organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 11| November 2008| Pages o2118-o2119

(E)-3-(4-Fluoro­phen­yl)-1-[4-(methyl­sulfan­yl)phen­yl]prop-2-en-1-one

aPG Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamil Nadu, India, bSeQuent Scientific Limited, 120 A&B Industrial Area, Baikampady, New Mangalore 575 011, India, and cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: athiru@vsnl.net

(Received 5 October 2008; accepted 10 October 2008; online 15 October 2008)

In the title mol­ecule, C16H13FOS, the dihedral angle between the two benzene rings is 8.68 (6)°. The H atoms of the central enone group are trans and one H atom is involved in a close intra­molecular C—H⋯O contact. The crystal structure is stabilized by weak C—H⋯π inter­actions.

Related literature

For related crystal structures, see: Moorthi et al. (2005[Moorthi, S. S., Chinnakali, K., Nanjundan, S., Unnithan, C. S., Fun, H.-K. & Yu, X.-L. (2005). Acta Cryst. E61, o483-o485.]); Sathiya Moorthi, et al. (2005[Sathiya Moorthi, S., Chinnakali, K., Nanjundan, S., Santhi, R. & Fun, H.-K. (2005). Acta Cryst. E61, o3514-o3516.]); Thiruvalluvar, Subramanyam, Butcher, Adhikari & Wagle (2007[Thiruvalluvar, A., Subramanyam, M., Butcher, R. J., Adhikari, A. V. & Wagle, S. (2007). Acta Cryst. E63, o4536.]); Thiruvalluvar, Subramanyam, Butcher, Adhikari & Karabasanagouda (2007[Thiruvalluvar, A., Subramanyam, M., Butcher, R. J., Adhikari, A. V. & Karabasanagouda, T. (2007). Acta Cryst. E63, o4716.]); Thiruvalluvar, Subramanyam, Butcher, Karegoudar & Holla (2008[Thiruvalluvar, A., Subramanyam, M., Butcher, R. J., Karegoudar, P. & Holla, B. S. (2008). Acta Cryst. E64, o60.]); Thiruvalluvar, Subramanyam, Butcher, Karabasanagouda & Adhikari (2008[Thiruvalluvar, A., Subramanyam, M., Butcher, R. J., Karabasanagouda, T. & Adhikari, A. V. (2008). Acta Cryst. E64, o1263.]). For biological activities of chalcones, see: Anto et al. (1995[Anto, R. J., Sukumaran, K., Kuttan, G., Rao, M. N. A., Subbaraju, V. & Kuttan, R. (1995). Cancer Lett. 97, 33-36.]); Vaya et al. (1997[Vaya, R., Belinky, P. A. & Aviram, M. (1997). Free Radic. Biol. Med. 23, 302-305.]); Mukherjee et al. (2001[Mukherjee, S., Kumar, V., Prasad, A. K., Raj, H. G., Brakhe, M. E., Olsen, C. E., Jain, S. C. & Parmar, V. P. (2001). Bioorg. Med. Chem. 9, 337-339.]); Indyah et al. (2000[Indyah, S. A., Timmerman, H., Samhoedi, M., Sastrohami, D., Sugiyanto, H. & Van Der Goot, H. (2000). Eur. J. Med. Chem. 35, 449-452.]); Chen et al. (1997[Chen, M., Christensen, S. B., Zhai, L., Rasmussen, M. H., Theander, T. G., Frokjaer, S., Steffensen, B., Davidson, J. & Kharazmi, A. J. (1997). Infect. Dis. 176, 1327-1330.]); Nielsen et al. (1998[Nielsen, S. F., Christensen, S. B., Cruciani, G., Kharazmi, A. & Liljefors, T. (1998). J. Med. Chem. 41, 4819-4822.]); Hsin et al. (1998[Hsin, H.-K., Tai, L.-H., Pyang, J.-W., Jey, W.-J. & Chun, L.-N. (1998). Pharm. Res. 15, 39-42.]); Kumar et al. (2003[Kumar, S. K., Hager, E., Catherine, P., Gurulingappa, H., Davidson, N. E. & Khan, S. R. (2003). J. Med. Chem. 46, 2813-2815.]); Prasad et al. (2005[Prasad, Y. R., Prasoona, L., Rao, A. L., Lakshmi, K., Kumar, P. R. & Rao, B. G. (2005). Int. J. Chem. Sci. 3, 685-689.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13FOS

  • Mr = 272.33

  • Monoclinic, P 21 /c

  • a = 29.7846 (9) Å

  • b = 5.7070 (3) Å

  • c = 7.7071 (4) Å

  • β = 90.781 (3)°

  • V = 1309.94 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 200 (2) K

  • 0.44 × 0.41 × 0.31 mm

Data collection
  • Oxford Diffraction R Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.945, Tmax = 1.000 (expected range = 0.876–0.926)

  • 11708 measured reflections

  • 4318 independent reflections

  • 2944 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.118

  • S = 1.05

  • 4318 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1 0.95 2.42 2.7860 (18) 102
C12—H12⋯Cg1i 0.95 2.95 3.6803 (16) 134
C15—H15⋯Cg1ii 0.95 2.87 3.5494 (16) 129
C25—H25⋯Cg2iii 0.95 2.88 3.5407 (15) 127
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]. Cg1 and Cg2 are the centroids of the C11–C16 and C21–C26 rings.

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Chalcones either natural or synthetic are known to exhibit various biological activities. They have been reported to possess antioxidant (Anto et al., 1995; Vaya et al., 1997; Mukherjee et al., 2001; Indyah et al., 2000), antimalarial (Chen et al., 1997), antileishmanial(Nielsen et al., 1998), antiinflammatory(Hsin et al., 1998), antitumor(Kumar et al., 2003) and antibacterial activity(Prasad et al., 2005). The presence of a reactive unsaturated keto function in chalcones is found to be responsible for their antimicrobial activity, which may be altered depending on the type and position of substituent on the aromatic rings.

The title compound (Fig. 1) has been analysed as part of our crystallographic studies on chalcones (Thiruvalluvar, Subramanyam, Butcher, Adhikari & Wagle, 2007; Thiruvalluvar, Subramanyam, Butcher, Adhikari & Karabasanagouda, 2007; Thiruvalluvar, Subramanyam, Butcher, Karegoudar & Holla, 2008; Thiruvalluvar, Subramanyam, Butcher, Karabasanagouda & Adhikari, 2008). The dihedral angle between the two benzene rings is 8.68 (6)°. In similar structures, such as 1-(4-aminophenyl)-3-(3-bromophenyl)-prop-2-en-1-one (Sathiya Moorthi et al., 2005), 1-(4-bromophenyl)-3-(3-hydroxy phenyl)prop-2-en-1-one(Moorthi et al., 2005), the dihedral angles between the two rings are 9.6 (1)° and 10.2 (2)°, respectively. The H atoms of the central enone group are trans and one H atom is involved in a close intramolecular C-H···O contact. The crystal structure is stabilized by weak C12—H12···π, C15—H15···π and C25—H25···π interactions (Table 1).

Related literature top

For related crystal structures, see: Moorthi et al. (2005); Sathiya Moorthi, et al. (2005); Thiruvalluvar, Subramanyam, Butcher, Adhikari & Wagle (2007); Thiruvalluvar, Subramanyam, Butcher, Adhikari & Karabasanagouda (2007); Thiruvalluvar, Subramanyam, Butcher, Karegoudar & Holla (2008); Thiruvalluvar, Subramanyam, Butcher, Karabasanagouda & Adhikari (2008). For biological activities of chalcones, see: Anto et al. (1995); Vaya et al. (1997); Mukherjee et al. (2001); Indyah et al. (2000); Chen et al. (1997); Nielsen et al. (1998); Hsin et al. (1998); Kumar et al. (2003); Prasad et al. (2005).

Experimental top

A mixture of 4-acetylthioanisole(16.6 g, 0.1 mol) and 4-fluorobenzaldehyde(12.4 g, 0.1 mol) was stirred in ethanol (30 ml) and then an aqueous solution of KOH (40%, 15 ml) added to it. The mixture was kept overnight at room temperature and then it was poured into crushed ice and acidified with HCl. The solid separated was filtered and crystallized from ethanol. Yield obtained was 85%(23.1 g).

Refinement top

H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95 and 0.98 Å for Csp2 and methyl C, respectively; Uiso(H) = xUeq(C), where x = 1.5 for methyl H and 1.2 for all other H.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius. The dashed line indicates a short intramolecular contact.
(E)-3-(4-Fluorophenyl)-1-[4-(methylsulfanyl)phenyl]prop-2-en-1-one top
Crystal data top
C16H13FOSF(000) = 568
Mr = 272.33Dx = 1.381 Mg m3
Monoclinic, P21/cMelting point: 398(1) K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 29.7846 (9) ÅCell parameters from 5213 reflections
b = 5.7070 (3) Åθ = 4.7–32.4°
c = 7.7071 (4) ŵ = 0.25 mm1
β = 90.781 (3)°T = 200 K
V = 1309.94 (10) Å3Chunk, colourless
Z = 40.44 × 0.41 × 0.31 mm
Data collection top
Oxford Diffraction R Gemini
diffractometer
4318 independent reflections
Radiation source: fine-focus sealed tube2944 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 10.5081 pixels mm-1θmax = 32.5°, θmin = 4.7°
ϕ and ω scansh = 4443
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
k = 88
Tmin = 0.945, Tmax = 1.000l = 1111
11708 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0594P)2 + 0.198P]
where P = (Fo2 + 2Fc2)/3
4318 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C16H13FOSV = 1309.94 (10) Å3
Mr = 272.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 29.7846 (9) ŵ = 0.25 mm1
b = 5.7070 (3) ÅT = 200 K
c = 7.7071 (4) Å0.44 × 0.41 × 0.31 mm
β = 90.781 (3)°
Data collection top
Oxford Diffraction R Gemini
diffractometer
4318 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
2944 reflections with I > 2σ(I)
Tmin = 0.945, Tmax = 1.000Rint = 0.024
11708 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.05Δρmax = 0.31 e Å3
4318 reflectionsΔρmin = 0.26 e Å3
172 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.05893 (1)0.50390 (7)0.09311 (5)0.0340 (1)
F10.46877 (3)0.30207 (18)0.05308 (14)0.0517 (3)
O10.26356 (3)0.6477 (2)0.26067 (15)0.0456 (4)
C10.25225 (4)0.4852 (2)0.16574 (17)0.0276 (3)
C20.28346 (4)0.2940 (3)0.12373 (18)0.0301 (4)
C30.32640 (4)0.3052 (3)0.17803 (17)0.0280 (4)
C40.04253 (5)0.2032 (3)0.1219 (2)0.0406 (5)
C110.36238 (4)0.1383 (2)0.14776 (16)0.0261 (3)
C120.40612 (4)0.1995 (3)0.19971 (18)0.0311 (4)
C130.44234 (4)0.0527 (3)0.16800 (19)0.0348 (4)
C140.43389 (4)0.1553 (3)0.08458 (18)0.0340 (4)
C150.39128 (4)0.2253 (3)0.03214 (18)0.0320 (4)
C160.35546 (4)0.0773 (3)0.06567 (17)0.0284 (3)
C210.20523 (4)0.4821 (2)0.09295 (15)0.0236 (3)
C220.17716 (4)0.6710 (2)0.12904 (17)0.0273 (4)
C230.13282 (4)0.6734 (2)0.07161 (17)0.0283 (4)
C240.11552 (4)0.4850 (2)0.02440 (15)0.0242 (3)
C250.14336 (4)0.2957 (3)0.06185 (17)0.0284 (4)
C260.18779 (4)0.2943 (2)0.00286 (17)0.0277 (3)
H20.273220.162940.058310.0361*
H30.334320.439330.244770.0336*
H4A0.011080.196220.160570.0609*
H4B0.046010.119430.011540.0609*
H4C0.061570.129970.209310.0609*
H120.411120.344230.257740.0373*
H130.471960.094980.202960.0418*
H150.386710.370780.025290.0384*
H160.325900.123120.032470.0341*
H220.188570.799980.193910.0327*
H230.114130.803380.097520.0339*
H250.132020.167440.127690.0340*
H260.206470.164080.028080.0332*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0219 (2)0.0389 (2)0.0411 (2)0.0032 (1)0.0038 (1)0.0049 (2)
F10.0332 (4)0.0550 (6)0.0669 (6)0.0198 (4)0.0025 (4)0.0060 (5)
O10.0307 (5)0.0469 (7)0.0590 (7)0.0045 (5)0.0097 (5)0.0244 (6)
C10.0230 (5)0.0306 (7)0.0292 (6)0.0010 (5)0.0002 (4)0.0019 (6)
C20.0246 (6)0.0310 (7)0.0345 (7)0.0028 (5)0.0026 (5)0.0051 (6)
C30.0265 (6)0.0297 (7)0.0278 (6)0.0008 (5)0.0022 (5)0.0016 (5)
C40.0280 (7)0.0479 (10)0.0459 (8)0.0041 (6)0.0028 (6)0.0090 (7)
C110.0224 (5)0.0306 (7)0.0251 (6)0.0008 (5)0.0025 (4)0.0031 (5)
C120.0275 (6)0.0317 (7)0.0340 (7)0.0016 (5)0.0065 (5)0.0002 (6)
C130.0235 (6)0.0412 (9)0.0396 (7)0.0003 (5)0.0061 (5)0.0039 (7)
C140.0258 (6)0.0382 (8)0.0378 (7)0.0091 (5)0.0013 (5)0.0040 (6)
C150.0306 (6)0.0294 (7)0.0360 (7)0.0026 (5)0.0032 (5)0.0003 (6)
C160.0241 (5)0.0302 (7)0.0309 (6)0.0008 (5)0.0037 (5)0.0028 (6)
C210.0216 (5)0.0252 (7)0.0239 (5)0.0007 (5)0.0023 (4)0.0011 (5)
C220.0260 (6)0.0239 (7)0.0319 (6)0.0007 (5)0.0008 (5)0.0023 (5)
C230.0276 (6)0.0239 (7)0.0333 (7)0.0062 (5)0.0021 (5)0.0000 (5)
C240.0211 (5)0.0285 (7)0.0230 (5)0.0018 (5)0.0012 (4)0.0038 (5)
C250.0261 (6)0.0286 (7)0.0303 (6)0.0005 (5)0.0016 (5)0.0060 (5)
C260.0235 (5)0.0276 (7)0.0319 (6)0.0046 (5)0.0011 (5)0.0045 (5)
Geometric parameters (Å, º) top
S1—C41.7972 (17)C23—C241.3995 (17)
S1—C241.7631 (12)C24—C251.3945 (19)
F1—C141.3589 (17)C25—C261.3934 (17)
O1—C11.2256 (17)C2—H20.9500
C1—C21.4724 (19)C3—H30.9500
C1—C211.5016 (17)C4—H4A0.9800
C2—C31.3418 (17)C4—H4B0.9800
C3—C111.4550 (19)C4—H4C0.9800
C11—C121.4019 (17)C12—H120.9500
C11—C161.398 (2)C13—H130.9500
C12—C131.390 (2)C15—H150.9500
C13—C141.372 (2)C16—H160.9500
C14—C151.3855 (18)C22—H220.9500
C15—C161.388 (2)C23—H230.9500
C21—C221.3946 (16)C25—H250.9500
C21—C261.3976 (17)C26—H260.9500
C22—C231.3872 (17)
S1···H4Ai3.0100H2···C162.8100
S1···H4Cii3.0600H2···C262.6900
S1···H23iii3.1200H2···H162.2700
F1···F1iv3.0456 (14)H2···H262.0900
F1···H13v2.6300H2···O1viii2.9100
O1···H32.4200H3···O12.4200
O1···H16vi2.8900H3···C15vi3.0500
O1···H222.4400H3···H122.3500
O1···H2ii2.9100H3···C16ii2.6600
O1···H16ii2.7800H3···H16ii2.4700
C1···C26ii3.5900 (18)H4A···S1x3.0100
C3···C15vi3.498 (2)H4B···C253.1000
C3···C16ii3.466 (2)H4C···C252.8400
C12···C15vi3.553 (2)H4C···H252.1900
C15···C12vii3.553 (2)H4C···S1viii3.0600
C15···C3vii3.498 (2)H4C···C24viii3.0000
C16···C3viii3.466 (2)H12···C15vi3.0600
C21···C26ii3.5364 (17)H12···H32.3500
C26···C21viii3.5364 (17)H12···C15ii3.1000
C26···C1viii3.5900 (18)H13···F1xi2.6300
C1···H26ii2.8700H15···C3vii3.0300
C2···H262.6700H15···C12vii3.0500
C2···H162.7900H15···C11xii3.0300
C3···H15vi3.0300H15···C12xii2.8900
C4···H252.6700H15···C13xii3.0900
C11···H15ix3.0300H16···O1vii2.8900
C12···H15ix2.8900H16···C22.7900
C12···H15vi3.0500H16···H22.2700
C13···H15ix3.0900H16···O1viii2.7800
C15···H12viii3.1000H16···H3viii2.4700
C15···H3vii3.0500H22···O12.4400
C15···H12vii3.0600H23···S1xiii3.1200
C16···H22.8100H25···C42.6700
C16···H3viii2.6600H25···H4C2.1900
C21···H26ii3.0400H25···C22viii3.0200
C22···H25ii3.0200H25···C23viii3.0300
C23···H25ii3.0300H26···C22.6700
C24···H4Cii3.0000H26···H22.0900
C25···H4B3.1000H26···C1viii2.8700
C25···H4C2.8400H26···C21viii3.0400
C26···H22.6900
C4—S1—C24103.64 (6)C1—C2—H2120.00
O1—C1—C2121.52 (11)C3—C2—H2120.00
O1—C1—C21118.64 (11)C2—C3—H3116.00
C2—C1—C21119.84 (11)C11—C3—H3116.00
C1—C2—C3119.87 (14)S1—C4—H4A109.00
C2—C3—C11128.30 (14)S1—C4—H4B109.00
C3—C11—C12118.34 (12)S1—C4—H4C109.00
C3—C11—C16122.99 (11)H4A—C4—H4B109.00
C12—C11—C16118.65 (12)H4A—C4—H4C109.00
C11—C12—C13121.33 (14)H4B—C4—H4C109.00
C12—C13—C14117.78 (12)C11—C12—H12119.00
F1—C14—C13118.77 (11)C13—C12—H12119.00
F1—C14—C15118.01 (14)C12—C13—H13121.00
C13—C14—C15123.21 (13)C14—C13—H13121.00
C14—C15—C16118.27 (15)C14—C15—H15121.00
C11—C16—C15120.74 (12)C16—C15—H15121.00
C1—C21—C22118.36 (10)C11—C16—H16120.00
C1—C21—C26122.99 (10)C15—C16—H16120.00
C22—C21—C26118.60 (11)C21—C22—H22120.00
C21—C22—C23120.98 (11)C23—C22—H22119.00
C22—C23—C24120.21 (11)C22—C23—H23120.00
S1—C24—C23117.09 (9)C24—C23—H23120.00
S1—C24—C25123.64 (9)C24—C25—H25120.00
C23—C24—C25119.27 (11)C26—C25—H25120.00
C24—C25—C26120.11 (13)C21—C26—H26120.00
C21—C26—C25120.83 (12)C25—C26—H26120.00
C4—S1—C24—C23155.77 (10)C12—C13—C14—F1179.65 (13)
C4—S1—C24—C2524.79 (13)C12—C13—C14—C150.4 (2)
O1—C1—C2—C35.5 (2)F1—C14—C15—C16179.30 (13)
C21—C1—C2—C3175.08 (12)C13—C14—C15—C160.1 (2)
O1—C1—C21—C223.39 (18)C14—C15—C16—C111.0 (2)
O1—C1—C21—C26173.80 (12)C1—C21—C22—C23177.24 (11)
C2—C1—C21—C22177.22 (12)C26—C21—C22—C230.08 (18)
C2—C1—C21—C265.60 (18)C1—C21—C26—C25177.44 (12)
C1—C2—C3—C11178.78 (13)C22—C21—C26—C250.26 (19)
C2—C3—C11—C12172.54 (15)C21—C22—C23—C240.13 (19)
C2—C3—C11—C165.9 (2)C22—C23—C24—S1179.63 (10)
C3—C11—C12—C13177.20 (13)C22—C23—C24—C250.16 (18)
C16—C11—C12—C131.3 (2)S1—C24—C25—C26179.91 (10)
C3—C11—C16—C15176.76 (13)C23—C24—C25—C260.48 (19)
C12—C11—C16—C151.7 (2)C24—C25—C26—C210.5 (2)
C11—C12—C13—C140.3 (2)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2; (iii) x, y+3/2, z1/2; (iv) x+1, y1, z; (v) x+1, y1/2, z+1/2; (vi) x, y+1, z; (vii) x, y1, z; (viii) x, y+1/2, z1/2; (ix) x, y1/2, z+1/2; (x) x, y1/2, z1/2; (xi) x+1, y+1/2, z+1/2; (xii) x, y1/2, z1/2; (xiii) x, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O10.952.422.7860 (18)102
C12—H12···Cg1ii0.952.953.6803 (16)134
C15—H15···Cg1xii0.952.873.5494 (16)129
C25—H25···Cg2viii0.952.883.5407 (15)127
Symmetry codes: (ii) x, y+1/2, z+1/2; (viii) x, y+1/2, z1/2; (xii) x, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC16H13FOS
Mr272.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)29.7846 (9), 5.7070 (3), 7.7071 (4)
β (°) 90.781 (3)
V3)1309.94 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.44 × 0.41 × 0.31
Data collection
DiffractometerOxford Diffraction R Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.945, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
11708, 4318, 2944
Rint0.024
(sin θ/λ)max1)0.755
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.118, 1.05
No. of reflections4318
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.26

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O10.952.422.7860 (18)102
C12—H12···Cg1i0.952.953.6803 (16)134
C15—H15···Cg1ii0.952.873.5494 (16)129
C25—H25···Cg2iii0.952.883.5407 (15)127
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1/2, z1/2; (iii) x, y+1/2, z1/2.
 

Acknowledgements

AT thanks the UGC, India, for the award of a Minor Research Project [file No. MRP-2355/06(UGC-SERO), link No. 2355, 10/01/2007]. RJB acknowledges the NSF–MRI program for funding to purchase the X-ray CCD diffractometer.

References

First citationAnto, R. J., Sukumaran, K., Kuttan, G., Rao, M. N. A., Subbaraju, V. & Kuttan, R. (1995). Cancer Lett. 97, 33–36.  CrossRef CAS PubMed Web of Science Google Scholar
First citationChen, M., Christensen, S. B., Zhai, L., Rasmussen, M. H., Theander, T. G., Frokjaer, S., Steffensen, B., Davidson, J. & Kharazmi, A. J. (1997). Infect. Dis. 176, 1327–1330.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHsin, H.-K., Tai, L.-H., Pyang, J.-W., Jey, W.-J. & Chun, L.-N. (1998). Pharm. Res. 15, 39–42.  Web of Science PubMed Google Scholar
First citationIndyah, S. A., Timmerman, H., Samhoedi, M., Sastrohami, D., Sugiyanto, H. & Van Der Goot, H. (2000). Eur. J. Med. Chem. 35, 449–452.  Web of Science PubMed Google Scholar
First citationKumar, S. K., Hager, E., Catherine, P., Gurulingappa, H., Davidson, N. E. & Khan, S. R. (2003). J. Med. Chem. 46, 2813–2815.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMoorthi, S. S., Chinnakali, K., Nanjundan, S., Unnithan, C. S., Fun, H.-K. & Yu, X.-L. (2005). Acta Cryst. E61, o483–o485.  CSD CrossRef IUCr Journals Google Scholar
First citationMukherjee, S., Kumar, V., Prasad, A. K., Raj, H. G., Brakhe, M. E., Olsen, C. E., Jain, S. C. & Parmar, V. P. (2001). Bioorg. Med. Chem. 9, 337–339.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNielsen, S. F., Christensen, S. B., Cruciani, G., Kharazmi, A. & Liljefors, T. (1998). J. Med. Chem. 41, 4819–4822.  Web of Science CrossRef CAS PubMed Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationPrasad, Y. R., Prasoona, L., Rao, A. L., Lakshmi, K., Kumar, P. R. & Rao, B. G. (2005). Int. J. Chem. Sci. 3, 685–689.  CAS Google Scholar
First citationSathiya Moorthi, S., Chinnakali, K., Nanjundan, S., Santhi, R. & Fun, H.-K. (2005). Acta Cryst. E61, o3514–o3516.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThiruvalluvar, A., Subramanyam, M., Butcher, R. J., Adhikari, A. V. & Karabasanagouda, T. (2007). Acta Cryst. E63, o4716.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationThiruvalluvar, A., Subramanyam, M., Butcher, R. J., Adhikari, A. V. & Wagle, S. (2007). Acta Cryst. E63, o4536.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationThiruvalluvar, A., Subramanyam, M., Butcher, R. J., Karabasanagouda, T. & Adhikari, A. V. (2008). Acta Cryst. E64, o1263.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationThiruvalluvar, A., Subramanyam, M., Butcher, R. J., Karegoudar, P. & Holla, B. S. (2008). Acta Cryst. E64, o60.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVaya, R., Belinky, P. A. & Aviram, M. (1997). Free Radic. Biol. Med. 23, 302–305.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 11| November 2008| Pages o2118-o2119
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds