metal-organic compounds
Poly[tris[μ2-2-(pyrazol-1-yl)pyrazine]hexa-μ1,3-thiocyanato-tricadmium(II)]
aDepartment of Chemistry, Shandong Normal University, Jinan 250014, People's Republic of China
*Correspondence e-mail: shijingmin1955@yahoo.com.cn
The 3(NCS)6(C7H6N4)2]n, contains two independent CdII ions, one of which is located on a crystallographic inversion center. Each independent CdII ion is in a slightly distorted octahedral coordination environment, but the disortion from ideally octahedral is greater in the environment of the CdII ion on a general position. Both thiocyanate ligands act as bridges connecting independent CdII ions, and the 2-(pyrazol-1-yl)pyrazine ligands chelate one CdII ion in a bidentate mode while the remaining N atom of the pyrazine ring coordinates to a symmetry-related CdII ion, forming a two-dimensional structure parallel to (211).
of the title [CdRelated literature
For background information, see: Shi, Sun, Liu et al. (2006); Shi, Sun, Zhang et al. (2006).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 1997); cell SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536808032285/lh2704sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808032285/lh2704Isup2.hkl
7 ml 3-(pyrazole-2-yloxy)-pyridine (0.0365 g, 0.250 mmol) methanol solution, 7 ml C d(ClO4)26H2O (0.1048 g, 0.250 mmol) H2O solution and 4 ml NaSCN (0.0405 g, 0.500 mmol) H2O solution were mixed together and stirred for a few minutes. Colorless single crystals were obtained after allowing the filtrate to stand at room temperature for four months.
All H atoms were placed in calculated positions and refined as riding with (C—H = 0.93 Å) and Uiso = 1.2Ueq(C).
Data collection: SMART (Bruker, 1997); cell
SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Cd3(NCS)6(C7H6N4)2] | Z = 1 |
Mr = 978.00 | F(000) = 470 |
Triclinic, P1 | Dx = 2.111 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.0309 (9) Å | Cell parameters from 3404 reflections |
b = 8.6178 (12) Å | θ = 2.6–28.2° |
c = 13.7373 (18) Å | µ = 2.50 mm−1 |
α = 87.889 (2)° | T = 298 K |
β = 85.173 (2)° | Bar, colorless |
γ = 68.060 (2)° | 0.38 × 0.16 × 0.10 mm |
V = 769.32 (18) Å3 |
Bruker SMART APEX CCD diffractometer | 2805 independent reflections |
Radiation source: fine-focus sealed tube | 2625 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.013 |
ϕ and ω scans | θmax = 25.5°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −4→8 |
Tmin = 0.450, Tmax = 0.788 | k = −10→10 |
4043 measured reflections | l = −15→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.022 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.056 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0271P)2 + 0.3586P] where P = (Fo2 + 2Fc2)/3 |
2805 reflections | (Δ/σ)max = 0.001 |
196 parameters | Δρmax = 0.61 e Å−3 |
0 restraints | Δρmin = −0.51 e Å−3 |
[Cd3(NCS)6(C7H6N4)2] | γ = 68.060 (2)° |
Mr = 978.00 | V = 769.32 (18) Å3 |
Triclinic, P1 | Z = 1 |
a = 7.0309 (9) Å | Mo Kα radiation |
b = 8.6178 (12) Å | µ = 2.50 mm−1 |
c = 13.7373 (18) Å | T = 298 K |
α = 87.889 (2)° | 0.38 × 0.16 × 0.10 mm |
β = 85.173 (2)° |
Bruker SMART APEX CCD diffractometer | 2805 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2625 reflections with I > 2σ(I) |
Tmin = 0.450, Tmax = 0.788 | Rint = 0.013 |
4043 measured reflections |
R[F2 > 2σ(F2)] = 0.022 | 0 restraints |
wR(F2) = 0.056 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.61 e Å−3 |
2805 reflections | Δρmin = −0.51 e Å−3 |
196 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.0009 (4) | 0.7101 (4) | 0.49099 (19) | 0.0358 (6) | |
H1 | 0.0564 | 0.6478 | 0.5456 | 0.043* | |
C2 | −0.1423 (5) | 0.8730 (4) | 0.4948 (2) | 0.0402 (7) | |
H2 | −0.1990 | 0.9378 | 0.5502 | 0.048* | |
C3 | −0.1821 (5) | 0.9178 (4) | 0.4006 (2) | 0.0383 (7) | |
H3 | −0.2725 | 1.0200 | 0.3788 | 0.046* | |
C4 | −0.0578 (4) | 0.7640 (3) | 0.24350 (18) | 0.0260 (5) | |
C5 | 0.1109 (5) | 0.6225 (4) | 0.1068 (2) | 0.0381 (7) | |
H5 | 0.2239 | 0.5397 | 0.0758 | 0.046* | |
C6 | −0.0462 (5) | 0.7197 (4) | 0.0532 (2) | 0.0388 (7) | |
H6 | −0.0368 | 0.7019 | −0.0137 | 0.047* | |
C7 | 0.5004 (4) | 0.6931 (3) | 0.4694 (2) | 0.0312 (6) | |
C8 | 0.2476 (4) | 0.1598 (3) | 0.21816 (19) | 0.0309 (6) | |
C9 | 0.6045 (4) | 0.3004 (4) | 0.1046 (2) | 0.0369 (7) | |
C13 | −0.2187 (4) | 0.8625 (3) | 0.18960 (19) | 0.0311 (6) | |
H13 | −0.3319 | 0.9454 | 0.2206 | 0.037* | |
Cd1 | 0.5000 | 0.0000 | 0.0000 | 0.02922 (9) | |
Cd2 | 0.35673 (3) | 0.47371 (2) | 0.314014 (13) | 0.02935 (8) | |
N1 | 0.5156 (4) | 0.6693 (3) | 0.55123 (18) | 0.0419 (6) | |
N2 | 0.5526 (4) | 0.2304 (3) | 0.04926 (19) | 0.0445 (6) | |
N3 | 0.2614 (4) | 0.2620 (3) | 0.26533 (18) | 0.0438 (6) | |
N4 | 0.1055 (3) | 0.6441 (3) | 0.20341 (16) | 0.0298 (5) | |
N5 | 0.0489 (3) | 0.6539 (3) | 0.40006 (16) | 0.0311 (5) | |
N6 | −0.0646 (3) | 0.7848 (3) | 0.34443 (15) | 0.0292 (5) | |
N7 | −0.2124 (3) | 0.8392 (3) | 0.09389 (16) | 0.0325 (5) | |
S1 | 0.67535 (14) | 0.40534 (14) | 0.18169 (7) | 0.0617 (3) | |
S2 | 0.22912 (12) | 0.01127 (9) | 0.15191 (5) | 0.03591 (17) | |
S3 | 0.47355 (13) | 0.73397 (10) | 0.35252 (5) | 0.04143 (19) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0406 (16) | 0.0454 (16) | 0.0255 (14) | −0.0200 (14) | −0.0055 (12) | 0.0002 (12) |
C2 | 0.0428 (17) | 0.0477 (17) | 0.0322 (15) | −0.0193 (14) | 0.0024 (13) | −0.0120 (13) |
C3 | 0.0397 (16) | 0.0325 (15) | 0.0388 (16) | −0.0084 (13) | −0.0025 (13) | −0.0082 (12) |
C4 | 0.0233 (13) | 0.0304 (13) | 0.0244 (13) | −0.0100 (11) | −0.0017 (10) | 0.0002 (10) |
C5 | 0.0332 (15) | 0.0398 (16) | 0.0282 (14) | 0.0017 (13) | −0.0024 (12) | −0.0046 (12) |
C6 | 0.0380 (16) | 0.0445 (16) | 0.0243 (14) | −0.0040 (13) | −0.0039 (12) | −0.0001 (12) |
C7 | 0.0316 (14) | 0.0281 (13) | 0.0344 (16) | −0.0105 (11) | −0.0082 (12) | −0.0009 (11) |
C8 | 0.0312 (15) | 0.0360 (15) | 0.0247 (13) | −0.0121 (12) | −0.0023 (11) | 0.0042 (12) |
C9 | 0.0312 (15) | 0.0371 (15) | 0.0368 (16) | −0.0075 (13) | 0.0061 (12) | −0.0059 (13) |
C13 | 0.0250 (13) | 0.0337 (14) | 0.0285 (14) | −0.0036 (11) | −0.0035 (11) | 0.0007 (11) |
Cd1 | 0.02909 (16) | 0.03095 (15) | 0.02367 (15) | −0.00539 (12) | −0.00732 (11) | −0.00178 (11) |
Cd2 | 0.02855 (12) | 0.03169 (12) | 0.02402 (12) | −0.00559 (9) | −0.00708 (8) | −0.00237 (8) |
N1 | 0.0545 (16) | 0.0386 (14) | 0.0348 (14) | −0.0171 (12) | −0.0183 (12) | 0.0057 (11) |
N2 | 0.0539 (17) | 0.0435 (15) | 0.0377 (14) | −0.0203 (13) | 0.0023 (12) | −0.0115 (12) |
N3 | 0.0551 (17) | 0.0472 (15) | 0.0326 (13) | −0.0228 (13) | −0.0010 (12) | −0.0081 (12) |
N4 | 0.0251 (11) | 0.0327 (12) | 0.0280 (12) | −0.0062 (10) | −0.0057 (9) | 0.0008 (9) |
N5 | 0.0288 (12) | 0.0353 (12) | 0.0266 (11) | −0.0088 (10) | −0.0045 (9) | 0.0028 (9) |
N6 | 0.0260 (11) | 0.0327 (12) | 0.0263 (11) | −0.0072 (9) | −0.0057 (9) | −0.0008 (9) |
N7 | 0.0271 (12) | 0.0367 (12) | 0.0283 (12) | −0.0053 (10) | −0.0056 (10) | 0.0032 (10) |
S1 | 0.0419 (5) | 0.0957 (7) | 0.0566 (5) | −0.0359 (5) | 0.0139 (4) | −0.0407 (5) |
S2 | 0.0423 (4) | 0.0402 (4) | 0.0301 (4) | −0.0209 (3) | −0.0007 (3) | −0.0051 (3) |
S3 | 0.0571 (5) | 0.0523 (5) | 0.0274 (4) | −0.0342 (4) | −0.0067 (3) | 0.0023 (3) |
C1—N5 | 1.327 (3) | C9—N2 | 1.148 (4) |
C1—C2 | 1.388 (4) | C9—S1 | 1.639 (3) |
C1—H1 | 0.9300 | C13—N7 | 1.332 (3) |
C2—C3 | 1.359 (4) | C13—H13 | 0.9300 |
C2—H2 | 0.9300 | Cd1—N2 | 2.286 (3) |
C3—N6 | 1.357 (3) | Cd1—N2i | 2.286 (3) |
C3—H3 | 0.9300 | Cd1—N7ii | 2.426 (2) |
C4—N4 | 1.319 (3) | Cd1—N7iii | 2.426 (2) |
C4—C13 | 1.388 (4) | Cd1—S2i | 2.6832 (8) |
C4—N6 | 1.399 (3) | Cd1—S2 | 2.6832 (8) |
C5—N4 | 1.342 (3) | Cd2—N1iv | 2.244 (2) |
C5—C6 | 1.365 (4) | Cd2—N3 | 2.303 (3) |
C5—H5 | 0.9300 | Cd2—N5 | 2.385 (2) |
C6—N7 | 1.331 (4) | Cd2—N4 | 2.436 (2) |
C6—H6 | 0.9300 | Cd2—S1 | 2.6603 (9) |
C7—N1 | 1.142 (3) | Cd2—S3 | 2.7427 (8) |
C7—S3 | 1.643 (3) | N1—Cd2iv | 2.244 (2) |
C8—N3 | 1.150 (4) | N5—N6 | 1.364 (3) |
C8—S2 | 1.647 (3) | N7—Cd1v | 2.426 (2) |
N5—C1—C2 | 111.8 (3) | N7ii—Cd1—S2 | 91.66 (6) |
N5—C1—H1 | 124.1 | N7iii—Cd1—S2 | 88.34 (6) |
C2—C1—H1 | 124.1 | S2i—Cd1—S2 | 180 |
C3—C2—C1 | 105.6 (3) | N1iv—Cd2—N3 | 91.59 (9) |
C3—C2—H2 | 127.2 | N1iv—Cd2—N5 | 93.71 (9) |
C1—C2—H2 | 127.2 | N3—Cd2—N5 | 102.07 (9) |
N6—C3—C2 | 106.9 (3) | N1iv—Cd2—N4 | 159.57 (9) |
N6—C3—H3 | 126.6 | N3—Cd2—N4 | 83.77 (9) |
C2—C3—H3 | 126.6 | N5—Cd2—N4 | 68.04 (7) |
N4—C4—C13 | 122.2 (2) | N1iv—Cd2—S1 | 105.57 (8) |
N4—C4—N6 | 116.7 (2) | N3—Cd2—S1 | 94.46 (7) |
C13—C4—N6 | 121.1 (2) | N5—Cd2—S1 | 154.21 (6) |
N4—C5—C6 | 121.4 (3) | N4—Cd2—S1 | 94.63 (6) |
N4—C5—H5 | 119.3 | N1iv—Cd2—S3 | 93.51 (7) |
C6—C5—H5 | 119.3 | N3—Cd2—S3 | 174.25 (7) |
N7—C6—C5 | 121.9 (3) | N5—Cd2—S3 | 80.27 (6) |
N7—C6—H6 | 119.0 | N4—Cd2—S3 | 92.33 (6) |
C5—C6—H6 | 119.0 | S1—Cd2—S3 | 81.60 (3) |
N1—C7—S3 | 178.1 (3) | C7—N1—Cd2iv | 156.4 (2) |
N3—C8—S2 | 179.1 (3) | C9—N2—Cd1 | 151.9 (3) |
N2—C9—S1 | 178.3 (3) | C8—N3—Cd2 | 160.7 (2) |
N7—C13—C4 | 120.5 (2) | C4—N4—C5 | 116.7 (2) |
N7—C13—H13 | 119.7 | C4—N4—Cd2 | 116.51 (17) |
C4—C13—H13 | 119.7 | C5—N4—Cd2 | 126.65 (18) |
N2—Cd1—N2i | 180 | C1—N5—N6 | 104.4 (2) |
N2—Cd1—N7ii | 85.94 (9) | C1—N5—Cd2 | 134.13 (19) |
N2i—Cd1—N7ii | 94.06 (9) | N6—N5—Cd2 | 112.89 (15) |
N2—Cd1—N7iii | 94.06 (9) | C3—N6—N5 | 111.4 (2) |
N2i—Cd1—N7iii | 85.94 (9) | C3—N6—C4 | 129.3 (2) |
N7ii—Cd1—N7iii | 180 | N5—N6—C4 | 119.2 (2) |
N2—Cd1—S2i | 86.38 (7) | C6—N7—C13 | 117.2 (2) |
N2i—Cd1—S2i | 93.62 (7) | C6—N7—Cd1v | 121.71 (18) |
N7ii—Cd1—S2i | 88.34 (6) | C13—N7—Cd1v | 120.98 (18) |
N7iii—Cd1—S2i | 91.66 (6) | C9—S1—Cd2 | 98.65 (11) |
N2—Cd1—S2 | 93.62 (7) | C8—S2—Cd1 | 101.07 (10) |
N2i—Cd1—S2 | 86.38 (7) | C7—S3—Cd2 | 96.52 (10) |
N5—C1—C2—C3 | −0.3 (4) | S1—Cd2—N5—C1 | −110.8 (3) |
C1—C2—C3—N6 | −0.3 (3) | S3—Cd2—N5—C1 | −64.9 (3) |
N4—C5—C6—N7 | −0.5 (5) | N1iv—Cd2—N5—N6 | 169.76 (17) |
N4—C4—C13—N7 | −0.5 (4) | N3—Cd2—N5—N6 | −97.82 (18) |
N6—C4—C13—N7 | −178.6 (2) | N4—Cd2—N5—N6 | −19.70 (16) |
N7ii—Cd1—N2—C9 | −30.1 (5) | S1—Cd2—N5—N6 | 30.9 (3) |
