organic compounds
N-Cyclohexyl-2-fluorobenzamide
aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: aamersaeed@yahoo.com
In the title compound, C13H16FNO, the fluorobenzene ring plane and the plane through the amide unit are inclined at a dihedral angle of 29.92 (7)°. The cyclohexane ring adopts a chair conformation. In the N—H⋯O hydrogen bonds, augmented by weak C—H⋯O interactions, link the molecules into transverse chains along a. These chains are linked into zigzag columns down a by C—H⋯F hydrogen bonds and C—H⋯π interactions.
Related literature
For background see: Saeed et al. (2008). For related structures, see: Kobal et al. (1990); Chopra & Guru Row (2008); Donnelly et al. (2008); Hou et al. (2004); Saeed et al. (2008). For information on the Cambridge Structural Database, see: Allen (2002). For ring puckering parameters, see: Cremer & Pople (1975).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2006); cell APEX2 and SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) and TITAN (Hunter & Simpson, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and TITAN; molecular graphics: ORTEPIII (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004), PLATON (Spek, 2003) and publCIF (Westrip, 2008).
Supporting information
10.1107/S1600536808034090/lh2713sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808034090/lh2713Isup2.hkl
2-Fluorobenzoyl chloride (1 mmol) in CHCl3 was treated with cyclohexyl amine (3.5 mmol) under a nitrogen atmosphere at reflux for 5 h. Upon cooling, the reaction mixture was diluted with CHCl3 and washed consecutively with 1 M aq HCl and saturated aq NaHCO3. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. Crystallization of the residue from CHCl3 afforded the title compound (79%) as white needles: Anal. calcd. for C13H16FNO: C 70.56, H 7.29, N 6.33%; found: C 70.08, H 7.31, N 6.38%.
The H atom bound to N1 was located in a difference
and refined freely with an isotropic displacememt parameter. All other H-atoms were refined using a riding model with d(C—H) = 0.95 Å, Uiso= 1.2Ueq (C) for aromatic and 0.98 Å, Uiso = 1.5Ueq (C) for CH3 H atoms. In the absence of significant effects, Friedel pairs were averaged.Data collection: APEX2 (Bruker, 2006); cell
APEX2 (Bruker, 2006) and SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) and TITAN (Hunter & Simpson, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and TITAN (Hunter & Simpson, 1999); molecular graphics: ORTEPIII (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2003) and publCIF (Westrip, 2008).Fig. 1. The structure of (I) with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level. | |
Fig. 2. Transverse chains formed along a by N—H···O hydrogen bonds. | |
Fig. 3. Crystal packing of (I) viewed down the a axis. |
C13H16FNO | F(000) = 236 |
Mr = 221.27 | Dx = 1.305 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2yb | Cell parameters from 2700 reflections |
a = 5.1804 (6) Å | θ = 3.4–32.5° |
b = 6.5309 (8) Å | µ = 0.09 mm−1 |
c = 16.6522 (19) Å | T = 91 K |
β = 91.336 (6)° | Needle, colourless |
V = 563.24 (11) Å3 | 0.39 × 0.16 × 0.08 mm |
Z = 2 |
Bruker APEXII CCD area-detector diffractometer | 2117 independent reflections |
Radiation source: fine-focus sealed tube | 1884 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.031 |
ω scans | θmax = 33.4°, θmin = 1.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2006) | h = −7→7 |
Tmin = 0.822, Tmax = 0.993 | k = −8→9 |
7905 measured reflections | l = −25→24 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.114 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.12 | w = 1/[σ2(Fo2) + (0.0702P)2 + 0.0113P] where P = (Fo2 + 2Fc2)/3 |
2117 reflections | (Δ/σ)max = 0.002 |
148 parameters | Δρmax = 0.30 e Å−3 |
1 restraint | Δρmin = −0.26 e Å−3 |
C13H16FNO | V = 563.24 (11) Å3 |
Mr = 221.27 | Z = 2 |
Monoclinic, P21 | Mo Kα radiation |
a = 5.1804 (6) Å | µ = 0.09 mm−1 |
b = 6.5309 (8) Å | T = 91 K |
c = 16.6522 (19) Å | 0.39 × 0.16 × 0.08 mm |
β = 91.336 (6)° |
Bruker APEXII CCD area-detector diffractometer | 2117 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2006) | 1884 reflections with I > 2σ(I) |
Tmin = 0.822, Tmax = 0.993 | Rint = 0.031 |
7905 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | 1 restraint |
wR(F2) = 0.114 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.12 | Δρmax = 0.30 e Å−3 |
2117 reflections | Δρmin = −0.26 e Å−3 |
148 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 1.2369 (2) | 0.9202 (2) | 0.24742 (7) | 0.0187 (3) | |
C1 | 1.0126 (3) | 0.9513 (2) | 0.22274 (9) | 0.0122 (3) | |
C2 | 0.9598 (3) | 1.1225 (2) | 0.16419 (9) | 0.0124 (3) | |
C3 | 0.7571 (3) | 1.1292 (2) | 0.10763 (9) | 0.0142 (3) | |
F1 | 0.5940 (2) | 0.96735 (18) | 0.10014 (5) | 0.0207 (2) | |
C4 | 0.7162 (3) | 1.2929 (3) | 0.05603 (9) | 0.0187 (3) | |
H4 | 0.5765 | 1.2913 | 0.0180 | 0.022* | |
C5 | 0.8825 (3) | 1.4593 (3) | 0.06068 (10) | 0.0207 (3) | |
H5 | 0.8553 | 1.5740 | 0.0264 | 0.025* | |
C6 | 1.0902 (3) | 1.4580 (3) | 0.11584 (10) | 0.0203 (3) | |
H6 | 1.2055 | 1.5711 | 0.1188 | 0.024* | |
C7 | 1.1270 (3) | 1.2908 (3) | 0.16621 (9) | 0.0162 (3) | |
H7 | 1.2697 | 1.2906 | 0.2031 | 0.019* | |
N1 | 0.8095 (3) | 0.8430 (2) | 0.24730 (8) | 0.0129 (3) | |
HN1 | 0.655 (4) | 0.883 (4) | 0.2321 (12) | 0.015* | |
C8 | 0.8378 (3) | 0.6807 (2) | 0.30746 (9) | 0.0120 (3) | |
H8 | 1.0140 | 0.6199 | 0.3028 | 0.014* | |
C9 | 0.6393 (3) | 0.5126 (2) | 0.29046 (10) | 0.0144 (3) | |
H9A | 0.6632 | 0.4574 | 0.2358 | 0.017* | |
H9B | 0.4631 | 0.5708 | 0.2927 | 0.017* | |
C10 | 0.6683 (3) | 0.3397 (3) | 0.35200 (10) | 0.0181 (3) | |
H10A | 0.8385 | 0.2730 | 0.3462 | 0.022* | |
H10B | 0.5329 | 0.2354 | 0.3416 | 0.022* | |
C11 | 0.6456 (3) | 0.4213 (3) | 0.43778 (10) | 0.0193 (3) | |
H11A | 0.4685 | 0.4736 | 0.4455 | 0.023* | |
H11B | 0.6765 | 0.3084 | 0.4765 | 0.023* | |
C12 | 0.8402 (3) | 0.5932 (3) | 0.45444 (10) | 0.0184 (3) | |
H12A | 0.8131 | 0.6494 | 0.5088 | 0.022* | |
H12B | 1.0175 | 0.5368 | 0.4532 | 0.022* | |
C13 | 0.8128 (3) | 0.7651 (3) | 0.39258 (9) | 0.0167 (3) | |
H13A | 0.9481 | 0.8695 | 0.4029 | 0.020* | |
H13B | 0.6425 | 0.8319 | 0.3977 | 0.020* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0108 (5) | 0.0210 (6) | 0.0242 (6) | −0.0001 (4) | −0.0012 (4) | 0.0060 (5) |
C1 | 0.0126 (6) | 0.0105 (6) | 0.0135 (6) | 0.0003 (5) | 0.0004 (5) | 0.0002 (5) |
C2 | 0.0123 (6) | 0.0121 (6) | 0.0127 (6) | 0.0005 (5) | 0.0017 (5) | 0.0002 (5) |
C3 | 0.0137 (6) | 0.0154 (7) | 0.0134 (6) | −0.0003 (6) | 0.0008 (5) | 0.0008 (6) |
F1 | 0.0216 (5) | 0.0223 (5) | 0.0178 (4) | −0.0069 (4) | −0.0065 (4) | 0.0005 (4) |
C4 | 0.0184 (7) | 0.0235 (8) | 0.0143 (6) | 0.0043 (7) | 0.0022 (5) | 0.0036 (6) |
C5 | 0.0218 (7) | 0.0200 (8) | 0.0207 (7) | 0.0060 (6) | 0.0061 (6) | 0.0080 (7) |
C6 | 0.0204 (7) | 0.0151 (7) | 0.0256 (8) | −0.0007 (6) | 0.0061 (6) | 0.0043 (7) |
C7 | 0.0151 (7) | 0.0149 (7) | 0.0186 (7) | −0.0016 (6) | 0.0012 (5) | 0.0012 (6) |
N1 | 0.0103 (5) | 0.0135 (6) | 0.0149 (6) | −0.0007 (5) | −0.0013 (4) | 0.0032 (5) |
C8 | 0.0114 (6) | 0.0108 (6) | 0.0136 (6) | 0.0003 (5) | −0.0010 (5) | 0.0021 (5) |
C9 | 0.0133 (6) | 0.0115 (7) | 0.0183 (7) | −0.0011 (5) | −0.0006 (5) | −0.0004 (5) |
C10 | 0.0191 (7) | 0.0121 (7) | 0.0230 (8) | −0.0011 (6) | −0.0002 (6) | 0.0026 (6) |
C11 | 0.0188 (7) | 0.0177 (8) | 0.0215 (7) | 0.0016 (6) | 0.0029 (6) | 0.0071 (6) |
C12 | 0.0224 (7) | 0.0175 (8) | 0.0152 (7) | 0.0007 (6) | −0.0011 (6) | 0.0028 (6) |
C13 | 0.0234 (7) | 0.0122 (7) | 0.0142 (6) | −0.0008 (6) | −0.0023 (6) | 0.0004 (5) |
O1—C1 | 1.2402 (18) | C8—C13 | 1.529 (2) |
C1—N1 | 1.3395 (19) | C8—H8 | 1.0000 |
C1—C2 | 1.504 (2) | C9—C10 | 1.530 (2) |
C2—C3 | 1.395 (2) | C9—H9A | 0.9900 |
C2—C7 | 1.399 (2) | C9—H9B | 0.9900 |
C3—F1 | 1.3571 (19) | C10—C11 | 1.532 (2) |
C3—C4 | 1.384 (2) | C10—H10A | 0.9900 |
C4—C5 | 1.388 (3) | C10—H10B | 0.9900 |
C4—H4 | 0.9500 | C11—C12 | 1.530 (2) |
C5—C6 | 1.398 (2) | C11—H11A | 0.9900 |
C5—H5 | 0.9500 | C11—H11B | 0.9900 |
C6—C7 | 1.387 (2) | C12—C13 | 1.528 (2) |
C6—H6 | 0.9500 | C12—H12A | 0.9900 |
C7—H7 | 0.9500 | C12—H12B | 0.9900 |
N1—C8 | 1.4632 (19) | C13—H13A | 0.9900 |
N1—HN1 | 0.87 (2) | C13—H13B | 0.9900 |
C8—C9 | 1.526 (2) | ||
O1—C1—N1 | 123.26 (14) | C8—C9—C10 | 110.57 (12) |
O1—C1—C2 | 119.42 (13) | C8—C9—H9A | 109.5 |
N1—C1—C2 | 117.29 (12) | C10—C9—H9A | 109.5 |
C3—C2—C7 | 116.58 (14) | C8—C9—H9B | 109.5 |
C3—C2—C1 | 125.69 (14) | C10—C9—H9B | 109.5 |
C7—C2—C1 | 117.74 (13) | H9A—C9—H9B | 108.1 |
F1—C3—C4 | 117.29 (13) | C9—C10—C11 | 111.03 (14) |
F1—C3—C2 | 119.65 (14) | C9—C10—H10A | 109.4 |
C4—C3—C2 | 123.03 (15) | C11—C10—H10A | 109.4 |
C3—C4—C5 | 118.96 (14) | C9—C10—H10B | 109.4 |
C3—C4—H4 | 120.5 | C11—C10—H10B | 109.4 |
C5—C4—H4 | 120.5 | H10A—C10—H10B | 108.0 |
C4—C5—C6 | 119.94 (15) | C12—C11—C10 | 111.09 (14) |
C4—C5—H5 | 120.0 | C12—C11—H11A | 109.4 |
C6—C5—H5 | 120.0 | C10—C11—H11A | 109.4 |
C7—C6—C5 | 119.64 (16) | C12—C11—H11B | 109.4 |
C7—C6—H6 | 120.2 | C10—C11—H11B | 109.4 |
C5—C6—H6 | 120.2 | H11A—C11—H11B | 108.0 |
C6—C7—C2 | 121.84 (14) | C13—C12—C11 | 111.48 (13) |
C6—C7—H7 | 119.1 | C13—C12—H12A | 109.3 |
C2—C7—H7 | 119.1 | C11—C12—H12A | 109.3 |
C1—N1—C8 | 121.65 (12) | C13—C12—H12B | 109.3 |
C1—N1—HN1 | 118.4 (16) | C11—C12—H12B | 109.3 |
C8—N1—HN1 | 119.3 (15) | H12A—C12—H12B | 108.0 |
N1—C8—C9 | 109.73 (12) | C12—C13—C8 | 110.57 (13) |
N1—C8—C13 | 111.36 (12) | C12—C13—H13A | 109.5 |
C9—C8—C13 | 111.09 (13) | C8—C13—H13A | 109.5 |
N1—C8—H8 | 108.2 | C12—C13—H13B | 109.5 |
C9—C8—H8 | 108.2 | C8—C13—H13B | 109.5 |
C13—C8—H8 | 108.2 | H13A—C13—H13B | 108.1 |
O1—C1—C2—C3 | 152.45 (16) | C1—C2—C7—C6 | −178.45 (14) |
N1—C1—C2—C3 | −29.4 (2) | O1—C1—N1—C8 | 1.5 (2) |
O1—C1—C2—C7 | −27.8 (2) | C2—C1—N1—C8 | −176.60 (13) |
N1—C1—C2—C7 | 150.43 (14) | C1—N1—C8—C9 | −147.62 (14) |
C7—C2—C3—F1 | 177.27 (13) | C1—N1—C8—C13 | 88.97 (17) |
C1—C2—C3—F1 | −2.9 (2) | N1—C8—C9—C10 | 179.13 (12) |
C7—C2—C3—C4 | −0.8 (2) | C13—C8—C9—C10 | −57.29 (16) |
C1—C2—C3—C4 | 179.00 (14) | C8—C9—C10—C11 | 56.43 (17) |
F1—C3—C4—C5 | −178.59 (14) | C9—C10—C11—C12 | −55.36 (18) |
C2—C3—C4—C5 | −0.5 (2) | C10—C11—C12—C13 | 55.12 (19) |
C3—C4—C5—C6 | 1.2 (2) | C11—C12—C13—C8 | −55.66 (18) |
C4—C5—C6—C7 | −0.7 (3) | N1—C8—C13—C12 | 179.44 (13) |
C5—C6—C7—C2 | −0.7 (2) | C9—C8—C13—C12 | 56.80 (17) |
C3—C2—C7—C6 | 1.4 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—HN1···O1i | 0.87 (2) | 2.20 (2) | 3.0092 (18) | 153.8 (19) |
C9—H9B···O1i | 0.99 | 2.67 | 3.446 (2) | 136 |
C4—H4···F1ii | 0.95 | 2.43 | 3.2326 (19) | 142 |
C5—H5···Cg1iii | 0.95 | 2.96 | 3.759 (2) | 142 |
C9—H9A···Cg1iv | 0.99 | 2.71 | 3.644 (2) | 157 |
Symmetry codes: (i) x−1, y, z; (ii) −x+1, y+1/2, −z; (iii) −x+2, y+1/2, −z; (iv) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | C13H16FNO |
Mr | 221.27 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 91 |
a, b, c (Å) | 5.1804 (6), 6.5309 (8), 16.6522 (19) |
β (°) | 91.336 (6) |
V (Å3) | 563.24 (11) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.39 × 0.16 × 0.08 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2006) |
Tmin, Tmax | 0.822, 0.993 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7905, 2117, 1884 |
Rint | 0.031 |
(sin θ/λ)max (Å−1) | 0.774 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.114, 1.12 |
No. of reflections | 2117 |
No. of parameters | 148 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.30, −0.26 |
Computer programs: , APEX2 (Bruker, 2006) and SAINT (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008) and TITAN (Hunter & Simpson, 1999), SHELXL97 (Sheldrick, 2008) and TITAN (Hunter & Simpson, 1999), ORTEPIII (Farrugia, 1997) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2003) and publCIF (Westrip, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—HN1···O1i | 0.87 (2) | 2.20 (2) | 3.0092 (18) | 153.8 (19) |
C9—H9B···O1i | 0.99 | 2.67 | 3.446 (2) | 135.8 |
C4—H4···F1ii | 0.95 | 2.43 | 3.2326 (19) | 142.3 |
C5—H5···Cg1iii | 0.95 | 2.96 | 3.759 (2) | 142 |
C9—H9A···Cg1iv | 0.99 | 2.71 | 3.644 (2) | 157 |
Symmetry codes: (i) x−1, y, z; (ii) −x+1, y+1/2, −z; (iii) −x+2, y+1/2, −z; (iv) x, y−1, z. |
Acknowledgements
NA is grateful to the Higher Education Commission of Pakistan for financial support for a PhD programme. We also thank the University of Otago for the purchase of the diffractometer.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chopra, D. & Guru Row, T. N. (2008). CrystEngComm, 10, 54–67. Web of Science CSD CrossRef CAS Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Donnelly, K., Gallagher, J. F. & Lough, A. J. (2008). Acta Cryst. C64, o335–o340. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Hou, Z.-K., Ao, C.-C., Song, J. & Chen, L.-G. (2004). Acta Cryst. E60, o1957–o1958. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand. Google Scholar
Kobal, E., Golic, L. & Japelj, M. (1990). Vestn. Slov. Kem. Drus. 37, 43–53. CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Saeed, A., Khera, R. A., Abbas, N., Simpson, J. & Stanley, R. G. (2008). Acta Cryst. E64, o1976. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2008). publCIF. In preparation. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The background to this study has been described in our earlier paper reporting the structure of 4-chloro-N-(3-methoxyphenyl)-benzamide (Saeed et al. 2008).
We report here the structure of the title 2-fluorobenzamide derivative, I, Fig 1. The C2—C1—O1—N1—C8 unit is planar with a maximum deviation of 0.0223 (10) Å. This plane makes a dihedral angle of 29.92 (7) ° with the fluorobenzene ring plane. The N-cyclohexyl ring adopts a chair conformation with Cremer-Pople puckering parameters Q(2)= 0.0138 (15) Å, ϕ(2) = 23 (2)° and Q(3) = 0.5763 (15)Å (Cremer & Pople, 1975). 2-fluorobenzamide derivatives with aliphatic substituents on the amide N atom are unusual with only one reasonably comparable derivative (Kobal et al. 1990) of the Cambridge Structural Database V5.29 (Allen, 2002). In contrast, N-aryl derivatives are more common and the salient bond distances and angles in the present molecule agree well with those reported previously (see for example Chopra & Guru Row, 2008; Donnelly et al., 2008; Hou et al., 2004).
In the crystal structure, chains are formed that run in opposite directions along a through N—H···O hydrogen bonds, Table 1, Fig 2. These interactions are supported by weak C9—H9B···O1 hydrogen bonds. Additional weak C—H···F hydrogen bonds and C—H···π interactions link these chains into zigzag columns down a Fig. 3.