organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Cyclo­hexyl-2-fluoro­benzamide

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: aamersaeed@yahoo.com

(Received 11 October 2008; accepted 18 October 2008; online 25 October 2008)

In the title compound, C13H16FNO, the fluoro­benzene ring plane and the plane through the amide unit are inclined at a dihedral angle of 29.92 (7)°. The cyclo­hexane ring adopts a chair conformation. In the crystal structure, N—H⋯O hydrogen bonds, augmented by weak C—H⋯O inter­actions, link the mol­ecules into transverse chains along a. These chains are linked into zigzag columns down a by C—H⋯F hydrogen bonds and C—H⋯π inter­actions.

Related literature

For background see: Saeed et al. (2008[Saeed, A., Khera, R. A., Abbas, N., Simpson, J. & Stanley, R. G. (2008). Acta Cryst. E64, o1976.]). For related structures, see: Kobal et al. (1990[Kobal, E., Golic, L. & Japelj, M. (1990). Vestn. Slov. Kem. Drus. 37, 43-53.]); Chopra & Guru Row (2008[Chopra, D. & Guru Row, T. N. (2008). CrystEngComm, 10, 54-67.]); Donnelly et al. (2008[Donnelly, K., Gallagher, J. F. & Lough, A. J. (2008). Acta Cryst. C64, o335-o340.]); Hou et al. (2004[Hou, Z.-K., Ao, C.-C., Song, J. & Chen, L.-G. (2004). Acta Cryst. E60, o1957-o1958.]); Saeed et al. (2008[Saeed, A., Khera, R. A., Abbas, N., Simpson, J. & Stanley, R. G. (2008). Acta Cryst. E64, o1976.]). For information on the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C13H16FNO

  • Mr = 221.27

  • Monoclinic, P 21

  • a = 5.1804 (6) Å

  • b = 6.5309 (8) Å

  • c = 16.6522 (19) Å

  • β = 91.336 (6)°

  • V = 563.24 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 91 (2) K

  • 0.39 × 0.16 × 0.08 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.822, Tmax = 0.993

  • 7905 measured reflections

  • 2117 independent reflections

  • 1884 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.114

  • S = 1.12

  • 2117 reflections

  • 148 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—HN1⋯O1i 0.87 (2) 2.20 (2) 3.0092 (18) 153.8 (19)
C9—H9B⋯O1i 0.99 2.67 3.446 (2) 136
C4—H4⋯F1ii 0.95 2.43 3.2326 (19) 142
C5—H5⋯Cg1iii 0.95 2.96 3.759 (2) 142
C9—H9ACg1iv 0.99 2.71 3.644 (2) 157
Symmetry codes: (i) x-1, y, z; (ii) [-x+1, y+{\script{1\over 2}}, -z]; (iii) [-x+2, y+{\script{1\over 2}}, -z]; (iv) x, y-1, z. Cg1 is the centroid of the C2–C7 benzene ring.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and TITAN (Hunter & Simpson, 1999[Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and TITAN; molecular graphics: ORTEPIII (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]), PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

The background to this study has been described in our earlier paper reporting the structure of 4-chloro-N-(3-methoxyphenyl)-benzamide (Saeed et al. 2008).

We report here the structure of the title 2-fluorobenzamide derivative, I, Fig 1. The C2—C1—O1—N1—C8 unit is planar with a maximum deviation of 0.0223 (10) Å. This plane makes a dihedral angle of 29.92 (7) ° with the fluorobenzene ring plane. The N-cyclohexyl ring adopts a chair conformation with Cremer-Pople puckering parameters Q(2)= 0.0138 (15) Å, ϕ(2) = 23 (2)° and Q(3) = 0.5763 (15)Å (Cremer & Pople, 1975). 2-fluorobenzamide derivatives with aliphatic substituents on the amide N atom are unusual with only one reasonably comparable derivative (Kobal et al. 1990) of the Cambridge Structural Database V5.29 (Allen, 2002). In contrast, N-aryl derivatives are more common and the salient bond distances and angles in the present molecule agree well with those reported previously (see for example Chopra & Guru Row, 2008; Donnelly et al., 2008; Hou et al., 2004).

In the crystal structure, chains are formed that run in opposite directions along a through N—H···O hydrogen bonds, Table 1, Fig 2. These interactions are supported by weak C9—H9B···O1 hydrogen bonds. Additional weak C—H···F hydrogen bonds and C—H···π interactions link these chains into zigzag columns down a Fig. 3.

Related literature top

For background see: Saeed et al. (2008). For related structures, see: Kobal et al. (1990); Chopra & Guru Row (2008); Donnelly et al. (2008); Hou et al. (2004); Saeed et al. (2008). For information on the Cambridge Structural Database, see: Allen (2002). For ring puckering parameters, see: Cremer & Pople (1975).

Experimental top

2-Fluorobenzoyl chloride (1 mmol) in CHCl3 was treated with cyclohexyl amine (3.5 mmol) under a nitrogen atmosphere at reflux for 5 h. Upon cooling, the reaction mixture was diluted with CHCl3 and washed consecutively with 1 M aq HCl and saturated aq NaHCO3. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. Crystallization of the residue from CHCl3 afforded the title compound (79%) as white needles: Anal. calcd. for C13H16FNO: C 70.56, H 7.29, N 6.33%; found: C 70.08, H 7.31, N 6.38%.

Refinement top

The H atom bound to N1 was located in a difference electron density map and refined freely with an isotropic displacememt parameter. All other H-atoms were refined using a riding model with d(C—H) = 0.95 Å, Uiso= 1.2Ueq (C) for aromatic and 0.98 Å, Uiso = 1.5Ueq (C) for CH3 H atoms. In the absence of significant anomalous dispersion effects, Friedel pairs were averaged.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 (Bruker, 2006) and SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) and TITAN (Hunter & Simpson, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and TITAN (Hunter & Simpson, 1999); molecular graphics: ORTEPIII (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2003) and publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I) with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level.
[Figure 2] Fig. 2. Transverse chains formed along a by N—H···O hydrogen bonds.
[Figure 3] Fig. 3. Crystal packing of (I) viewed down the a axis.
N-Cyclohexyl-2-fluorobenzamide top
Crystal data top
C13H16FNOF(000) = 236
Mr = 221.27Dx = 1.305 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2700 reflections
a = 5.1804 (6) Åθ = 3.4–32.5°
b = 6.5309 (8) ŵ = 0.09 mm1
c = 16.6522 (19) ÅT = 91 K
β = 91.336 (6)°Needle, colourless
V = 563.24 (11) Å30.39 × 0.16 × 0.08 mm
Z = 2
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2117 independent reflections
Radiation source: fine-focus sealed tube1884 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scansθmax = 33.4°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 77
Tmin = 0.822, Tmax = 0.993k = 89
7905 measured reflectionsl = 2524
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0702P)2 + 0.0113P]
where P = (Fo2 + 2Fc2)/3
2117 reflections(Δ/σ)max = 0.002
148 parametersΔρmax = 0.30 e Å3
1 restraintΔρmin = 0.26 e Å3
Crystal data top
C13H16FNOV = 563.24 (11) Å3
Mr = 221.27Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.1804 (6) ŵ = 0.09 mm1
b = 6.5309 (8) ÅT = 91 K
c = 16.6522 (19) Å0.39 × 0.16 × 0.08 mm
β = 91.336 (6)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2117 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
1884 reflections with I > 2σ(I)
Tmin = 0.822, Tmax = 0.993Rint = 0.031
7905 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0361 restraint
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.30 e Å3
2117 reflectionsΔρmin = 0.26 e Å3
148 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.2369 (2)0.9202 (2)0.24742 (7)0.0187 (3)
C11.0126 (3)0.9513 (2)0.22274 (9)0.0122 (3)
C20.9598 (3)1.1225 (2)0.16419 (9)0.0124 (3)
C30.7571 (3)1.1292 (2)0.10763 (9)0.0142 (3)
F10.5940 (2)0.96735 (18)0.10014 (5)0.0207 (2)
C40.7162 (3)1.2929 (3)0.05603 (9)0.0187 (3)
H40.57651.29130.01800.022*
C50.8825 (3)1.4593 (3)0.06068 (10)0.0207 (3)
H50.85531.57400.02640.025*
C61.0902 (3)1.4580 (3)0.11584 (10)0.0203 (3)
H61.20551.57110.11880.024*
C71.1270 (3)1.2908 (3)0.16621 (9)0.0162 (3)
H71.26971.29060.20310.019*
N10.8095 (3)0.8430 (2)0.24730 (8)0.0129 (3)
HN10.655 (4)0.883 (4)0.2321 (12)0.015*
C80.8378 (3)0.6807 (2)0.30746 (9)0.0120 (3)
H81.01400.61990.30280.014*
C90.6393 (3)0.5126 (2)0.29046 (10)0.0144 (3)
H9A0.66320.45740.23580.017*
H9B0.46310.57080.29270.017*
C100.6683 (3)0.3397 (3)0.35200 (10)0.0181 (3)
H10A0.83850.27300.34620.022*
H10B0.53290.23540.34160.022*
C110.6456 (3)0.4213 (3)0.43778 (10)0.0193 (3)
H11A0.46850.47360.44550.023*
H11B0.67650.30840.47650.023*
C120.8402 (3)0.5932 (3)0.45444 (10)0.0184 (3)
H12A0.81310.64940.50880.022*
H12B1.01750.53680.45320.022*
C130.8128 (3)0.7651 (3)0.39258 (9)0.0167 (3)
H13A0.94810.86950.40290.020*
H13B0.64250.83190.39770.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0108 (5)0.0210 (6)0.0242 (6)0.0001 (4)0.0012 (4)0.0060 (5)
C10.0126 (6)0.0105 (6)0.0135 (6)0.0003 (5)0.0004 (5)0.0002 (5)
C20.0123 (6)0.0121 (6)0.0127 (6)0.0005 (5)0.0017 (5)0.0002 (5)
C30.0137 (6)0.0154 (7)0.0134 (6)0.0003 (6)0.0008 (5)0.0008 (6)
F10.0216 (5)0.0223 (5)0.0178 (4)0.0069 (4)0.0065 (4)0.0005 (4)
C40.0184 (7)0.0235 (8)0.0143 (6)0.0043 (7)0.0022 (5)0.0036 (6)
C50.0218 (7)0.0200 (8)0.0207 (7)0.0060 (6)0.0061 (6)0.0080 (7)
C60.0204 (7)0.0151 (7)0.0256 (8)0.0007 (6)0.0061 (6)0.0043 (7)
C70.0151 (7)0.0149 (7)0.0186 (7)0.0016 (6)0.0012 (5)0.0012 (6)
N10.0103 (5)0.0135 (6)0.0149 (6)0.0007 (5)0.0013 (4)0.0032 (5)
C80.0114 (6)0.0108 (6)0.0136 (6)0.0003 (5)0.0010 (5)0.0021 (5)
C90.0133 (6)0.0115 (7)0.0183 (7)0.0011 (5)0.0006 (5)0.0004 (5)
C100.0191 (7)0.0121 (7)0.0230 (8)0.0011 (6)0.0002 (6)0.0026 (6)
C110.0188 (7)0.0177 (8)0.0215 (7)0.0016 (6)0.0029 (6)0.0071 (6)
C120.0224 (7)0.0175 (8)0.0152 (7)0.0007 (6)0.0011 (6)0.0028 (6)
C130.0234 (7)0.0122 (7)0.0142 (6)0.0008 (6)0.0023 (6)0.0004 (5)
Geometric parameters (Å, º) top
O1—C11.2402 (18)C8—C131.529 (2)
C1—N11.3395 (19)C8—H81.0000
C1—C21.504 (2)C9—C101.530 (2)
C2—C31.395 (2)C9—H9A0.9900
C2—C71.399 (2)C9—H9B0.9900
C3—F11.3571 (19)C10—C111.532 (2)
C3—C41.384 (2)C10—H10A0.9900
C4—C51.388 (3)C10—H10B0.9900
C4—H40.9500C11—C121.530 (2)
C5—C61.398 (2)C11—H11A0.9900
C5—H50.9500C11—H11B0.9900
C6—C71.387 (2)C12—C131.528 (2)
C6—H60.9500C12—H12A0.9900
C7—H70.9500C12—H12B0.9900
N1—C81.4632 (19)C13—H13A0.9900
N1—HN10.87 (2)C13—H13B0.9900
C8—C91.526 (2)
O1—C1—N1123.26 (14)C8—C9—C10110.57 (12)
O1—C1—C2119.42 (13)C8—C9—H9A109.5
N1—C1—C2117.29 (12)C10—C9—H9A109.5
C3—C2—C7116.58 (14)C8—C9—H9B109.5
C3—C2—C1125.69 (14)C10—C9—H9B109.5
C7—C2—C1117.74 (13)H9A—C9—H9B108.1
F1—C3—C4117.29 (13)C9—C10—C11111.03 (14)
F1—C3—C2119.65 (14)C9—C10—H10A109.4
C4—C3—C2123.03 (15)C11—C10—H10A109.4
C3—C4—C5118.96 (14)C9—C10—H10B109.4
C3—C4—H4120.5C11—C10—H10B109.4
C5—C4—H4120.5H10A—C10—H10B108.0
C4—C5—C6119.94 (15)C12—C11—C10111.09 (14)
C4—C5—H5120.0C12—C11—H11A109.4
C6—C5—H5120.0C10—C11—H11A109.4
C7—C6—C5119.64 (16)C12—C11—H11B109.4
C7—C6—H6120.2C10—C11—H11B109.4
C5—C6—H6120.2H11A—C11—H11B108.0
C6—C7—C2121.84 (14)C13—C12—C11111.48 (13)
C6—C7—H7119.1C13—C12—H12A109.3
C2—C7—H7119.1C11—C12—H12A109.3
C1—N1—C8121.65 (12)C13—C12—H12B109.3
C1—N1—HN1118.4 (16)C11—C12—H12B109.3
C8—N1—HN1119.3 (15)H12A—C12—H12B108.0
N1—C8—C9109.73 (12)C12—C13—C8110.57 (13)
N1—C8—C13111.36 (12)C12—C13—H13A109.5
C9—C8—C13111.09 (13)C8—C13—H13A109.5
N1—C8—H8108.2C12—C13—H13B109.5
C9—C8—H8108.2C8—C13—H13B109.5
C13—C8—H8108.2H13A—C13—H13B108.1
O1—C1—C2—C3152.45 (16)C1—C2—C7—C6178.45 (14)
N1—C1—C2—C329.4 (2)O1—C1—N1—C81.5 (2)
O1—C1—C2—C727.8 (2)C2—C1—N1—C8176.60 (13)
N1—C1—C2—C7150.43 (14)C1—N1—C8—C9147.62 (14)
C7—C2—C3—F1177.27 (13)C1—N1—C8—C1388.97 (17)
C1—C2—C3—F12.9 (2)N1—C8—C9—C10179.13 (12)
C7—C2—C3—C40.8 (2)C13—C8—C9—C1057.29 (16)
C1—C2—C3—C4179.00 (14)C8—C9—C10—C1156.43 (17)
F1—C3—C4—C5178.59 (14)C9—C10—C11—C1255.36 (18)
C2—C3—C4—C50.5 (2)C10—C11—C12—C1355.12 (19)
C3—C4—C5—C61.2 (2)C11—C12—C13—C855.66 (18)
C4—C5—C6—C70.7 (3)N1—C8—C13—C12179.44 (13)
C5—C6—C7—C20.7 (2)C9—C8—C13—C1256.80 (17)
C3—C2—C7—C61.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—HN1···O1i0.87 (2)2.20 (2)3.0092 (18)153.8 (19)
C9—H9B···O1i0.992.673.446 (2)136
C4—H4···F1ii0.952.433.2326 (19)142
C5—H5···Cg1iii0.952.963.759 (2)142
C9—H9A···Cg1iv0.992.713.644 (2)157
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1/2, z; (iii) x+2, y+1/2, z; (iv) x, y1, z.

Experimental details

Crystal data
Chemical formulaC13H16FNO
Mr221.27
Crystal system, space groupMonoclinic, P21
Temperature (K)91
a, b, c (Å)5.1804 (6), 6.5309 (8), 16.6522 (19)
β (°) 91.336 (6)
V3)563.24 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.39 × 0.16 × 0.08
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.822, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
7905, 2117, 1884
Rint0.031
(sin θ/λ)max1)0.774
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.114, 1.12
No. of reflections2117
No. of parameters148
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.26

Computer programs: , APEX2 (Bruker, 2006) and SAINT (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008) and TITAN (Hunter & Simpson, 1999), SHELXL97 (Sheldrick, 2008) and TITAN (Hunter & Simpson, 1999), ORTEPIII (Farrugia, 1997) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2003) and publCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—HN1···O1i0.87 (2)2.20 (2)3.0092 (18)153.8 (19)
C9—H9B···O1i0.992.673.446 (2)135.8
C4—H4···F1ii0.952.433.2326 (19)142.3
C5—H5···Cg1iii0.952.963.759 (2)142
C9—H9A···Cg1iv0.992.713.644 (2)157
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1/2, z; (iii) x+2, y+1/2, z; (iv) x, y1, z.
 

Acknowledgements

NA is grateful to the Higher Education Commission of Pakistan for financial support for a PhD programme. We also thank the University of Otago for the purchase of the diffractometer.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChopra, D. & Guru Row, T. N. (2008). CrystEngComm, 10, 54–67.  Web of Science CSD CrossRef CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDonnelly, K., Gallagher, J. F. & Lough, A. J. (2008). Acta Cryst. C64, o335–o340.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHou, Z.-K., Ao, C.-C., Song, J. & Chen, L.-G. (2004). Acta Cryst. E60, o1957–o1958.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.  Google Scholar
First citationKobal, E., Golic, L. & Japelj, M. (1990). Vestn. Slov. Kem. Drus. 37, 43–53.  CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSaeed, A., Khera, R. A., Abbas, N., Simpson, J. & Stanley, R. G. (2008). Acta Cryst. E64, o1976.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds