metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 11| November 2008| Pages m1480-m1481

Aqua­(2,2′-bipyrid­yl)(pyrazine-2,6-di­carboxyl­ato)nickel(II) 1.25-hydrate

aSchool of Materials and Chemical Engineering and Key Laboratory of Hollow Fiber, Membrane Materials & Membrane Processes, Tianjin Polytechnic University, Tianjin 300160, People's Republic of China, and bMiddle School of Gaohu in Yinan, Shandong 276314, People's Republic of China
*Correspondence e-mail: wfengqin@yahoo.com.cn

(Received 10 October 2008; accepted 24 October 2008; online 31 October 2008)

The asymmetric unit of the title compound, [Ni(C6H2N2O4)(C10H8N2)(H2O)]·1.25H2O, contains two independent chemically identical NiII complex cations and two and a half solvent water mol­ecules. The NiII ions are in slightly distorted coordination environments. In the crystal structure, inter­molecular O—H⋯O and weak C—H⋯O hydrogen bonds link cations and water mol­ecules into a three-dimensional network. One of the three uncoordinated water molecules is half-occupied.

Related literature

For related structures, see: Wang et al. (2006[Wang, F. Q., Zheng, X. J., Wan, Y. H., Wang, K. Z. & Jin, L. P. (2006). J. Mol. Struc. 798, 155-161.]); Wang, Weng, et al. (2007[Wang, F. Q., Weng, D. F., Zheng, X. J., Zhang, J. J., Ma, H. & Jin, L. P. (2007). Inorg. Chim. Acta, 360, 2029-2038.]); Wang, Zheng & Jin (2007[Wang, F. Q., Zheng, X. J. & Jin, L. P. (2007). J. Mol. Struc. 832, 48-54.]); Wang, Zheng, et al. (2007[Wang, F. Q., Zheng, X. J., Wan, Y. H., Sun, C. Y., Wang, Z. M., Wang, K. Z. & Jin, L. P. (2007). Inorg. Chem. 46, 2956-2958.][Wang, F. Q., Zheng, X. J. & Jin, L. P. (2007). J. Mol. Struc. 832, 48-54.], 2008[Wang, F. Q., Zheng, X. J., Wan, Y. H., Wang, K. Z. & Jin, L. P. (2008). Polyhedron, 27, 717-726.]); Wang, Mu et al. (2008[Wang, F. Q., Mu, W. H., Zheng, X. J., Li, L. C., Fang, D. C. & Jin, L. P. (2008). Inorg. Chem. 47, 5225-5233.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C6H2N2O4)(C10H8N2)(H2O)]·1.25H2O

  • Mr = 421.5

  • Monoclinic, P 21 /c

  • a = 10.7616 (12) Å

  • b = 14.8677 (17) Å

  • c = 21.933 (2) Å

  • β = 101.015 (2)°

  • V = 3444.6 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.17 mm−1

  • T = 294 (2) K

  • 0.22 × 0.10 × 0.08 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.796, Tmax = 0.871

  • 19122 measured reflections

  • 7030 independent reflections

  • 4740 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.102

  • S = 1.04

  • 7030 reflections

  • 496 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—N1 1.986 (2)
Ni1—N3 2.047 (3)
Ni1—O5 2.059 (2)
Ni1—N4 2.067 (3)
Ni1—O3 2.143 (2)
Ni1—O1 2.184 (2)
Ni2—N5 1.986 (2)
Ni2—N8 2.044 (2)
Ni2—O10 2.068 (2)
Ni2—N7 2.072 (2)
Ni2—O6 2.125 (2)
Ni2—O8 2.175 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C32—H32⋯O10 0.93 2.48 3.033 (4) 118
C31—H31⋯O13i 0.93 2.53 3.384 (11) 153
C29—H29⋯O6ii 0.93 2.53 3.318 (4) 143
C26—H26⋯O6ii 0.93 2.54 3.329 (4) 143
C14—H14⋯O11i 0.93 2.43 3.275 (5) 151
C9—H9⋯O1iii 0.93 2.47 3.281 (5) 146
C7—H7⋯O5 0.93 2.50 3.000 (4) 114
O13—H13A⋯O13iv 0.86 1.73 2.26 (2) 118
O12—H12B⋯O13 0.85 1.79 2.636 (12) 179
O12—H12A⋯O3 0.85 2.33 2.856 (4) 121
O11—H11B⋯O8 0.85 2.06 2.912 (3) 177
O11—H11A⋯O7v 0.85 2.07 2.921 (4) 178
O10—H10B⋯O4vi 0.86 1.85 2.699 (3) 170
O10—H10A⋯O2vii 0.85 1.84 2.694 (3) 178
O5—H5B⋯O7viii 0.85 1.85 2.686 (3) 169
O5—H5A⋯O9ix 0.85 1.78 2.621 (3) 173
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+2, -y+1, -z; (iii) -x+1, -y, -z; (iv) -x, -y, -z; (v) x-1, y, z; (vi) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (viii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ix) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In general, bridging multifunctional organic ligands with N– and O-donors have been proven to be good candidates as versatile coordination sites and as hydrogen-bond acceptors and donors. Pyrazine-2,6-dicarboxylic acid (H2PZDC) has two carboxylic groups and two pyrazine nitrogen atoms, and can be used as hydrogen-bond acceptor as well as hydrogen-bond donor, which assists in the generation of supramolecular structures. Because of the structural character, we have used this ligand in our previous work to construct 3d, 4f and 3d-4f complexes (Wang et al., 2006; Wang, Weng, et al., 2007; Wang, Zheng & Jin, 2007; Wang, Zheng, et al., 2007; Wang, Zheng et al., 2008; Wang, Mu et al., 2008). Generally, when coordinated to transition metal ions, PZDC adopts tridentate (ONO) mode and is involved in various hydrogen-bonding interactions. In a continuation of our work, we report synthesis and structure of the title complex.