N7iii—Cd1—N2—C9 | 149.9 (5) | S3—Cd2—N5—N6 | 76.83 (17) |
S2i—Cd1—N2—C9 | −118.7 (5) | C2—C3—N6—N5 | 0.7 (3) |
S2—Cd1—N2—C9 | 61.3 (5) | C2—C3—N6—C4 | 176.0 (3) |
N1iv—Cd2—N3—C8 | −124.3 (8) | C1—N5—N6—C3 | −0.9 (3) |
N5—Cd2—N3—C8 | 141.6 (8) | Cd2—N5—N6—C3 | −153.58 (19) |
N4—Cd2—N3—C8 | 75.7 (8) | C1—N5—N6—C4 | −176.7 (2) |
S1—Cd2—N3—C8 | −18.5 (8) | Cd2—N5—N6—C4 | 30.6 (3) |
C13—C4—N4—C5 | 0.9 (4) | N4—C4—N6—C3 | 162.2 (3) |
N6—C4—N4—C5 | 179.1 (3) | C13—C4—N6—C3 | −19.5 (4) |
C13—C4—N4—Cd2 | −175.6 (2) | N4—C4—N6—N5 | −22.8 (3) |
N6—C4—N4—Cd2 | 2.7 (3) | C13—C4—N6—N5 | 155.5 (2) |
C6—C5—N4—C4 | −0.4 (4) | C5—C6—N7—C13 | 1.0 (5) |
C6—C5—N4—Cd2 | 175.7 (2) | C5—C6—N7—Cd1v | −176.2 (2) |
N1iv—Cd2—N4—C4 | 37.2 (3) | C4—C13—N7—C6 | −0.5 (4) |
N3—Cd2—N4—C4 | 114.9 (2) | C4—C13—N7—Cd1v | 176.70 (19) |
N5—Cd2—N4—C4 | 9.15 (18) | N1iv—Cd2—S1—C9 | 113.39 (13) |
S1—Cd2—N4—C4 | −151.14 (18) | N3—Cd2—S1—C9 | 20.49 (14) |
S3—Cd2—N4—C4 | −69.38 (19) | N5—Cd2—S1—C9 | −109.59 (17) |
N1iv—Cd2—N4—C5 | −138.9 (3) | N4—Cd2—S1—C9 | −63.61 (13) |
N3—Cd2—N4—C5 | −61.2 (3) | S3—Cd2—S1—C9 | −155.29 (12) |
N5—Cd2—N4—C5 | −166.9 (3) | N2—Cd1—S2—C8 | −7.34 (12) |
S1—Cd2—N4—C5 | 32.8 (2) | N2i—Cd1—S2—C8 | 172.66 (12) |
S3—Cd2—N4—C5 | 114.6 (2) | N7ii—Cd1—S2—C8 | 78.70 (11) |
C2—C1—N5—N6 | 0.7 (3) | N7iii—Cd1—S2—C8 | −101.30 (11) |
C2—C1—N5—Cd2 | 144.6 (2) | N1iv—Cd2—S3—C7 | −19.29 (12) |
N1iv—Cd2—N5—C1 | 28.0 (3) | N5—Cd2—S3—C7 | 73.89 (11) |
N3—Cd2—N5—C1 | 120.4 (3) | N4—Cd2—S3—C7 | 141.13 (11) |
N4—Cd2—N5—C1 | −161.5 (3) | S1—Cd2—S3—C7 | −124.53 (11) |
Symmetry codes: (i) −x+1, −y, −z; (ii) x+1, y−1, z; (iii) −x, −y+1, −z; (iv) −x+1, −y+1, −z+1; (v) x−1, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | [Cd3(NCS)6(C7H6N4)2] |
Mr | 978.00 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 298 |
a, b, c (Å) | 7.0309 (9), 8.6178 (12), 13.7373 (18) |
α, β, γ (°) | 87.889 (2), 85.173 (2), 68.060 (2) |
V (Å3) | 769.32 (18) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 2.50 |
Crystal size (mm) | 0.38 × 0.16 × 0.10 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.450, 0.788 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4043, 2805, 2625 |
Rint | 0.013 |
(sin θ/λ)max (Å−1) | 0.606 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.022, 0.056, 1.06 |
No. of reflections | 2805 |
No. of parameters | 196 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.61, −0.51 |
Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXTL (Sheldrick, 2008).
Cd1—N2 | 2.286 (3) | Cd2—N5 | 2.385 (2) |
Cd1—N7i | 2.426 (2) | Cd2—N4 | 2.436 (2) |
Cd1—S2 | 2.6832 (8) | Cd2—S1 | 2.6603 (9) |
Cd2—N1ii | 2.244 (2) | Cd2—S3 | 2.7427 (8) |
Cd2—N3 | 2.303 (3) | ||
N2—Cd1—N2iii | 180 | N1ii—Cd2—N4 | 159.57 (9) |
N2—Cd1—N7i | 85.94 (9) | N3—Cd2—N4 | 83.77 (9) |
N2—Cd1—N7iv | 94.06 (9) | N5—Cd2—N4 | 68.04 (7) |
N2iii—Cd1—N7iv | 85.94 (9) | N1ii—Cd2—S1 | 105.57 (8) |
N7i—Cd1—N7iv | 180 | N3—Cd2—S1 | 94.46 (7) |
N2—Cd1—S2iii | 86.38 (7) | N5—Cd2—S1 | 154.21 (6) |
N2—Cd1—S2 | 93.62 (7) | N4—Cd2—S1 | 94.63 (6) |
N7i—Cd1—S2 | 91.66 (6) | N1ii—Cd2—S3 | 93.51 (7) |
N7iv—Cd1—S2 | 88.34 (6) | N3—Cd2—S3 | 174.25 (7) |
S2iii—Cd1—S2 | 180 | N5—Cd2—S3 | 80.27 (6) |
N1ii—Cd2—N3 | 91.59 (9) | N4—Cd2—S3 | 92.33 (6) |
N1ii—Cd2—N5 | 93.71 (9) | S1—Cd2—S3 | 81.60 (3) |
N3—Cd2—N5 | 102.07 (9) |
Symmetry codes: (i) x+1, y−1, z; (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y, −z; (iv) −x, −y+1, −z. |
References
Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shi, J.-M., Sun, Y.-M., Liu, Z., Liu, L.-D., Shi, W. & Cheng, P. (2006). Dalton Trans. pp. 376–380. Web of Science CSD CrossRef Google Scholar
Shi, J.-M., Sun, Y.-M., Zhang, X., Yi, L., Cheng, P. & Liu, L.-D. (2006). J. Phys. Chem. A, 110, 7677–7681. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
For a considerable time, interest has focused on polymeric coordination compounds because such new coordination polymers may afford new materials with useful properties, such as catalytic activity, micro-porosity, electrical conductivity, non-linear optical activity and magnetic coupling behavior. The thiocyanide anion is a very common bridging ligand and many muti-nuclear complexes containing this ligand have been reported. Some of these complexes exhibit interesting magnetic coupling properties (Shi, Sun, Liu et al., 2006; Shi, Sun, Zhang et al., 2006)). The 2-(pyrazole-1-yl)-pyrazine molecule can act as a bridge ligand due to its structural character and up till now no crystal structures of complexes with this ligand have been reported. Under the motivation of preparing new coordination polymers containing mixed bridging ligands, we have synthesized the title coordination polymer and herein we report its crystal structure (I).
Fig. 1 shows the coordination around each independent CdII ion. Atom Cd1 is located on a crystallographic inversion center. In the crystal structure thiocyanade anions act as bridging ligands and connect symmetry related CdII ions [with Cd···Cd = 5.8122 (6)Å for Cd1···Cd2 and 5.7411 (7) Å for Cd2···Cd2ii; symmetry code: (ii) -x+1, -y+1, -z+1] forming an eight-membered ring which acts as a repeat unit of the structure in one-dimension [Fig. 2]. The 2-(pyrazole-1-yl)-pyrazine ligand functions as a tridentate bridging ligand and coordinates to symmetry related CdII ions [with a Cd···Cd separation of 7.6144 (7)Å] connecting the structure further into two-dimensions. Figure 2 also shows that in the two-dimensional structure there are two different types of rings formed by the 2-(pyrazole-1-yl)-pyrazine bridging ligand. An 18-membered ring consists of four CdII ions, two thiocyanato ligands and two 2-(pyrazole-1-yl)-pyrazine bridging ligands while a 26-membered ring consists of two 2-(pyrazole-1-yl)-pyrazine bridging ligands, four thiocyanade ligands and six CdII ions. The 18-membered rings and the 26-membered rings are arranged alternately in the two-dimensional structure.