metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido[2,2′-(oxydi­methyl­ene)di­pyridine]copper(II)

aChemistry and Chemical Engineering College, Shanxi Datong University, Datong 037009, People's Republic of China
*Correspondence e-mail: jinminli1957@yahoo.com.cn

(Received 11 October 2008; accepted 23 October 2008; online 31 October 2008)

In the title complex, [CuCl2(C12H12N2O)], the CuII ion is coordinated in a distorted trigonal-bipyramidal environment. In the crystal structure, there is a weak ππ stacking inter­action between symmetry-related pyridine rings, with a centroid-to-centroid distance of 3.8134 (17) Å. In addition, there is relatively close contact between the pyridine ring π-system and a symmetry-related CuII ion (Cu⋯centroid distance of 3.868 Å).

Related literature

For the isotypic Cd and Zn analogs of the title compound, see: Li (2007[Li, J. M. (2007). Acta Cryst. E63, m2241.]) and Li (2008[Li, J. M. (2008). Acta Cryst. E64, m1468.]), respectively.

[Scheme 1]

Experimental

Crystal data
  • [CuCl2(C12H12N2O)]

  • Mr = 334.68

  • Monoclinic, P 21 /c

  • a = 8.1599 (10) Å

  • b = 12.5534 (15) Å

  • c = 15.3846 (14) Å

  • β = 123.574 (9)°

  • V = 1313.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.06 mm−1

  • T = 298 (2) K

  • 0.46 × 0.40 × 0.34 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.451, Tmax = 0.541 (expected range = 0.414–0.497)

  • 5381 measured reflections

  • 2323 independent reflections

  • 2152 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.066

  • S = 1.09

  • 2323 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cl1—Cu1 2.4109 (6)
Cl2—Cu1 2.2538 (6)
Cu1—N2 2.0021 (17)
Cu1—N1 2.0092 (18)
Cu1—O1 2.0813 (14)
N2—Cu1—N1 155.06 (7)
N2—Cu1—O1 78.29 (6)
N1—Cu1—O1 77.99 (7)
N2—Cu1—Cl2 98.17 (5)
N1—Cu1—Cl2 97.71 (6)
O1—Cu1—Cl2 147.65 (4)
N2—Cu1—Cl1 93.36 (5)
N1—Cu1—Cl1 96.97 (6)
O1—Cu1—Cl1 96.81 (4)
Cl2—Cu1—Cl1 115.53 (2)

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

2,2'-[oxydi(methylene)]dipyridine is an useful tridentate terminal ligand and the CdII complex with it as ligand has already been published (Li, 2007). Herein the crystal structure of the title complex, (I), is reported.

The molecular structure of (I) is shown in Fig. 1. The atom Cu1 is coordinated in a distorted trigonal-bipyramidal environment (Table 1). In the crystal structure, there is a weak π-π stacking interaction between symmetry related pyridyl rings, with the relevant distances being Cg1···Cg1i = 3.8134 (17) Å and a perpendicular distance of 3.556 Å [symmetry code (i) -x, 2 - y, -z; Cg1 is the centroid of the N1/C2—C6 ring]. In addition, there is close contact between a π-ring system and symmetry related Cu atom, with the relative distances being: Cg2···Cu1ii = 3.868 Å, Cg2perp···Cu1ii = 3.635 Å [symmetry code: (ii) -x, 1 - y, -z; Cg2 is the centroid of the N2/C8—C12 ring; Cg2perp···Cu1ii is the perpendicular distance from Cu1ii to N2/C8—C12 ring]. The title compound is isostructural with the Cadmium analog (Li, 2007) although the Cd analog was solved and refined in the non-standard P21/n setting of space group P21/c.

Related literature top

For the isostructural Cd and Cu analogs of the title compound, see: Li (2007, 2008).

Experimental top

6 ml me thanol solution of 2,2'-[oxydi(methylene)]dipyridine (0.0418 g, 0.209 mmol) was added into 8 ml H2O solution containing CuCl2.2H2O (0.0362 g, 0.212 mmol), and the mixed soulution was stirred for a few minutes. The green single crystals were obtained after the solution had been allowed to stand at room temperature for two weeks.