The asymmetric unit of the title compound is shown in Fig. 1. In the crystal structure, intermolecular O-H···O (Fig. 2) and weak C-H···O hydrogen bonds link cations and water molecules into a three-dimensional network.

Related literature top

For related structures, see: Wang et al. (2006); Wang, Weng, et al. (2007); Wang, Zheng & Jin (2007); Wang, Zheng, et al. (2007, 2008); Wang et al. (2008).

Experimental top

A mixture of H2PZDC (0.0204 g, 0.1 mmol), Ni(OAc)2.4H2O(0.0249 g, 0.1 mmol), 2,2'-bipyridine (0.0156 g, 0.1 mmol), deionized water (5 ml) and isopropyl alcohol (1 ml) was sealed in a Teflon-lined stainless steel vessel (23 ml) and heated at 413K for 4 days under autogenous pressure and then cooled slowly to room temperature. The solution was filtered and allowed to stand for four weeks at room temperature. Green crystals were obtained. Anal. calcd. for C32H29Ni2N8O12.5: C, 46.07; H, 3.38; N, 13.44. Found: C, 45.90; H, 3.49; N, 13.27%. IR (KBr pellet, cm-1): 3446br, 1663vs, 1630vs, 1475m, 1446 s, 1393m, 1339m, 1313w, 1192m, 1067m, 1024w, 791w, 766m, 749m.

Refinement top

All water H atoms were found in difference Fourier maps and were fixed during refinement at O–H distances of 0.85-0.86 Å, with Uiso(H)=1.2 Ueq(O). The H atoms of C–H and N–H groups were treated as riding, with C–H = 0.93 Å and N–H = 0.86 Å and Uiso (H) = 1.2 Ueq(C,N).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title complex. Dispacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound. Dashed lines indicate the donor-acceptor separation of O-H···O hydrogen bonds. The solvent water molecules are not shown.
Aqua(2,2'-bipyridyl)(pyrazine-2,6-dicarboxylato)nickel(II) 1.25-hydrate top
Crystal data top
[Ni(C6H2N2O4)(C10H8N2)(H2O)]·1.25H2OF(000) = 1732
Mr = 421.5Dx = 1.626 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5479 reflections
a = 10.7616 (12) Åθ = 2.4–26.1°
b = 14.8677 (17) ŵ = 1.17 mm1
c = 21.933 (2) ÅT = 294 K
β = 101.015 (2)°Block, green
V = 3444.6 (7) Å30.22 × 0.1 × 0.08 mm
Z = 8
Data collection top
Bruker SMART CCD
diffractometer
7030 independent reflections
Radiation source: fine-focus sealed tube4740 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 26.4°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1113
Tmin = 0.796, Tmax = 0.871k = 1518
19122 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.042P)2 + 1.0664P]
where P = (Fo2 + 2Fc2)/3
7030 reflections(Δ/σ)max < 0.001
496 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
[Ni(C6H2N2O4)(C10H8N2)(H2O)]·1.25H2OV = 3444.6 (7) Å3
Mr = 421.5Z = 8
Monoclinic, P21/cMo Kα radiation
a = 10.7616 (12) ŵ = 1.17 mm1
b = 14.8677 (17) ÅT = 294 K
c = 21.933 (2) Å0.22 × 0.1 × 0.08 mm
β = 101.015 (2)°
Data collection top
Bruker SMART CCD
diffractometer
7030 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4740 reflections with I > 2σ(I)
Tmin = 0.796, Tmax = 0.871Rint = 0.035
19122 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.04Δρmax = 0.31 e Å3
7030 reflectionsΔρmin = 0.26 e Å3
496 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.49882 (4)0.13832 (3)0.158117 (18)0.04624 (12)
Ni20.90485 (4)0.54725 (3)0.148920 (17)0.04493 (12)
O10.69996 (19)0.12922 (15)0.15470 (9)0.0509 (5)
O20.8901 (2)0.17207 (17)0.20621 (11)0.0627 (6)
O30.3425 (2)0.17792 (16)0.19965 (11)0.0613 (6)
O40.2998 (2)0.24476 (17)0.28546 (13)0.0739 (7)
O50.52042 (19)0.01499 (15)0.20153 (10)0.0557 (6)
H5A0.45250.00410.21140.067*
H5B0.58690.01280.22920.067*
O61.10272 (19)0.54558 (15)0.15004 (9)0.0504 (5)
O71.2852 (2)0.49209 (17)0.20287 (10)0.0633 (6)
O80.73667 (19)0.51540 (15)0.18615 (10)0.0556 (5)
O90.6790 (2)0.44246 (16)0.26578 (12)0.0682 (7)
O100.91729 (19)0.66902 (14)0.19526 (9)0.0529 (5)
H10A0.97880.66850.22630.063*
H10B0.84660.68730.20310.063*
N10.5827 (2)0.20244 (16)0.23439 (11)0.0444 (6)
N20.6981 (3)0.26952 (19)0.34744 (12)0.0604 (7)
N30.4080 (3)0.07653 (18)0.07857 (12)0.0550 (7)
N40.4885 (2)0.24284 (18)0.09517 (12)0.0519 (6)
N50.9733 (2)0.48052 (16)0.22650 (11)0.0442 (6)
N61.0718 (3)0.4020 (2)0.33821 (12)0.0604 (7)
N70.8681 (2)0.43822 (17)0.08934 (11)0.0461 (6)
N80.8626 (2)0.61198 (18)0.06530 (11)0.0489 (6)
C10.7726 (3)0.1651 (2)0.19953 (14)0.0473 (7)
C20.7088 (3)0.2040 (2)0.24956 (13)0.0438 (7)
C30.7649 (3)0.2362 (2)0.30740 (14)0.0534 (8)
H30.85270.23450.31880.064*
C40.5734 (4)0.2687 (2)0.32989 (16)0.0594 (9)
H40.52440.29300.35640.071*
C50.5125 (3)0.2329 (2)0.27347 (14)0.0496 (7)
C60.3719 (3)0.2181 (2)0.25151 (18)0.0577 (8)
C70.3595 (4)0.0066 (3)0.07472 (19)0.0750 (11)
H70.36170.03960.11100.090*
C80.3065 (4)0.0447 (3)0.0188 (2)0.0921 (14)
H80.27380.10270.01730.111*
C90.3022 (4)0.0034 (3)0.0349 (2)0.0946 (15)
H90.26840.02190.07330.114*
C100.3488 (4)0.0897 (3)0.03107 (17)0.0792 (12)
H100.34490.12400.06680.095*
C110.4016 (3)0.1253 (2)0.02637 (15)0.0570 (8)
C120.4508 (3)0.2175 (2)0.03524 (14)0.0534 (8)
C130.4574 (3)0.2769 (3)0.01248 (17)0.0683 (10)
H130.43130.25880.05350.082*
C140.5023 (4)0.3625 (3)0.00065 (19)0.0726 (11)
H140.50830.40250.03130.087*
C150.5384 (4)0.3881 (3)0.06166 (19)0.0695 (10)
H150.56750.44610.07180.083*
C160.5307 (3)0.3264 (2)0.10734 (17)0.0586 (8)
H160.55600.34370.14860.070*
C171.1696 (3)0.5046 (2)0.19481 (14)0.0476 (7)
C181.0976 (3)0.4675 (2)0.24250 (13)0.0453 (7)
C191.1455 (3)0.4261 (2)0.29852 (15)0.0552 (8)
H191.23190.41460.30890.066*
C200.9481 (3)0.4179 (2)0.32100 (15)0.0548 (8)
H200.89470.40320.34820.066*
C210.8961 (3)0.4554 (2)0.26393 (14)0.0461 (7)
C220.7577 (3)0.4730 (2)0.23687 (16)0.0504 (7)
C230.8701 (3)0.3514 (2)0.10518 (15)0.0541 (8)
H230.88930.33650.14710.065*
C240.8451 (3)0.2828 (2)0.06233 (16)0.0604 (9)
H240.84680.22300.07480.072*
C250.8175 (3)0.3058 (2)0.00035 (15)0.0626 (9)
H250.80080.26110.02980.075*
C260.8147 (3)0.3947 (2)0.01701 (15)0.0574 (8)
H260.79630.41060.05880.069*
C270.8394 (3)0.4604 (2)0.02840 (14)0.0468 (7)
C280.8390 (3)0.5577 (2)0.01516 (13)0.0469 (7)
C290.8194 (3)0.5928 (3)0.04470 (15)0.0605 (9)
H290.79970.55480.07880.073*
C300.8294 (3)0.6840 (3)0.05311 (18)0.0685 (10)
H300.81590.70840.09290.082*
C310.8596 (3)0.7385 (3)0.00193 (18)0.0658 (10)
H310.87120.79990.00660.079*
C320.8723 (3)0.7013 (2)0.05624 (17)0.0585 (8)
H320.88820.73910.09070.070*
O110.4752 (3)0.56707 (19)0.13832 (11)0.0797 (8)
H11A0.41920.54450.15630.096*
H11B0.55140.55040.15140.096*
O120.0915 (3)0.1333 (3)0.13827 (16)0.1178 (12)
H12A0.15990.10440.15050.141*
H12B0.06220.11140.10260.141*
O130.0028 (10)0.0642 (8)0.0279 (6)0.235 (6)0.50
H13A0.03500.01140.03310.282*0.50
H13B0.07760.06270.02040.282*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0410 (2)0.0513 (2)0.0450 (2)0.00191 (17)0.00470 (16)0.00111 (18)
Ni20.0391 (2)0.0523 (2)0.0422 (2)0.00067 (17)0.00479 (16)0.00043 (17)
O10.0459 (12)0.0617 (14)0.0452 (12)0.0003 (10)0.0094 (10)0.0043 (10)
O20.0385 (13)0.0865 (18)0.0628 (14)0.0001 (11)0.0086 (10)0.0134 (13)
O30.0426 (13)0.0677 (15)0.0741 (15)0.0030 (11)0.0123 (11)0.0088 (13)
O40.0611 (16)0.0648 (16)0.107 (2)0.0064 (12)0.0438 (15)0.0133 (14)
O50.0431 (12)0.0632 (14)0.0592 (13)0.0063 (10)0.0061 (10)0.0097 (11)
O60.0427 (12)0.0635 (14)0.0451 (11)0.0007 (10)0.0092 (9)0.0010 (10)
O70.0386 (13)0.0897 (18)0.0612 (14)0.0015 (11)0.0083 (10)0.0070 (13)
O80.0385 (12)0.0664 (15)0.0613 (14)0.0016 (10)0.0080 (10)0.0019 (12)
O90.0531 (14)0.0663 (16)0.0934 (18)0.0054 (11)0.0350 (13)0.0159 (13)
O100.0423 (12)0.0601 (14)0.0552 (12)0.0041 (10)0.0068 (10)0.0087 (10)
N10.0453 (15)0.0449 (14)0.0445 (13)0.0043 (11)0.0122 (11)0.0010 (11)
N20.074 (2)0.0609 (18)0.0449 (15)0.0132 (15)0.0083 (14)0.0022 (13)
N30.0522 (16)0.0561 (17)0.0530 (16)0.0020 (13)0.0004 (13)0.0071 (13)
N40.0491 (16)0.0555 (17)0.0501 (15)0.0030 (12)0.0071 (12)0.0026 (12)
N50.0416 (14)0.0484 (14)0.0424 (13)0.0000 (11)0.0076 (11)0.0035 (11)
N60.065 (2)0.0651 (19)0.0488 (16)0.0026 (14)0.0050 (14)0.0079 (14)
N70.0460 (14)0.0533 (16)0.0387 (13)0.0002 (11)0.0072 (11)0.0014 (11)
N80.0426 (14)0.0539 (16)0.0496 (15)0.0022 (11)0.0075 (12)0.0024 (12)
C10.0461 (18)0.0491 (18)0.0470 (17)0.0026 (14)0.0095 (14)0.0101 (14)
C20.0421 (17)0.0447 (17)0.0431 (16)0.0061 (13)0.0046 (13)0.0048 (13)
C30.057 (2)0.0506 (19)0.0494 (18)0.0080 (15)0.0019 (15)0.0025 (15)
C40.075 (3)0.056 (2)0.0527 (19)0.0087 (17)0.0256 (18)0.0061 (16)
C50.054 (2)0.0450 (17)0.0525 (18)0.0047 (14)0.0179 (15)0.0016 (14)
C60.053 (2)0.0485 (19)0.076 (2)0.0003 (15)0.0251 (18)0.0009 (17)
C70.076 (3)0.065 (2)0.076 (3)0.006 (2)0.006 (2)0.009 (2)
C80.100 (4)0.066 (3)0.096 (3)0.008 (2)0.017 (3)0.022 (3)
C90.104 (4)0.096 (4)0.072 (3)0.008 (3)0.015 (2)0.036 (3)
C100.089 (3)0.089 (3)0.054 (2)0.007 (2)0.001 (2)0.013 (2)
C110.0487 (19)0.071 (2)0.0497 (18)0.0073 (16)0.0052 (15)0.0071 (17)
C120.0469 (18)0.067 (2)0.0462 (17)0.0096 (15)0.0087 (14)0.0018 (16)
C130.066 (2)0.087 (3)0.053 (2)0.014 (2)0.0145 (18)0.0071 (19)
C140.071 (3)0.075 (3)0.076 (3)0.011 (2)0.024 (2)0.025 (2)
C150.072 (3)0.056 (2)0.084 (3)0.0040 (18)0.021 (2)0.011 (2)
C160.059 (2)0.052 (2)0.062 (2)0.0026 (16)0.0076 (17)0.0027 (17)
C170.0385 (17)0.0571 (19)0.0473 (17)0.0020 (14)0.0083 (13)0.0120 (15)
C180.0406 (17)0.0494 (18)0.0448 (16)0.0029 (13)0.0050 (13)0.0072 (13)
C190.0495 (19)0.060 (2)0.0525 (19)0.0075 (15)0.0003 (15)0.0005 (16)
C200.060 (2)0.057 (2)0.0487 (18)0.0043 (16)0.0140 (16)0.0001 (15)
C210.0472 (17)0.0454 (17)0.0465 (16)0.0006 (14)0.0109 (14)0.0052 (14)
C220.0450 (18)0.0493 (19)0.0585 (19)0.0033 (14)0.0144 (15)0.0025 (15)
C230.058 (2)0.057 (2)0.0465 (17)0.0006 (16)0.0093 (15)0.0054 (15)
C240.064 (2)0.055 (2)0.062 (2)0.0036 (16)0.0100 (17)0.0016 (17)
C250.076 (2)0.062 (2)0.0496 (19)0.0089 (18)0.0109 (17)0.0112 (16)
C260.059 (2)0.070 (2)0.0437 (17)0.0057 (17)0.0100 (15)0.0025 (16)
C270.0369 (16)0.0585 (19)0.0451 (16)0.0010 (13)0.0085 (13)0.0002 (14)
C280.0374 (16)0.061 (2)0.0433 (16)0.0036 (14)0.0095 (13)0.0022 (14)
C290.067 (2)0.071 (2)0.0465 (18)0.0098 (18)0.0168 (16)0.0062 (16)
C300.069 (2)0.076 (3)0.064 (2)0.014 (2)0.0234 (19)0.021 (2)
C310.061 (2)0.057 (2)0.080 (3)0.0065 (17)0.0164 (19)0.018 (2)
C320.052 (2)0.054 (2)0.067 (2)0.0039 (15)0.0062 (16)0.0003 (17)
O110.0726 (18)0.099 (2)0.0685 (16)0.0126 (15)0.0163 (13)0.0101 (15)
O120.087 (2)0.157 (3)0.106 (2)0.005 (2)0.0110 (19)0.023 (2)
O130.156 (9)0.262 (15)0.298 (16)0.084 (9)0.074 (10)0.068 (12)
Geometric parameters (Å, º) top
Ni1—N11.986 (2)C7—C81.373 (5)
Ni1—N32.047 (3)C7—H70.9300
Ni1—O52.059 (2)C8—C91.371 (6)
Ni1—N42.067 (3)C8—H80.9300
Ni1—O32.143 (2)C9—C101.374 (6)
Ni1—O12.184 (2)C9—H90.9300
Ni2—N51.986 (2)C10—C111.384 (5)
Ni2—N82.044 (2)C10—H100.9300
Ni2—O102.068 (2)C11—C121.470 (5)
Ni2—N72.072 (2)C12—C131.381 (5)
Ni2—O62.125 (2)C13—C141.373 (5)
Ni2—O82.175 (2)C13—H130.9300
O1—C11.253 (4)C14—C151.374 (5)
O2—C11.249 (4)C14—H140.9300
O3—C61.270 (4)C15—C161.372 (5)
O4—C61.238 (4)C15—H150.9300
O5—H5A0.8500C16—H160.9300
O5—H5B0.8460C17—C181.519 (4)
O6—C171.258 (4)C18—C191.383 (4)
O7—C171.237 (3)C19—H190.9300
O8—C221.261 (4)C20—C211.387 (4)
O9—C221.237 (4)C20—H200.9300
O10—H10A0.8543C21—C221.517 (4)
O10—H10B0.8555C23—C241.377 (4)
N1—C51.326 (4)C23—H230.9300
N1—C21.334 (4)C24—C251.378 (5)
N2—C41.324 (4)C24—H240.9300
N2—C31.332 (4)C25—C261.375 (5)
N3—C71.339 (4)C25—H250.9300
N3—C111.346 (4)C26—C271.384 (4)
N4—C161.332 (4)C26—H260.9300
N4—C121.353 (4)C27—C281.475 (4)
N5—C211.328 (4)C28—C291.391 (4)
N5—C181.331 (4)C29—C301.376 (5)
N6—C201.334 (4)C29—H290.9300
N6—C191.334 (4)C30—C311.372 (5)
N7—C231.337 (4)C30—H300.9300
N7—C271.354 (4)C31—C321.373 (5)
N8—C281.348 (4)C31—H310.9300
N8—C321.350 (4)C32—H320.9300
C1—C21.515 (4)O11—H11A0.8487
C2—C31.382 (4)O11—H11B0.8527
C3—H30.9300O12—H12A0.8501
C4—C51.390 (4)O12—H12B0.8505
C4—H40.9300O13—H13A0.8562
C5—C61.514 (5)O13—H13B0.8500
N1—Ni1—N3177.78 (11)C8—C7—H7119.1
N1—Ni1—O592.57 (9)C9—C8—C7119.6 (4)
N3—Ni1—O589.30 (10)C9—C8—H8120.2
N1—Ni1—N499.17 (10)C7—C8—H8120.2
N3—Ni1—N479.18 (11)C8—C9—C10118.8 (4)
O5—Ni1—N4164.84 (10)C8—C9—H9120.6
N1—Ni1—O377.15 (9)C10—C9—H9120.6
N3—Ni1—O3101.53 (10)C9—C10—C11119.6 (4)
O5—Ni1—O394.39 (9)C9—C10—H10120.2
N4—Ni1—O397.53 (10)C11—C10—H10120.2
N1—Ni1—O176.38 (9)N3—C11—C10120.9 (4)
N3—Ni1—O1104.94 (9)N3—C11—C12115.6 (3)
O5—Ni1—O186.31 (8)C10—C11—C12123.5 (3)
N4—Ni1—O187.17 (9)N4—C12—C13120.6 (3)
O3—Ni1—O1153.53 (8)N4—C12—C11115.0 (3)
N5—Ni2—N8170.60 (10)C13—C12—C11124.4 (3)
N5—Ni2—O1092.16 (9)C14—C13—C12120.0 (4)
N8—Ni2—O1090.64 (9)C14—C13—H13120.0
N5—Ni2—N798.30 (10)C12—C13—H13120.0
N8—Ni2—N779.60 (10)C13—C14—C15119.0 (4)
O10—Ni2—N7168.92 (9)C13—C14—H14120.5
N5—Ni2—O677.14 (9)C15—C14—H14120.5
N8—Ni2—O693.80 (9)C16—C15—C14118.7 (4)
O10—Ni2—O691.94 (8)C16—C15—H15120.6
N7—Ni2—O693.92 (9)C14—C15—H15120.6
N5—Ni2—O876.62 (9)N4—C16—C15122.9 (3)
N8—Ni2—O8112.40 (9)N4—C16—H16118.6
O10—Ni2—O889.23 (8)C15—C16—H16118.6
N7—Ni2—O889.66 (9)O7—C17—O6126.4 (3)
O6—Ni2—O8153.76 (8)O7—C17—C18118.6 (3)
C1—O1—Ni1114.87 (19)O6—C17—C18115.0 (3)
C6—O3—Ni1115.4 (2)N5—C18—C19119.0 (3)
Ni1—O5—H5A112.9N5—C18—C17112.6 (3)
Ni1—O5—H5B111.8C19—C18—C17128.4 (3)
H5A—O5—H5B117.0N6—C19—C18122.2 (3)
C17—O6—Ni2115.92 (19)N6—C19—H19118.9
C22—O8—Ni2114.71 (19)C18—C19—H19118.9
Ni2—O10—H10A110.5N6—C20—C21122.3 (3)
Ni2—O10—H10B113.6N6—C20—H20118.8
H10A—O10—H10B115.2C21—C20—H20118.8
C5—N1—C2120.7 (3)N5—C21—C20118.6 (3)
C5—N1—Ni1119.0 (2)N5—C21—C22113.1 (3)
C2—N1—Ni1119.7 (2)C20—C21—C22128.2 (3)
C4—N2—C3116.7 (3)O9—C22—O8127.6 (3)
C7—N3—C11119.2 (3)O9—C22—C21116.9 (3)
C7—N3—Ni1125.8 (3)O8—C22—C21115.4 (3)
C11—N3—Ni1115.0 (2)N7—C23—C24123.1 (3)
C16—N4—C12118.8 (3)N7—C23—H23118.4
C16—N4—Ni1126.5 (2)C24—C23—H23118.4
C12—N4—Ni1114.0 (2)C23—C24—C25117.8 (3)
C21—N5—C18120.8 (3)C23—C24—H24121.1
C21—N5—Ni2119.8 (2)C25—C24—H24121.1
C18—N5—Ni2119.2 (2)C26—C25—C24120.1 (3)
C20—N6—C19117.0 (3)C26—C25—H25120.0
C23—N7—C27118.8 (3)C24—C25—H25120.0
C23—N7—Ni2126.9 (2)C25—C26—C27119.2 (3)
C27—N7—Ni2114.3 (2)C25—C26—H26120.4
C28—N8—C32118.5 (3)C27—C26—H26120.4
C28—N8—Ni2115.2 (2)N7—C27—C26121.0 (3)
C32—N8—Ni2125.8 (2)N7—C27—C28115.1 (3)
O2—C1—O1126.4 (3)C26—C27—C28123.9 (3)
O2—C1—C2118.2 (3)N8—C28—C29121.1 (3)
O1—C1—C2115.4 (3)N8—C28—C27115.7 (3)
N1—C2—C3118.7 (3)C29—C28—C27123.2 (3)
N1—C2—C1113.1 (2)C30—C29—C28119.6 (3)
C3—C2—C1128.2 (3)C30—C29—H29120.2
N2—C3—C2122.6 (3)C28—C29—H29120.2
N2—C3—H3118.7C31—C30—C29119.0 (3)
C2—C3—H3118.7C31—C30—H30120.5
N2—C4—C5122.8 (3)C29—C30—H30120.5
N2—C4—H4118.6C30—C31—C32119.2 (3)
C5—C4—H4118.6C30—C31—H31120.4
N1—C5—C4118.4 (3)C32—C31—H31120.4
N1—C5—C6113.8 (3)N8—C32—C31122.4 (3)
C4—C5—C6127.6 (3)N8—C32—H32118.8
O4—C6—O3127.7 (3)C31—C32—H32118.8
O4—C6—C5117.7 (3)H11A—O11—H11B116.8
O3—C6—C5114.6 (3)H12A—O12—H12B104.0
N3—C7—C8121.8 (4)H13A—O13—H13B111.9
N3—C7—H7119.1
N1—Ni1—O1—C10.7 (2)C2—N1—C5—C6174.5 (3)
N3—Ni1—O1—C1178.8 (2)Ni1—N1—C5—C63.3 (3)
O5—Ni1—O1—C192.9 (2)N2—C4—C5—N13.4 (5)
N4—Ni1—O1—C1100.8 (2)N2—C4—C5—C6172.2 (3)
O3—Ni1—O1—C10.4 (3)Ni1—O3—C6—O4177.4 (3)
N1—Ni1—O3—C62.6 (2)Ni1—O3—C6—C51.7 (4)
N3—Ni1—O3—C6179.2 (2)N1—C5—C6—O4180.0 (3)
O5—Ni1—O3—C689.0 (2)C4—C5—C6—O44.2 (5)
N4—Ni1—O3—C6100.3 (2)N1—C5—C6—O30.9 (4)
O1—Ni1—O3—C61.5 (4)C4—C5—C6—O3174.9 (3)
N5—Ni2—O6—C171.5 (2)C11—N3—C7—C81.9 (6)
N8—Ni2—O6—C17175.9 (2)Ni1—N3—C7—C8176.1 (3)
O10—Ni2—O6—C1793.3 (2)N3—C7—C8—C90.3 (7)
N7—Ni2—O6—C1796.1 (2)C7—C8—C9—C101.4 (7)
O8—Ni2—O6—C171.1 (3)C8—C9—C10—C111.6 (7)
N5—Ni2—O8—C220.8 (2)C7—N3—C11—C101.8 (5)
N8—Ni2—O8—C22178.0 (2)Ni1—N3—C11—C10176.5 (3)
O10—Ni2—O8—C2291.6 (2)C7—N3—C11—C12176.8 (3)
N7—Ni2—O8—C2299.4 (2)Ni1—N3—C11—C125.0 (4)
O6—Ni2—O8—C221.2 (3)C9—C10—C11—N30.0 (6)
O5—Ni1—N1—C590.7 (2)C9—C10—C11—C12178.4 (4)
N4—Ni1—N1—C598.9 (2)C16—N4—C12—C130.8 (5)
O3—Ni1—N1—C53.2 (2)Ni1—N4—C12—C13170.4 (2)
O1—Ni1—N1—C5176.3 (2)C16—N4—C12—C11177.9 (3)
O5—Ni1—N1—C280.6 (2)Ni1—N4—C12—C1110.9 (3)
N4—Ni1—N1—C289.8 (2)N3—C11—C12—N44.1 (4)
O3—Ni1—N1—C2174.5 (2)C10—C11—C12—N4174.4 (3)
O1—Ni1—N1—C25.0 (2)N3—C11—C12—C13177.3 (3)
O5—Ni1—N3—C716.3 (3)C10—C11—C12—C134.2 (5)
N4—Ni1—N3—C7173.6 (3)N4—C12—C13—C140.0 (5)
O3—Ni1—N3—C778.0 (3)C11—C12—C13—C14178.5 (3)
O1—Ni1—N3—C7102.3 (3)C12—C13—C14—C151.1 (6)
O5—Ni1—N3—C11161.8 (2)C13—C14—C15—C161.4 (6)
N4—Ni1—N3—C118.3 (2)C12—N4—C16—C150.4 (5)
O3—Ni1—N3—C11103.9 (2)Ni1—N4—C16—C15169.5 (3)
O1—Ni1—N3—C1175.8 (2)C14—C15—C16—N40.7 (6)
N1—Ni1—N4—C160.7 (3)Ni2—O6—C17—O7176.5 (3)
N3—Ni1—N4—C16179.2 (3)Ni2—O6—C17—C183.2 (3)
O5—Ni1—N4—C16139.6 (3)C21—N5—C18—C190.9 (4)
O3—Ni1—N4—C1678.8 (3)Ni2—N5—C18—C19175.9 (2)
O1—Ni1—N4—C1675.0 (3)C21—N5—C18—C17177.4 (3)
N1—Ni1—N4—C12171.0 (2)Ni2—N5—C18—C172.5 (3)
N3—Ni1—N4—C1210.5 (2)O7—C17—C18—N5176.0 (3)
O5—Ni1—N4—C1230.7 (5)O6—C17—C18—N53.7 (4)
O3—Ni1—N4—C12110.8 (2)O7—C17—C18—C195.8 (5)
O1—Ni1—N4—C1295.3 (2)O6—C17—C18—C19174.5 (3)
O10—Ni2—N5—C2184.3 (2)C20—N6—C19—C181.4 (5)
N7—Ni2—N5—C2192.1 (2)N5—C18—C19—N62.8 (5)
O6—Ni2—N5—C21175.8 (2)C17—C18—C19—N6175.3 (3)
O8—Ni2—N5—C214.4 (2)C19—N6—C20—C211.7 (5)
O10—Ni2—N5—C1890.8 (2)C18—N5—C21—C202.1 (4)
N7—Ni2—N5—C1892.9 (2)Ni2—N5—C21—C20172.9 (2)
O6—Ni2—N5—C180.7 (2)C18—N5—C21—C22178.2 (3)
O8—Ni2—N5—C18179.5 (2)Ni2—N5—C21—C226.9 (3)
N5—Ni2—N7—C2310.9 (3)N6—C20—C21—N53.5 (5)
N8—Ni2—N7—C23178.4 (3)N6—C20—C21—C22176.8 (3)
O10—Ni2—N7—C23149.8 (4)Ni2—O8—C22—O9175.5 (3)
O6—Ni2—N7—C2388.4 (3)Ni2—O8—C22—C212.4 (3)
O8—Ni2—N7—C2365.5 (3)N5—C21—C22—O9172.2 (3)
N5—Ni2—N7—C27169.2 (2)C20—C21—C22—O98.1 (5)
N8—Ni2—N7—C271.6 (2)N5—C21—C22—O85.9 (4)
O10—Ni2—N7—C2730.2 (6)C20—C21—C22—O8173.9 (3)
O6—Ni2—N7—C2791.6 (2)C27—N7—C23—C240.5 (5)
O8—Ni2—N7—C27114.4 (2)Ni2—N7—C23—C24179.6 (2)
O10—Ni2—N8—C28177.6 (2)N7—C23—C24—C250.3 (5)
N7—Ni2—N8—C282.9 (2)C23—C24—C25—C260.5 (5)
O6—Ni2—N8—C2890.4 (2)C24—C25—C26—C270.2 (5)
O8—Ni2—N8—C2888.2 (2)C23—N7—C27—C261.1 (4)
O10—Ni2—N8—C3211.3 (3)Ni2—N7—C27—C26178.9 (2)
N7—Ni2—N8—C32174.0 (3)C23—N7—C27—C28179.8 (3)
O6—Ni2—N8—C3280.7 (3)Ni2—N7—C27—C280.1 (3)
O8—Ni2—N8—C32100.7 (3)C25—C26—C27—N71.0 (5)
Ni1—O1—C1—O2176.4 (2)C25—C26—C27—C28179.9 (3)
Ni1—O1—C1—C23.1 (3)C32—N8—C28—C292.8 (4)
C5—N1—C2—C31.3 (4)Ni2—N8—C28—C29174.6 (2)
Ni1—N1—C2—C3169.8 (2)C32—N8—C28—C27175.5 (3)
C5—N1—C2—C1179.1 (3)Ni2—N8—C28—C273.6 (3)
Ni1—N1—C2—C17.9 (3)N7—C27—C28—N82.3 (4)
O2—C1—C2—N1172.5 (3)C26—C27—C28—N8178.7 (3)
O1—C1—C2—N17.0 (4)N7—C27—C28—C29175.9 (3)
O2—C1—C2—C310.0 (5)C26—C27—C28—C293.1 (5)
O1—C1—C2—C3170.5 (3)N8—C28—C29—C302.7 (5)
C4—N2—C3—C21.5 (5)C27—C28—C29—C30175.4 (3)
N1—C2—C3—N23.1 (5)C28—C29—C30—C310.5 (5)
C1—C2—C3—N2179.5 (3)C29—C30—C31—C323.4 (5)
C3—N2—C4—C51.7 (5)C28—N8—C32—C310.3 (5)
C2—N1—C5—C41.7 (4)Ni2—N8—C32—C31170.5 (3)
Ni1—N1—C5—C4172.9 (2)C30—C31—C32—N83.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C32—H32···O100.932.483.033 (4)118
C31—H31···O13i0.932.533.384 (11)153
C29—H29···O6ii0.932.533.318 (4)143
C26—H26···O6ii0.932.543.329 (4)143
C14—H14···O11i0.932.433.275 (5)151
C9—H9···O1iii0.932.473.281 (5)146
C7—H7···O50.932.503.000 (4)114
O13—H13A···O13iv0.861.732.26 (2)118
O12—H12B···O130.851.792.636 (12)179
O12—H12A···O30.852.332.856 (4)121
O11—H11B···O80.852.062.912 (3)177
O11—H11A···O7v0.852.072.921 (4)178
O10—H10B···O4vi0.861.852.699 (3)170
O10—H10A···O2vii0.851.842.694 (3)178
O5—H5B···O7viii0.851.852.686 (3)169
O5—H5A···O9ix0.851.782.621 (3)173
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z; (iii) x+1, y, z; (iv) x, y, z; (v) x1, y, z; (vi) x+1, y+1/2, z+1/2; (vii) x+2, y+1/2, z+1/2; (viii) x+2, y1/2, z+1/2; (ix) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C6H2N2O4)(C10H8N2)(H2O)]·1.25H2O
Mr421.5
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)10.7616 (12), 14.8677 (17), 21.933 (2)
β (°) 101.015 (2)
V3)3444.6 (7)
Z8
Radiation typeMo Kα
µ (mm1)1.17
Crystal size (mm)0.22 × 0.1 × 0.08
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.796, 0.871
No. of measured, independent and
observed [I > 2σ(I)] reflections
19122, 7030, 4740
Rint0.035
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.102, 1.04
No. of reflections7030
No. of parameters496
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.26

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ni1—N11.986 (2)Ni2—N51.986 (2)
Ni1—N32.047 (3)Ni2—N82.044 (2)
Ni1—O52.059 (2)Ni2—O102.068 (2)
Ni1—N42.067 (3)Ni2—N72.072 (2)
Ni1—O32.143 (2)Ni2—O62.125 (2)
Ni1—O12.184 (2)Ni2—O82.175 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C32—H32···O100.932.483.033 (4)117.9
C31—H31···O13i0.932.533.384 (11)153.4
C29—H29···O6ii0.932.533.318 (4)142.9
C26—H26···O6ii0.932.543.329 (4)143.1
C14—H14···O11i0.932.433.275 (5)150.9
C9—H9···O1iii0.932.473.281 (5)146.3
C7—H7···O50.932.503.000 (4)114.3
O13—H13A···O13iv0.861.732.26 (2)117.5
O12—H12B···O130.851.792.636 (12)179.1
O12—H12A···O30.852.332.856 (4)120.8
O11—H11B···O80.852.062.912 (3)177.1
O11—H11A···O7v0.852.072.921 (4)178.0
O10—H10B···O4vi0.861.852.699 (3)170.4
O10—H10A···O2vii0.851.842.694 (3)177.7
O5—H5B···O7viii0.851.852.686 (3)168.9
O5—H5A···O9ix0.851.782.621 (3)172.5
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z; (iii) x+1, y, z; (iv) x, y, z; (v) x1, y, z; (vi) x+1, y+1/2, z+1/2; (vii) x+2, y+1/2, z+1/2; (viii) x+2, y1/2, z+1/2; (ix) x+1, y1/2, z+1/2.
 

Acknowledgements

We thank Tianjin Polytechnic University for financial support.

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, F. Q., Mu, W. H., Zheng, X. J., Li, L. C., Fang, D. C. & Jin, L. P. (2008). Inorg. Chem. 47, 5225–5233.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWang, F. Q., Weng, D. F., Zheng, X. J., Zhang, J. J., Ma, H. & Jin, L. P. (2007). Inorg. Chim. Acta, 360, 2029–2038.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, F. Q., Zheng, X. J. & Jin, L. P. (2007). J. Mol. Struc. 832, 48–54.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, F. Q., Zheng, X. J., Wan, Y. H., Sun, C. Y., Wang, Z. M., Wang, K. Z. & Jin, L. P. (2007). Inorg. Chem. 46, 2956–2958.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWang, F. Q., Zheng, X. J., Wan, Y. H., Wang, K. Z. & Jin, L. P. (2006). J. Mol. Struc. 798, 155–161.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, F. Q., Zheng, X. J., Wan, Y. H., Wang, K. Z. & Jin, L. P. (2008). Polyhedron, 27, 717–726.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 11| November 2008| Pages m1480-m1481
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds