organic compounds
2-Aminopyrimidinium hydrogen chloranilate monohydrate
aKey Laboratory of Pesticides & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
*Correspondence e-mail: mengxianggao@mail.ccnu.edu.cn
In the title compound, C4H6N3+·C6HCl2O4−·H2O, anions, cations and water molecules are linked by intermolecular O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds into one-dimensional tapes along [111]. These tapes are further linked by weak Cl⋯Cl interactions [Cl⋯Cl = 3.394 (2) Å], forming sheets parallel to the (10) plane.
Related literature
For background information, see: Aakeröy & Salmon (2005); Aakeröy et al. (2007); Abrahams et al. (2002); Cueto et al. (1992); Kawata et al. (1994, 1998). For related crystal structures, see: Meng & Qian (2006); Min et al. (2006, 2007); Murata et al. (2007); Wang & Wei (2005); Yang (2007); Gaballa et al. (2008); Gotoh et al. (2006, 2007a,b,c); Jia et al. (2008). For bond-length data, see: Allen (2002); Allen et al. (1987).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2007); cell SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.
Supporting information
10.1107/S1600536808034740/lh2716sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808034740/lh2716Isup2.hkl
All the reagents and solvents were used as obtained without further purification. Equivalent molar amount of chloranilic acid (1 mmol, 210 mg) and 2-aminopyimidine (1 mmol, 9.5 mg) were dissolved in 95% methanol (20 ml). The mixture was stirred for half an hour at ambient temperature and then filtered. The resulting red solution was kept in air for two week. Plate-like crystals of (I) suitable for single-crystal X-ray
were grown at the bottom of the vessel by slow evaporation of the solution.H atoms bonded to C atoms were located in difference maps and subsequently treated as riding modes, with C–H=0.93 Å and Uiso(H) = 1.2Ueq(C). H atoms bonded to N and O atoms were also found in difference maps, with the constraints of N—H =0.86 (2)Å and O—H =0.82 (2) Å, and the Uiso(H) values being set k times of their carrier atoms (k=1.2 for N and 1.5 for O atoms)
Data collection: SMART (Bruker, 2007); cell
SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON (Spek, 2003).Fig. 1. Molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H-bonds are shown in dashed lines. | |
Fig. 2. Part of the crystal structure of (I), showing the formation of the one-dimensional tape (a) linked by intermolecular O-H···O and N-H···O hydrogen bonds parallel to the [111] direction and the two-dimensional sheet (b) linked by Cl···Cl interactin. For the sake of clarity, H atoms not involved in the motif have been omitted from the drawing. |
C4H6N3+·C6HCl2O4−·H2O | Z = 2 |
Mr = 322.10 | F(000) = 328 |
Triclinic, P1 | Dx = 1.709 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.7969 (5) Å | Cell parameters from 1004 reflections |
b = 9.4631 (6) Å | θ = 2.2–25.2° |
c = 11.0604 (7) Å | µ = 0.54 mm−1 |
α = 106.074 (1)° | T = 292 K |
β = 105.892 (1)° | Plate, red |
γ = 101.925 (1)° | 0.27 × 0.10 × 0.04 mm |
V = 626.01 (7) Å3 |
Bruker SMART APEX CCD area-detector diffractometer | 2121 independent reflections |
Radiation source: fine focus sealed Siemens Mo tube | 1348 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.071 |
0.3° wide ω exposures scans | θmax = 25.0°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −7→8 |
Tmin = 0.857, Tmax = 0.979 | k = −11→11 |
5691 measured reflections | l = −13→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.078 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.197 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.97 | w = 1/[σ2(Fo2) + (0.1114P)2] where P = (Fo2 + 2Fc2)/3 |
2121 reflections | (Δ/σ)max < 0.001 |
199 parameters | Δρmax = 0.66 e Å−3 |
6 restraints | Δρmin = −0.45 e Å−3 |
C4H6N3+·C6HCl2O4−·H2O | γ = 101.925 (1)° |
Mr = 322.10 | V = 626.01 (7) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.7969 (5) Å | Mo Kα radiation |
b = 9.4631 (6) Å | µ = 0.54 mm−1 |
c = 11.0604 (7) Å | T = 292 K |
α = 106.074 (1)° | 0.27 × 0.10 × 0.04 mm |
β = 105.892 (1)° |
Bruker SMART APEX CCD area-detector diffractometer | 2121 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1348 reflections with I > 2σ(I) |
Tmin = 0.857, Tmax = 0.979 | Rint = 0.071 |
5691 measured reflections |
R[F2 > 2σ(F2)] = 0.078 | 6 restraints |
wR(F2) = 0.197 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.97 | Δρmax = 0.66 e Å−3 |
2121 reflections | Δρmin = −0.45 e Å−3 |
199 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | −0.1247 (7) | 0.1172 (6) | 0.1769 (5) | 0.0361 (12) | |
C2 | −0.1473 (7) | −0.0408 (6) | 0.2001 (5) | 0.0425 (13) | |
C3 | −0.2335 (8) | −0.1755 (5) | 0.0838 (5) | 0.0378 (12) | |
C4 | −0.3014 (7) | −0.1738 (6) | −0.0449 (5) | 0.0358 (12) | |
C5 | −0.2867 (7) | −0.0171 (6) | −0.0623 (5) | 0.0372 (12) | |
C6 | −0.2029 (7) | 0.1163 (6) | 0.0438 (5) | 0.0363 (12) | |
Cl1 | −0.1870 (2) | 0.29304 (15) | 0.02393 (13) | 0.0479 (5) | |
Cl2 | −0.2558 (2) | −0.35198 (15) | 0.10632 (14) | 0.0500 (5) | |
O1 | −0.0385 (6) | 0.2339 (4) | 0.2793 (3) | 0.0506 (10) | |
O2 | −0.0871 (6) | −0.0336 (4) | 0.3183 (3) | 0.0547 (11) | |
O3 | −0.3780 (6) | −0.2884 (4) | −0.1520 (4) | 0.0513 (10) | |
O4 | −0.3561 (6) | −0.0196 (4) | −0.1857 (4) | 0.0509 (10) | |
H4 | −0.399 (10) | −0.110 (3) | −0.238 (5) | 0.076* | |
C7 | 0.3286 (7) | 0.6009 (6) | 0.5065 (5) | 0.0365 (12) | |
C8 | 0.5278 (8) | 0.8089 (6) | 0.4821 (6) | 0.0462 (14) | |
H8 | 0.6301 | 0.9059 | 0.5206 | 0.055* | |
C9 | 0.4403 (9) | 0.7485 (6) | 0.3461 (6) | 0.0481 (14) | |
H9 | 0.4801 | 0.8020 | 0.2933 | 0.058* | |
C10 | 0.2900 (8) | 0.6044 (7) | 0.2895 (5) | 0.0468 (14) | |
H10 | 0.2244 | 0.5573 | 0.1967 | 0.056* | |
N1 | 0.4796 (6) | 0.7413 (5) | 0.5644 (4) | 0.0447 (11) | |
N2 | 0.2407 (6) | 0.5338 (5) | 0.3717 (4) | 0.0378 (11) | |
H2 | 0.162 (9) | 0.442 (6) | 0.329 (5) | 0.045* | |
N3 | 0.2768 (7) | 0.5294 (6) | 0.5858 (5) | 0.0504 (12) | |
H3A | 0.200 (8) | 0.434 (3) | 0.548 (5) | 0.060* | |
H3B | 0.337 (9) | 0.579 (6) | 0.671 (2) | 0.060* | |
O5 | 0.0043 (6) | 0.2393 (4) | 0.5451 (3) | 0.0493 (10) | |
H5A | −0.050 (10) | 0.171 (5) | 0.468 (2) | 0.074* | |
H5B | 0.021 (10) | 0.205 (6) | 0.606 (3) | 0.074* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.026 (3) | 0.037 (3) | 0.041 (3) | 0.006 (2) | 0.012 (2) | 0.009 (3) |
C2 | 0.024 (3) | 0.053 (4) | 0.050 (3) | 0.008 (2) | 0.011 (2) | 0.023 (3) |
C3 | 0.034 (3) | 0.034 (3) | 0.046 (3) | 0.013 (2) | 0.015 (2) | 0.013 (3) |
C4 | 0.020 (3) | 0.042 (3) | 0.040 (3) | 0.011 (2) | 0.010 (2) | 0.006 (3) |
C5 | 0.027 (3) | 0.047 (3) | 0.042 (3) | 0.016 (2) | 0.016 (2) | 0.016 (3) |
C6 | 0.023 (3) | 0.045 (3) | 0.048 (3) | 0.015 (2) | 0.015 (2) | 0.020 (3) |
Cl1 | 0.0427 (8) | 0.0484 (9) | 0.0582 (9) | 0.0174 (6) | 0.0181 (7) | 0.0246 (7) |
Cl2 | 0.0507 (9) | 0.0413 (8) | 0.0540 (9) | 0.0113 (6) | 0.0153 (7) | 0.0161 (7) |
O1 | 0.058 (2) | 0.044 (2) | 0.040 (2) | 0.0055 (19) | 0.0164 (19) | 0.0100 (19) |
O2 | 0.070 (3) | 0.049 (2) | 0.034 (2) | 0.010 (2) | 0.0066 (19) | 0.0145 (18) |
O3 | 0.052 (2) | 0.046 (2) | 0.044 (2) | 0.0126 (19) | 0.0096 (19) | 0.0068 (19) |
O4 | 0.062 (3) | 0.046 (2) | 0.038 (2) | 0.016 (2) | 0.0110 (19) | 0.0117 (17) |
C7 | 0.024 (3) | 0.045 (3) | 0.043 (3) | 0.018 (2) | 0.013 (2) | 0.012 (3) |
C8 | 0.026 (3) | 0.047 (3) | 0.059 (4) | 0.006 (2) | 0.015 (3) | 0.013 (3) |
C9 | 0.044 (3) | 0.057 (4) | 0.053 (4) | 0.019 (3) | 0.019 (3) | 0.029 (3) |
C10 | 0.040 (3) | 0.062 (4) | 0.043 (3) | 0.021 (3) | 0.017 (3) | 0.017 (3) |
N1 | 0.031 (2) | 0.048 (3) | 0.051 (3) | 0.016 (2) | 0.010 (2) | 0.011 (2) |
N2 | 0.024 (2) | 0.037 (2) | 0.044 (3) | 0.0089 (18) | 0.0065 (19) | 0.007 (2) |
N3 | 0.041 (3) | 0.052 (3) | 0.058 (3) | 0.014 (2) | 0.017 (3) | 0.020 (3) |
O5 | 0.051 (2) | 0.059 (2) | 0.040 (2) | 0.021 (2) | 0.013 (2) | 0.0214 (19) |
C1—O1 | 1.234 (6) | C7—N2 | 1.347 (6) |
C1—C6 | 1.419 (7) | C7—N1 | 1.354 (6) |
C1—C2 | 1.569 (7) | C8—N1 | 1.321 (6) |
C2—O2 | 1.236 (5) | C8—C9 | 1.355 (7) |
C2—C3 | 1.412 (7) | C8—H8 | 0.9300 |
C3—C4 | 1.377 (7) | C9—C10 | 1.377 (7) |
C3—Cl2 | 1.738 (5) | C9—H9 | 0.9300 |
C4—O3 | 1.252 (6) | C10—N2 | 1.341 (6) |
C4—C5 | 1.533 (7) | C10—H10 | 0.9300 |
C5—O4 | 1.308 (6) | N2—H2 | 0.84 (5) |
C5—C6 | 1.346 (7) | N3—H3A | 0.86 (2) |
C6—Cl1 | 1.732 (5) | N3—H3B | 0.86 (2) |
O4—H4 | 0.83 (2) | O5—H5A | 0.82 (4) |
C7—N3 | 1.323 (6) | O5—H5B | 0.82 (4) |
O1—C1—C6 | 125.3 (5) | N3—C7—N1 | 118.2 (5) |
O1—C1—C2 | 115.6 (4) | N2—C7—N1 | 120.6 (4) |
C6—C1—C2 | 119.1 (5) | N1—C8—C9 | 125.3 (5) |
O2—C2—C3 | 127.1 (5) | N1—C8—H8 | 117.3 |
O2—C2—C1 | 116.4 (5) | C9—C8—H8 | 117.3 |
C3—C2—C1 | 116.5 (4) | C8—C9—C10 | 117.1 (5) |
C4—C3—C2 | 123.5 (4) | C8—C9—H9 | 121.4 |
C4—C3—Cl2 | 118.9 (4) | C10—C9—H9 | 121.4 |
C2—C3—Cl2 | 117.6 (4) | N2—C10—C9 | 118.2 (5) |
O3—C4—C3 | 126.8 (5) | N2—C10—H10 | 120.9 |
O3—C4—C5 | 115.2 (4) | C9—C10—H10 | 120.9 |
C3—C4—C5 | 118.1 (5) | C8—N1—C7 | 116.5 (5) |
O4—C5—C6 | 121.7 (5) | C10—N2—C7 | 122.2 (5) |
O4—C5—C4 | 116.6 (4) | C10—N2—H2 | 112 (3) |
C6—C5—C4 | 121.8 (4) | C7—N2—H2 | 126 (3) |
C5—C6—C1 | 121.0 (5) | C7—N3—H3A | 117 (4) |
C5—C6—Cl1 | 121.7 (4) | C7—N3—H3B | 117 (4) |
C1—C6—Cl1 | 117.4 (4) | H3A—N3—H3B | 126 (5) |
C1—O1—H2 | 135.7 (14) | H3A—O5—H5A | 112 (4) |
C2—O2—H5A | 118.4 (13) | H3A—O5—H5B | 126 (4) |
C5—O4—H4 | 109 (4) | H5A—O5—H5B | 114 (3) |
N3—C7—N2 | 121.2 (5) | ||
O1—C1—C2—O2 | 3.6 (7) | O4—C5—C6—Cl1 | 1.4 (7) |
C6—C1—C2—O2 | −176.2 (4) | C4—C5—C6—Cl1 | −179.9 (3) |
O1—C1—C2—C3 | −176.3 (4) | O1—C1—C6—C5 | 177.2 (5) |
C6—C1—C2—C3 | 3.9 (7) | C2—C1—C6—C5 | −3.0 (7) |
O2—C2—C3—C4 | 178.5 (5) | O1—C1—C6—Cl1 | −3.0 (7) |
C1—C2—C3—C4 | −1.7 (7) | C2—C1—C6—Cl1 | 176.8 (3) |
O2—C2—C3—Cl2 | −1.0 (7) | C6—C1—O1—H2 | −38 (2) |
C1—C2—C3—Cl2 | 178.8 (3) | C2—C1—O1—H2 | 143 (2) |
C2—C3—C4—O3 | 179.6 (5) | C3—C2—O2—H5A | −163 (2) |
Cl2—C3—C4—O3 | −0.9 (7) | C1—C2—O2—H5A | 17 (2) |
C2—C3—C4—C5 | −1.4 (7) | N1—C8—C9—C10 | −0.4 (8) |
Cl2—C3—C4—C5 | 178.1 (3) | C8—C9—C10—N2 | −0.1 (8) |
O3—C4—C5—O4 | 0.4 (6) | C9—C8—N1—C7 | −0.7 (8) |
C3—C4—C5—O4 | −178.8 (4) | N3—C7—N1—C8 | 179.8 (5) |
O3—C4—C5—C6 | −178.4 (4) | N2—C7—N1—C8 | 2.4 (7) |
C3—C4—C5—C6 | 2.5 (7) | C9—C10—N2—C7 | 1.9 (8) |
O4—C5—C6—C1 | −178.8 (4) | N3—C7—N2—C10 | 179.6 (5) |
C4—C5—C6—C1 | −0.1 (7) | N1—C7—N2—C10 | −3.1 (7) |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4···O3 | 0.83 (2) | 2.16 (6) | 2.651 (5) | 118 (5) |
O4—H4···N1i | 0.83 (2) | 2.07 (4) | 2.795 (6) | 146 (6) |
O5—H5A···O2 | 0.82 (4) | 2.09 (3) | 2.872 (5) | 156 (6) |
O5—H5A···O1 | 0.82 (4) | 2.34 (4) | 2.859 (5) | 121 (4) |
O5—H5B···O2ii | 0.82 (4) | 2.09 (4) | 2.830 (5) | 150 (5) |
N3—H3A···O5 | 0.86 (2) | 2.02 (3) | 2.815 (6) | 153 (5) |
N2—H2···O1 | 0.84 (5) | 1.98 (5) | 2.793 (6) | 163 (5) |
N3—H3B···O3iii | 0.86 (2) | 2.17 (4) | 2.953 (6) | 151 (5) |
Symmetry codes: (i) x−1, y−1, z−1; (ii) −x, −y, −z+1; (iii) x+1, y+1, z+1. |
Experimental details
Crystal data | |
Chemical formula | C4H6N3+·C6HCl2O4−·H2O |
Mr | 322.10 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 292 |
a, b, c (Å) | 6.7969 (5), 9.4631 (6), 11.0604 (7) |
α, β, γ (°) | 106.074 (1), 105.892 (1), 101.925 (1) |
V (Å3) | 626.01 (7) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.54 |
Crystal size (mm) | 0.27 × 0.10 × 0.04 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.857, 0.979 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5691, 2121, 1348 |
Rint | 0.071 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.078, 0.197, 0.97 |
No. of reflections | 2121 |
No. of parameters | 199 |
No. of restraints | 6 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.66, −0.45 |
Computer programs: SMART (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4···O3 | 0.83 (2) | 2.16 (6) | 2.651 (5) | 118 (5) |
O4—H4···N1i | 0.83 (2) | 2.07 (4) | 2.795 (6) | 146 (6) |
O5—H5A···O2 | 0.82 (4) | 2.09 (3) | 2.872 (5) | 156 (6) |
O5—H5A···O1 | 0.82 (4) | 2.34 (4) | 2.859 (5) | 121 (4) |
O5—H5B···O2ii | 0.82 (4) | 2.09 (4) | 2.830 (5) | 150 (5) |
N3—H3A···O5 | 0.86 (2) | 2.02 (3) | 2.815 (6) | 153 (5) |
N2—H2···O1 | 0.84 (5) | 1.98 (5) | 2.793 (6) | 163 (5) |
N3—H3B···O3iii | 0.86 (2) | 2.17 (4) | 2.953 (6) | 151 (5) |
Symmetry codes: (i) x−1, y−1, z−1; (ii) −x, −y, −z+1; (iii) x+1, y+1, z+1. |
Acknowledgements
This work received financial support mainly from the National Key Fundamental Project (No. 2002CCA00500).
References
Aakeröy, C. B., Fasulo, M., Schultheiss, N., Desper, J. & Moore, C. (2007). J. Am. Chem. Soc. 129, 13772–3773. Web of Science PubMed Google Scholar
Aakeröy, C. B. & Salmon, D. J. (2005). CrystEngComm, 7, 439–448. Web of Science CrossRef Google Scholar
Abrahams, B. F., Coleiro, J., Ha, K., Hoskins, B. F., Drchard, S. D. & Robson, R. (2002). J. Chem. Soc. Dalton Trans. pp. 1586–1594. Web of Science CSD CrossRef Google Scholar
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Allen, F. H., Kennard, Q., Waterson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Google Scholar
Bruker (2007). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cueto, S., Straumann, H.-P., Rys, P., Petter, W., Gramlich, V. & Rys, F. S. (1992). Acta Cryst. C48, 458–460. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Gaballa, A. S., Wagner, C., Teleb, S. M., Nour, E. M., Elmosallamy, M. A. F., Kaluderovic, G. N., Schmidt, H. & Steinborn, D. (2008). J. Mol. Struct. 876, 301–307. Web of Science CSD CrossRef CAS Google Scholar
Gotoh, K., Ishikawa, R. & Ishida, H. (2007a). Acta Cryst. E63, o4433. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gotoh, K., Ishikawa, R. & Ishida, H. (2007c). Acta Cryst. E63, o4518. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gotoh, K., Nagoshi, H. & Ishida, H. (2007b). Acta Cryst. E63, o4295. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gotoh, K., Ishikawa, R. & Ishida, H. (2006). Acta Cryst. E62, o4738–o4740. Web of Science CSD CrossRef IUCr Journals Google Scholar
Jia, L.-H., Mu, Z.-E. & Liu, Z.-L. (2008). Acta Cryst. E64, o32. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kawata, S., Kitagawa, S., Kondo, M., Furuchi, I. & Munakata, M. (1994). Angew. Chem. Int. Ed. 33, 1759–1761. CrossRef Google Scholar
Kawata, S., Kitagawa, S., Kumagai, H., Ishiyama, T., Honda, K., Tobita, H., Adachi, K. & Katada, M. (1998). Chem. Mater. 10, 3902–3912. Web of Science CSD CrossRef CAS Google Scholar
Meng, X.-G. & Qian, J.-L. (2006). Acta Cryst. E62, o4178–o4180. Web of Science CSD CrossRef IUCr Journals Google Scholar
Min, K. S., DiPasquale, A. G., Golen, J. A., Rheingold, A. L. & Miller, J. S. (2007). J. Am. Chem. Soc. 129, 2360–2368. Web of Science CSD CrossRef PubMed CAS Google Scholar
Min, K. S., Rheingold, A. L., DiPasquale, A. & Miller, J. S. (2006). Inorg. Chem. 45, 6135–6137. Web of Science CSD CrossRef PubMed CAS Google Scholar
Murata, T., Morita, Y., Yakiyama, Y., Fukui, K., Yamochi, H., Saito, G. & Nakasuji, K. (2007). J. Am. Chem. Soc. 129, 10837–10846. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, Z.-L. & Wei, L.-H. (2005). Acta Cryst. E61, o3129–o3130. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yang, D.-J. (2007). Acta Cryst. E63, o2600. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Chloranilic acid (CA) can be regarded as a strong organic acid (pKa1= 1.38; pKa2 = 2.98) which can release its two hydroxyl protons easily. For this reason, CA is often used as a bridge ligand in the synthesis of metal coordination complexes (Kawata et al., 1994; Kawata et al., 1998; Abrahams et al., 2002; Cueto et al., 1992; Min et al., 2006; Min et al., 2007) or used as a cocrystal agent in the construction of supramolecular structure based on hydrogen-bonds (Gotoh et al., 2006, 2007a, 2007b and 2007c; Murata et al., 2007; Gaballa et al., 2008; Jia et al., 2008). As part of our continuing studies on the synthesis of co-crystal or organic salts involved CA (Meng & Qian, 2006), we report here the crystal structure of the title compound (I) which was obtained by mixing equivalent amount of CA and 2-aminopyrimidine (2-APy) in 95% methanol solution at room temperature.
In (I), one of the CA hydroxyl protons is transferred to a pyrimidine N atom, forming a 1:1 organic adduct with one water molecule being incorporated into the crystal lattice (Fig. 1). According to the definitions of co-crystal and organic salt proposed by Aakeröy and Salmon (2005), complex (I) can be considered as an organic salt. The bond lengths and bonds angles in the CA- anion are comparable with those from some analogues (Wang & Wei, 2005; Yang, 2007). In the 2-APy+ cation, the angles of C7—N1—C8 and C7—N2—C10 [116.5 (1)° and 122.2 (1)°, respectively] are both consistent with the magnitude of C—N—C angles in unprotonated and protonated pyridine molecules [116.3 (16)° and 122.4 (16)°, respectively] (Allen et al., 1987; Allen, 2002). All other geomtric parameters in the structure are as expected.
In the crystal structure, intermolecular O–H···O and N–H···O hydrogen bonds (Table 1), link the components of (I) into one-dimensional tapes along [111] (Fig.2). In addition, neighbouring tapes are linked by weak Cl···Cl interactions [Cl···Cli = 3.394 (2) Å, see: Aakeröy et al., 2007); symmetry code: (i) x, y+1, z)] resulting in two-dimensional sheets parallel to the (10-1) plane.