Refinement top

All H atoms were placed in calculated positions and refined as riding, C—H = 0.93–0.97 Å, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of complex (I), showing the the atom numbering scheme with thermal ellipsoids drawn at the 30% probability level
Dichlorido[2,2'-(oxydimethylene)dipyridine]copper(II) top
Crystal data top
[CuCl2(C12H12N2O)]F(000) = 676
Mr = 334.68Dx = 1.693 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4907 reflections
a = 8.1599 (10) Åθ = 2.3–28.3°
b = 12.5534 (15) ŵ = 2.06 mm1
c = 15.3846 (14) ÅT = 298 K
β = 123.574 (9)°Block, green
V = 1313.0 (3) Å30.46 × 0.40 × 0.34 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
2323 independent reflections
Radiation source: fine-focus sealed tube2152 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ϕ and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.451, Tmax = 0.541k = 1114
5381 measured reflectionsl = 1813
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0361P)2 + 0.5176P]
where P = (Fo2 + 2Fc2)/3
2323 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
[CuCl2(C12H12N2O)]V = 1313.0 (3) Å3
Mr = 334.68Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.1599 (10) ŵ = 2.06 mm1
b = 12.5534 (15) ÅT = 298 K
c = 15.3846 (14) Å0.46 × 0.40 × 0.34 mm
β = 123.574 (9)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2323 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2152 reflections with I > 2σ(I)
Tmin = 0.451, Tmax = 0.541Rint = 0.016
5381 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.066H-atom parameters constrained
S = 1.09Δρmax = 0.33 e Å3
2323 reflectionsΔρmin = 0.27 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0360 (3)0.76246 (18)0.10853 (17)0.0407 (5)
H1A0.14990.75540.17950.049*
H1B0.06870.79670.11030.049*
C20.0341 (4)0.8555 (2)0.1167 (2)0.0481 (6)
H20.02970.83720.18680.058*
C30.1666 (4)0.9378 (2)0.0794 (2)0.0576 (7)
H30.19090.97500.12350.069*
C40.2628 (4)0.9644 (2)0.0242 (2)0.0604 (7)
H40.35321.02000.05160.072*
C50.2232 (4)0.9072 (2)0.0868 (2)0.0507 (6)
H50.28820.92310.15740.061*
C60.0864 (3)0.82611 (17)0.04415 (17)0.0357 (5)
C70.1210 (3)0.59462 (18)0.09417 (16)0.0369 (5)
H7A0.20930.63680.10390.044*
H7B0.02430.56140.16010.044*
C80.2343 (3)0.51119 (17)0.01249 (15)0.0320 (4)
C90.3812 (3)0.46002 (18)0.15917 (17)0.0368 (5)
H90.40900.47350.22550.044*
C100.4063 (3)0.34591 (18)0.0442 (2)0.0427 (5)
H100.45070.28360.03110.051*
C110.2964 (3)0.41864 (18)0.03445 (18)0.0405 (5)
H110.26450.40550.10160.049*
C120.4491 (3)0.36715 (19)0.14218 (19)0.0420 (5)
H120.52310.31930.19650.050*
Cl10.46540 (8)0.76638 (5)0.12142 (4)0.04202 (15)
Cl20.20944 (9)0.63873 (5)0.25169 (4)0.04202 (15)
Cu10.18810 (4)0.673873 (19)0.102078 (18)0.03121 (10)
N10.0076 (3)0.80023 (14)0.05709 (14)0.0359 (4)
N20.2764 (2)0.53190 (13)0.08332 (13)0.0310 (4)
O10.0261 (2)0.66050 (11)0.05971 (11)0.0324 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0432 (12)0.0411 (13)0.0352 (11)0.0067 (10)0.0201 (10)0.0108 (10)
C20.0580 (15)0.0417 (13)0.0490 (14)0.0070 (12)0.0323 (12)0.0021 (11)
C30.0632 (17)0.0426 (14)0.0748 (19)0.0087 (13)0.0430 (16)0.0074 (13)
C40.0536 (15)0.0377 (14)0.086 (2)0.0142 (12)0.0366 (15)0.0069 (14)
C50.0452 (13)0.0427 (14)0.0552 (15)0.0097 (11)0.0221 (12)0.0123 (12)
C60.0320 (11)0.0316 (11)0.0395 (12)0.0005 (8)0.0173 (10)0.0059 (9)
C70.0425 (12)0.0396 (12)0.0326 (11)0.0007 (10)0.0232 (10)0.0024 (9)
C80.0300 (10)0.0321 (11)0.0352 (10)0.0050 (8)0.0189 (9)0.0044 (9)
C90.0341 (11)0.0374 (12)0.0345 (11)0.0015 (9)0.0162 (9)0.0023 (9)
C100.0391 (12)0.0308 (11)0.0646 (16)0.0000 (9)0.0327 (12)0.0045 (11)
C110.0420 (12)0.0394 (13)0.0470 (13)0.0066 (10)0.0290 (11)0.0112 (10)
C120.0355 (11)0.0354 (12)0.0523 (14)0.0047 (10)0.0225 (11)0.0072 (10)
Cl10.0417 (3)0.0411 (3)0.0482 (3)0.0068 (2)0.0279 (3)0.0045 (2)
Cl20.0550 (3)0.0420 (3)0.0353 (3)0.0009 (3)0.0289 (3)0.0015 (2)
Cu10.03650 (16)0.02880 (16)0.02902 (15)0.00285 (10)0.01855 (12)0.00079 (9)
N10.0363 (10)0.0307 (9)0.0402 (10)0.0028 (8)0.0209 (8)0.0014 (8)
N20.0314 (8)0.0288 (9)0.0325 (9)0.0017 (7)0.0175 (7)0.0023 (7)
O10.0341 (8)0.0336 (8)0.0286 (7)0.0023 (6)0.0168 (6)0.0025 (6)
Geometric parameters (Å, º) top
C1—O11.428 (3)C7—H7B0.9700
C1—C61.496 (3)C8—N21.341 (3)
C1—H1A0.9700C8—C111.382 (3)
C1—H1B0.9700C9—N21.343 (3)
C2—N11.336 (3)C9—C121.376 (3)
C2—C31.372 (4)C9—H90.9300
C2—H20.9300C10—C121.372 (4)
C3—C41.373 (4)C10—C111.379 (3)
C3—H30.9300C10—H100.9300
C4—C51.375 (4)C11—H110.9300
C4—H40.9300C12—H120.9300
C5—C61.379 (3)Cl1—Cu12.4109 (6)
C5—H50.9300Cl2—Cu12.2538 (6)
C6—N11.341 (3)Cu1—N22.0021 (17)
C7—O11.421 (3)Cu1—N12.0092 (18)
C7—C81.499 (3)Cu1—O12.0813 (14)
C7—H7A0.9700
O1—C1—C6106.14 (17)N2—C9—H9118.9
O1—C1—H1A110.5C12—C9—H9118.9
C6—C1—H1A110.5C12—C10—C11118.8 (2)
O1—C1—H1B110.5C12—C10—H10120.6
C6—C1—H1B110.5C11—C10—H10120.6
H1A—C1—H1B108.7C10—C11—C8119.4 (2)
N1—C2—C3123.0 (2)C10—C11—H11120.3
N1—C2—H2118.5C8—C11—H11120.3
C3—C2—H2118.5C10—C12—C9119.3 (2)
C2—C3—C4118.8 (3)C10—C12—H12120.4
C2—C3—H3120.6C9—C12—H12120.4
C4—C3—H3120.6N2—Cu1—N1155.06 (7)
C3—C4—C5118.8 (2)N2—Cu1—O178.29 (6)
C3—C4—H4120.6N1—Cu1—O177.99 (7)
C5—C4—H4120.6N2—Cu1—Cl298.17 (5)
C4—C5—C6119.6 (2)N1—Cu1—Cl297.71 (6)
C4—C5—H5120.2O1—Cu1—Cl2147.65 (4)
C6—C5—H5120.2N2—Cu1—Cl193.36 (5)
N1—C6—C5121.6 (2)N1—Cu1—Cl196.97 (6)
N1—C6—C1116.70 (18)O1—Cu1—Cl196.81 (4)
C5—C6—C1121.7 (2)Cl2—Cu1—Cl1115.53 (2)
O1—C7—C8107.73 (16)C2—N1—C6118.2 (2)
O1—C7—H7A110.2C2—N1—Cu1126.14 (16)
C8—C7—H7A110.2C6—N1—Cu1115.53 (15)
O1—C7—H7B110.2C8—N2—C9118.52 (18)
C8—C7—H7B110.2C8—N2—Cu1115.92 (14)
H7A—C7—H7B108.5C9—N2—Cu1125.45 (14)
N2—C8—C11121.7 (2)C7—O1—C1115.70 (16)
N2—C8—C7116.77 (18)C7—O1—Cu1112.11 (12)
C11—C8—C7121.47 (19)C1—O1—Cu1111.27 (12)
N2—C9—C12122.3 (2)
N1—C2—C3—C40.7 (4)Cl1—Cu1—N1—C681.62 (15)
C2—C3—C4—C50.2 (4)C11—C8—N2—C90.2 (3)
C3—C4—C5—C61.0 (4)C7—C8—N2—C9178.63 (18)
C4—C5—C6—N11.0 (4)C11—C8—N2—Cu1176.38 (15)
C4—C5—C6—C1179.2 (2)C7—C8—N2—Cu12.1 (2)
O1—C1—C6—N127.4 (3)C12—C9—N2—C81.0 (3)
O1—C1—C6—C5152.4 (2)C12—C9—N2—Cu1175.19 (16)
O1—C7—C8—N220.0 (2)N1—Cu1—N2—C833.8 (2)
O1—C7—C8—C11161.56 (18)O1—Cu1—N2—C815.52 (14)
C12—C10—C11—C80.7 (3)Cl2—Cu1—N2—C8162.86 (13)
N2—C8—C11—C100.7 (3)Cl1—Cu1—N2—C880.74 (14)
C7—C8—C11—C10177.7 (2)N1—Cu1—N2—C9149.93 (18)
C11—C10—C12—C90.1 (3)O1—Cu1—N2—C9168.19 (18)
N2—C9—C12—C101.0 (3)Cl2—Cu1—N2—C920.85 (17)
C3—C2—N1—C60.7 (4)Cl1—Cu1—N2—C995.55 (17)
C3—C2—N1—Cu1176.6 (2)C8—C7—O1—C1160.80 (17)
C5—C6—N1—C20.1 (3)C8—C7—O1—Cu131.76 (19)
C1—C6—N1—C2180.0 (2)C6—C1—O1—C7166.95 (17)
C5—C6—N1—Cu1176.21 (18)C6—C1—O1—Cu137.49 (19)
C1—C6—N1—Cu13.6 (2)N2—Cu1—O1—C726.88 (13)
N2—Cu1—N1—C2143.8 (2)N1—Cu1—O1—C7160.88 (14)
O1—Cu1—N1—C2162.1 (2)Cl2—Cu1—O1—C7113.67 (13)
Cl2—Cu1—N1—C214.7 (2)Cl1—Cu1—O1—C765.17 (13)
Cl1—Cu1—N1—C2102.4 (2)N2—Cu1—O1—C1158.20 (14)
N2—Cu1—N1—C632.2 (3)N1—Cu1—O1—C129.56 (14)
O1—Cu1—N1—C613.90 (15)Cl2—Cu1—O1—C1115.01 (13)
Cl2—Cu1—N1—C6161.33 (15)Cl1—Cu1—O1—C166.16 (13)

Experimental details

Crystal data
Chemical formula[CuCl2(C12H12N2O)]
Mr334.68
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)8.1599 (10), 12.5534 (15), 15.3846 (14)
β (°) 123.574 (9)
V3)1313.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.06
Crystal size (mm)0.46 × 0.40 × 0.34
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.451, 0.541
No. of measured, independent and
observed [I > 2σ(I)] reflections
5381, 2323, 2152
Rint0.016
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.066, 1.09
No. of reflections2323
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.27

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cl1—Cu12.4109 (6)Cu1—N12.0092 (18)
Cl2—Cu12.2538 (6)Cu1—O12.0813 (14)
Cu1—N22.0021 (17)
N2—Cu1—N1155.06 (7)O1—Cu1—Cl2147.65 (4)
N2—Cu1—O178.29 (6)N2—Cu1—Cl193.36 (5)
N1—Cu1—O177.99 (7)N1—Cu1—Cl196.97 (6)
N2—Cu1—Cl298.17 (5)O1—Cu1—Cl196.81 (4)
N1—Cu1—Cl297.71 (6)Cl2—Cu1—Cl1115.53 (2)
 

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, J. M. (2007). Acta Cryst. E63, m2241.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, J. M. (2008). Acta Cryst. E64, m1468.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds