5)0.0523 (5)0.0274 (4)0.0342 (4)0.0067 (3)0.0023 (3)
Geometric parameters (Å, º) top
C1—N51.327 (3)C9—N21.148 (4)
C1—C21.388 (4)C9—S11.639 (3)
C1—H10.9300C13—N71.332 (3)
C2—C31.359 (4)C13—H130.9300
C2—H20.9300Cd1—N22.286 (3)
C3—N61.357 (3)Cd1—N2i2.286 (3)
C3—H30.9300Cd1—N7ii2.426 (2)
C4—N41.319 (3)Cd1—N7iii2.426 (2)
C4—C131.388 (4)Cd1—S2i2.6832 (8)
C4—N61.399 (3)Cd1—S22.6832 (8)
C5—N41.342 (3)Cd2—N1iv2.244 (2)
C5—C61.365 (4)Cd2—N32.303 (3)
C5—H50.9300Cd2—N52.385 (2)
C6—N71.331 (4)Cd2—N42.436 (2)
C6—H60.9300Cd2—S12.6603 (9)
C7—N11.142 (3)Cd2—S32.7427 (8)
C7—S31.643 (3)N1—Cd2iv2.244 (2)
C8—N31.150 (4)N5—N61.364 (3)
C8—S21.647 (3)N7—Cd1v2.426 (2)
N5—C1—C2111.8 (3)N7ii—Cd1—S291.66 (6)
N5—C1—H1124.1N7iii—Cd1—S288.34 (6)
C2—C1—H1124.1S2i—Cd1—S2180
C3—C2—C1105.6 (3)N1iv—Cd2—N391.59 (9)
C3—C2—H2127.2N1iv—Cd2—N593.71 (9)
C1—C2—H2127.2N3—Cd2—N5102.07 (9)
N6—C3—C2106.9 (3)N1iv—Cd2—N4159.57 (9)
N6—C3—H3126.6N3—Cd2—N483.77 (9)
C2—C3—H3126.6N5—Cd2—N468.04 (7)
N4—C4—C13122.2 (2)N1iv—Cd2—S1105.57 (8)
N4—C4—N6116.7 (2)N3—Cd2—S194.46 (7)
C13—C4—N6121.1 (2)N5—Cd2—S1154.21 (6)
N4—C5—C6121.4 (3)N4—Cd2—S194.63 (6)
N4—C5—H5119.3N1iv—Cd2—S393.51 (7)
C6—C5—H5119.3N3—Cd2—S3174.25 (7)
N7—C6—C5121.9 (3)N5—Cd2—S380.27 (6)
N7—C6—H6119.0N4—Cd2—S392.33 (6)
C5—C6—H6119.0S1—Cd2—S381.60 (3)
N1—C7—S3178.1 (3)C7—N1—Cd2iv156.4 (2)
N3—C8—S2179.1 (3)C9—N2—Cd1151.9 (3)
N2—C9—S1178.3 (3)C8—N3—Cd2160.7 (2)
N7—C13—C4120.5 (2)C4—N4—C5116.7 (2)
N7—C13—H13119.7C4—N4—Cd2116.51 (17)
C4—C13—H13119.7C5—N4—Cd2126.65 (18)
N2—Cd1—N2i180C1—N5—N6104.4 (2)
N2—Cd1—N7ii85.94 (9)C1—N5—Cd2134.13 (19)
N2i—Cd1—N7ii94.06 (9)N6—N5—Cd2112.89 (15)
N2—Cd1—N7iii94.06 (9)C3—N6—N5111.4 (2)
N2i—Cd1—N7iii85.94 (9)C3—N6—C4129.3 (2)
N7ii—Cd1—N7iii180N5—N6—C4119.2 (2)
N2—Cd1—S2i86.38 (7)C6—N7—C13117.2 (2)
N2i—Cd1—S2i93.62 (7)C6—N7—Cd1v121.71 (18)
N7ii—Cd1—S2i88.34 (6)C13—N7—Cd1v120.98 (18)
N7iii—Cd1—S2i91.66 (6)C9—S1—Cd298.65 (11)
N2—Cd1—S293.62 (7)C8—S2—Cd1101.07 (10)
N2i—Cd1—S286.38 (7)C7—S3—Cd296.52 (10)
N5—C1—C2—C30.3 (4)S1—Cd2—N5—C1110.8 (3)
C1—C2—C3—N60.3 (3)S3—Cd2—N5—C164.9 (3)
N4—C5—C6—N70.5 (5)N1iv—Cd2—N5—N6169.76 (17)
N4—C4—C13—N70.5 (4)N3—Cd2—N5—N697.82 (18)
N6—C4—C13—N7178.6 (2)N4—Cd2—N5—N619.70 (16)
N7ii—Cd1—N2—C930.1 (5)S1—Cd2—N5—N630.9 (3)
N7iii—Cd1—N2—C9149.9 (5)S3—Cd2—N5—N676.83 (17)
S2i—Cd1—N2—C9118.7 (5)C2—C3—N6—N50.7 (3)
S2—Cd1—N2—C961.3 (5)C2—C3—N6—C4176.0 (3)
N1iv—Cd2—N3—C8124.3 (8)C1—N5—N6—C30.9 (3)
N5—Cd2—N3—C8141.6 (8)Cd2—N5—N6—C3153.58 (19)
N4—Cd2—N3—C875.7 (8)C1—N5—N6—C4176.7 (2)
S1—Cd2—N3—C818.5 (8)Cd2—N5—N6—C430.6 (3)
C13—C4—N4—C50.9 (4)N4—C4—N6—C3162.2 (3)
N6—C4—N4—C5179.1 (3)C13—C4—N6—C319.5 (4)
C13—C4—N4—Cd2175.6 (2)N4—C4—N6—N522.8 (3)
N6—C4—N4—Cd22.7 (3)C13—C4—N6—N5155.5 (2)
C6—C5—N4—C40.4 (4)C5—C6—N7—C131.0 (5)
C6—C5—N4—Cd2175.7 (2)C5—C6—N7—Cd1v176.2 (2)
N1iv—Cd2—N4—C437.2 (3)C4—C13—N7—C60.5 (4)
N3—Cd2—N4—C4114.9 (2)C4—C13—N7—Cd1v176.70 (19)
N5—Cd2—N4—C49.15 (18)N1iv—Cd2—S1—C9113.39 (13)
S1—Cd2—N4—C4151.14 (18)N3—Cd2—S1—C920.49 (14)
S3—Cd2—N4—C469.38 (19)N5—Cd2—S1—C9109.59 (17)
N1iv—Cd2—N4—C5138.9 (3)N4—Cd2—S1—C963.61 (13)
N3—Cd2—N4—C561.2 (3)S3—Cd2—S1—C9155.29 (12)
N5—Cd2—N4—C5166.9 (3)N2—Cd1—S2—C87.34 (12)
S1—Cd2—N4—C532.8 (2)N2i—Cd1—S2—C8172.66 (12)
S3—Cd2—N4—C5114.6 (2)N7ii—Cd1—S2—C878.70 (11)
C2—C1—N5—N60.7 (3)N7iii—Cd1—S2—C8101.30 (11)
C2—C1—N5—Cd2144.6 (2)N1iv—Cd2—S3—C719.29 (12)
N1iv—Cd2—N5—C128.0 (3)N5—Cd2—S3—C773.89 (11)
N3—Cd2—N5—C1120.4 (3)N4—Cd2—S3—C7141.13 (11)
N4—Cd2—N5—C1161.5 (3)S1—Cd2—S3—C7124.53 (11)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1, z; (iii) x, y+1, z; (iv) x+1, y+1, z+1; (v) x1, y+1, z.

Experimental details

Crystal data
Chemical formula[Cd3(NCS)6(C7H6N4)2]
Mr978.00
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.0309 (9), 8.6178 (12), 13.7373 (18)
α, β, γ (°)87.889 (2), 85.173 (2), 68.060 (2)
V3)769.32 (18)
Z1
Radiation typeMo Kα
µ (mm1)2.50
Crystal size (mm)0.38 × 0.16 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.450, 0.788
No. of measured, independent and
observed [I > 2σ(I)] reflections
4043, 2805, 2625
Rint0.013
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.056, 1.06
No. of reflections2805
No. of parameters196
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.61, 0.51

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cd1—N22.286 (3)Cd2—N52.385 (2)
Cd1—N7i2.426 (2)Cd2—N42.436 (2)
Cd1—S22.6832 (8)Cd2—S12.6603 (9)
Cd2—N1ii2.244 (2)Cd2—S32.7427 (8)
Cd2—N32.303 (3)
N2—Cd1—N2iii180N1ii—Cd2—N4159.57 (9)
N2—Cd1—N7i85.94 (9)N3—Cd2—N483.77 (9)
N2—Cd1—N7iv94.06 (9)N5—Cd2—N468.04 (7)
N2iii—Cd1—N7iv85.94 (9)N1ii—Cd2—S1105.57 (8)
N7i—Cd1—N7iv180N3—Cd2—S194.46 (7)
N2—Cd1—S2iii86.38 (7)N5—Cd2—S1154.21 (6)
N2—Cd1—S293.62 (7)N4—Cd2—S194.63 (6)
N7i—Cd1—S291.66 (6)N1ii—Cd2—S393.51 (7)
N7iv—Cd1—S288.34 (6)N3—Cd2—S3174.25 (7)
S2iii—Cd1—S2180N5—Cd2—S380.27 (6)
N1ii—Cd2—N391.59 (9)N4—Cd2—S392.33 (6)
N1ii—Cd2—N593.71 (9)S1—Cd2—S381.60 (3)
N3—Cd2—N5102.07 (9)
Symmetry codes: (i) x+1, y1, z; (ii) x+1, y+1, z+1; (iii) x+1, y, z; (iv) x, y+1, z.
 

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, J.-M., Sun, Y.-M., Liu, Z., Liu, L.-D., Shi, W. & Cheng, P. (2006). Dalton Trans. pp. 376–380.  Web of Science CSD CrossRef Google Scholar
First citationShi, J.-M., Sun, Y.-M., Zhang, X., Yi, L., Cheng, P. & Liu, L.-D. (2006). J. Phys. Chem. A, 110, 7677–7681.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds