organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 11| November 2008| Pages o2217-o2218

2-Amino­pyrimidinium hydrogen chloranilate monohydrate

aKey Laboratory of Pesticides & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
*Correspondence e-mail: mengxianggao@mail.ccnu.edu.cn

(Received 18 October 2008; accepted 24 October 2008; online 31 October 2008)

In the title compound, C4H6N3+·C6HCl2O4·H2O, anions, cations and water mol­ecules are linked by inter­molecular O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds into one-dimensional tapes along [111]. These tapes are further linked by weak Cl⋯Cl inter­actions [Cl⋯Cl = 3.394 (2) Å], forming sheets parallel to the (10[\overline{1}]) plane.

Related literature

For background information, see: Aakeröy & Salmon (2005[Aakeröy, C. B. & Salmon, D. J. (2005). CrystEngComm, 7, 439-448.]); Aakeröy et al. (2007[Aakeröy, C. B., Fasulo, M., Schultheiss, N., Desper, J. & Moore, C. (2007). J. Am. Chem. Soc. 129, 13772-3773.]); Abrahams et al. (2002[Abrahams, B. F., Coleiro, J., Ha, K., Hoskins, B. F., Drchard, S. D. & Robson, R. (2002). J. Chem. Soc. Dalton Trans. pp. 1586-1594.]); Cueto et al. (1992[Cueto, S., Straumann, H.-P., Rys, P., Petter, W., Gramlich, V. & Rys, F. S. (1992). Acta Cryst. C48, 458-460.]); Kawata et al. (1994[Kawata, S., Kitagawa, S., Kondo, M., Furuchi, I. & Munakata, M. (1994). Angew. Chem. Int. Ed. 33, 1759-1761.], 1998[Kawata, S., Kitagawa, S., Kumagai, H., Ishiyama, T., Honda, K., Tobita, H., Adachi, K. & Katada, M. (1998). Chem. Mater. 10, 3902-3912.]). For related crystal structures, see: Meng & Qian (2006[Meng, X.-G. & Qian, J.-L. (2006). Acta Cryst. E62, o4178-o4180.]); Min et al. (2006[Min, K. S., Rheingold, A. L., DiPasquale, A. & Miller, J. S. (2006). Inorg. Chem. 45, 6135-6137.], 2007[Min, K. S., DiPasquale, A. G., Golen, J. A., Rheingold, A. L. & Miller, J. S. (2007). J. Am. Chem. Soc. 129, 2360-2368.]); Murata et al. (2007[Murata, T., Morita, Y., Yakiyama, Y., Fukui, K., Yamochi, H., Saito, G. & Nakasuji, K. (2007). J. Am. Chem. Soc. 129, 10837-10846.]); Wang & Wei (2005[Wang, Z.-L. & Wei, L.-H. (2005). Acta Cryst. E61, o3129-o3130.]); Yang (2007[Yang, D.-J. (2007). Acta Cryst. E63, o2600.]); Gaballa et al. (2008[Gaballa, A. S., Wagner, C., Teleb, S. M., Nour, E. M., Elmosallamy, M. A. F., Kaluderovic, G. N., Schmidt, H. & Steinborn, D. (2008). J. Mol. Struct. 876, 301-307.]); Gotoh et al. (2006[Gotoh, K., Ishikawa, R. & Ishida, H. (2006). Acta Cryst. E62, o4738-o4740.], 2007a[Gotoh, K., Ishikawa, R. & Ishida, H. (2007a). Acta Cryst. E63, o4433.],b[Gotoh, K., Nagoshi, H. & Ishida, H. (2007b). Acta Cryst. E63, o4295.],c[Gotoh, K., Ishikawa, R. & Ishida, H. (2007c). Acta Cryst. E63, o4518.]); Jia et al. (2008[Jia, L.-H., Mu, Z.-E. & Liu, Z.-L. (2008). Acta Cryst. E64, o32.]). For bond-length data, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]); Allen et al. (1987[Allen, F. H., Kennard, Q., Waterson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C4H6N3+·C6HCl2O4·H2O

  • Mr = 322.10

  • Triclinic, [P \overline 1]

  • a = 6.7969 (5) Å

  • b = 9.4631 (6) Å

  • c = 11.0604 (7) Å

  • α = 106.074 (1)°

  • β = 105.892 (1)°

  • γ = 101.925 (1)°

  • V = 626.01 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.54 mm−1

  • T = 292 (2) K

  • 0.27 × 0.10 × 0.04 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.857, Tmax = 0.979

  • 5691 measured reflections

  • 2121 independent reflections

  • 1348 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.078

  • wR(F2) = 0.197

  • S = 0.97

  • 2121 reflections

  • 199 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O3 0.83 (2) 2.16 (6) 2.651 (5) 118 (5)
O4—H4⋯N1i 0.83 (2) 2.07 (4) 2.795 (6) 146 (6)
O5—H5A⋯O2 0.82 (4) 2.09 (3) 2.872 (5) 156 (6)
O5—H5A⋯O1 0.82 (4) 2.34 (4) 2.859 (5) 121 (4)
O5—H5B⋯O2ii 0.82 (4) 2.09 (4) 2.830 (5) 150 (5)
N3—H3A⋯O5 0.86 (2) 2.02 (3) 2.815 (6) 153 (5)
N2—H2⋯O1 0.84 (5) 1.98 (5) 2.793 (6) 163 (5)
N3—H3B⋯O3iii 0.86 (2) 2.17 (4) 2.953 (6) 151 (5)
Symmetry codes: (i) x-1, y-1, z-1; (ii) -x, -y, -z+1; (iii) x+1, y+1, z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Chloranilic acid (CA) can be regarded as a strong organic acid (pKa1= 1.38; pKa2 = 2.98) which can release its two hydroxyl protons easily. For this reason, CA is often used as a bridge ligand in the synthesis of metal coordination complexes (Kawata et al., 1994; Kawata et al., 1998; Abrahams et al., 2002; Cueto et al., 1992; Min et al., 2006; Min et al., 2007) or used as a cocrystal agent in the construction of supramolecular structure based on hydrogen-bonds (Gotoh et al., 2006, 2007a, 2007b and 2007c; Murata et al., 2007; Gaballa et al., 2008; Jia et al., 2008). As part of our continuing studies on the synthesis of co-crystal or organic salts involved CA (Meng & Qian, 2006), we report here the crystal structure of the title compound (I) which was obtained by mixing equivalent amount of CA and 2-aminopyrimidine (2-APy) in 95% methanol solution at room temperature.

In (I), one of the CA hydroxyl protons is transferred to a pyrimidine N atom, forming a 1:1 organic adduct with one water molecule being incorporated into the crystal lattice (Fig. 1). According to the definitions of co-crystal and organic salt proposed by Aakeröy and Salmon (2005), complex (I) can be considered as an organic salt. The bond lengths and bonds angles in the CA- anion are comparable with those from some analogues (Wang & Wei, 2005; Yang, 2007). In the 2-APy+ cation, the angles of C7—N1—C8 and C7—N2—C10 [116.5 (1)° and 122.2 (1)°, respectively] are both consistent with the magnitude of C—N—C angles in unprotonated and protonated pyridine molecules [116.3 (16)° and 122.4 (16)°, respectively] (Allen et al., 1987; Allen, 2002). All other geomtric parameters in the structure are as expected.

In the crystal structure, intermolecular O–H···O and N–H···O hydrogen bonds (Table 1), link the components of (I) into one-dimensional tapes along [111] (Fig.2). In addition, neighbouring tapes are linked by weak Cl···Cl interactions [Cl···Cli = 3.394 (2) Å, see: Aakeröy et al., 2007); symmetry code: (i) x, y+1, z)] resulting in two-dimensional sheets parallel to the (10-1) plane.

Related literature top

For background information, see: Aakeröy & Salmon (2005); Aakeröy et al. (2007); Abrahams et al. (2002); Cueto et al. (1992); Kawata et al. (1994, 1998). For related crystal structures, see: Meng & Qian (2006); Min et al. (2006, 2007); Murata et al. (2007); Wang & Wei (2005); Yang (2007); Gaballa et al. (2008); Gotoh et al. (2006, 2007a,b,c); Jia et al. (2008). For bond-length data, see: Allen (2002); Allen et al. (1987).

Experimental top

All the reagents and solvents were used as obtained without further purification. Equivalent molar amount of chloranilic acid (1 mmol, 210 mg) and 2-aminopyimidine (1 mmol, 9.5 mg) were dissolved in 95% methanol (20 ml). The mixture was stirred for half an hour at ambient temperature and then filtered. The resulting red solution was kept in air for two week. Plate-like crystals of (I) suitable for single-crystal X-ray diffraction analysis were grown at the bottom of the vessel by slow evaporation of the solution.

Refinement top

H atoms bonded to C atoms were located in difference maps and subsequently treated as riding modes, with C–H=0.93 Å and Uiso(H) = 1.2Ueq(C). H atoms bonded to N and O atoms were also found in difference maps, with the constraints of N—H =0.86 (2)Å and O—H =0.82 (2) Å, and the Uiso(H) values being set k times of their carrier atoms (k=1.2 for N and 1.5 for O atoms)

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H-bonds are shown in dashed lines.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of the one-dimensional tape (a) linked by intermolecular O-H···O and N-H···O hydrogen bonds parallel to the [111] direction and the two-dimensional sheet (b) linked by Cl···Cl interactin. For the sake of clarity, H atoms not involved in the motif have been omitted from the drawing.
2-Aminopyrimidinium hydrogen chloranilate monohydrate top
Crystal data top
C4H6N3+·C6HCl2O4·H2OZ = 2
Mr = 322.10F(000) = 328
Triclinic, P1Dx = 1.709 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.7969 (5) ÅCell parameters from 1004 reflections
b = 9.4631 (6) Åθ = 2.2–25.2°
c = 11.0604 (7) ŵ = 0.54 mm1
α = 106.074 (1)°T = 292 K
β = 105.892 (1)°Plate, red
γ = 101.925 (1)°0.27 × 0.10 × 0.04 mm
V = 626.01 (7) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2121 independent reflections
Radiation source: fine focus sealed Siemens Mo tube1348 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
0.3° wide ω exposures scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 78
Tmin = 0.857, Tmax = 0.979k = 1111
5691 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.078Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.197H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.1114P)2]
where P = (Fo2 + 2Fc2)/3
2121 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.66 e Å3
6 restraintsΔρmin = 0.45 e Å3
Crystal data top
C4H6N3+·C6HCl2O4·H2Oγ = 101.925 (1)°
Mr = 322.10V = 626.01 (7) Å3
Triclinic, P1Z = 2
a = 6.7969 (5) ÅMo Kα radiation
b = 9.4631 (6) ŵ = 0.54 mm1
c = 11.0604 (7) ÅT = 292 K
α = 106.074 (1)°0.27 × 0.10 × 0.04 mm
β = 105.892 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2121 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1348 reflections with I > 2σ(I)
Tmin = 0.857, Tmax = 0.979Rint = 0.071
5691 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0786 restraints
wR(F2) = 0.197H atoms treated by a mixture of independent and constrained refinement
S = 0.97Δρmax = 0.66 e Å3
2121 reflectionsΔρmin = 0.45 e Å3
199 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1247 (7)0.1172 (6)0.1769 (5)0.0361 (12)
C20.1473 (7)0.0408 (6)0.2001 (5)0.0425 (13)
C30.2335 (8)0.1755 (5)0.0838 (5)0.0378 (12)
C40.3014 (7)0.1738 (6)0.0449 (5)0.0358 (12)
C50.2867 (7)0.0171 (6)0.0623 (5)0.0372 (12)
C60.2029 (7)0.1163 (6)0.0438 (5)0.0363 (12)
Cl10.1870 (2)0.29304 (15)0.02393 (13)0.0479 (5)
Cl20.2558 (2)0.35198 (15)0.10632 (14)0.0500 (5)
O10.0385 (6)0.2339 (4)0.2793 (3)0.0506 (10)
O20.0871 (6)0.0336 (4)0.3183 (3)0.0547 (11)
O30.3780 (6)0.2884 (4)0.1520 (4)0.0513 (10)
O40.3561 (6)0.0196 (4)0.1857 (4)0.0509 (10)
H40.399 (10)0.110 (3)0.238 (5)0.076*
C70.3286 (7)0.6009 (6)0.5065 (5)0.0365 (12)
C80.5278 (8)0.8089 (6)0.4821 (6)0.0462 (14)
H80.63010.90590.52060.055*
C90.4403 (9)0.7485 (6)0.3461 (6)0.0481 (14)
H90.48010.80200.29330.058*
C100.2900 (8)0.6044 (7)0.2895 (5)0.0468 (14)
H100.22440.55730.19670.056*
N10.4796 (6)0.7413 (5)0.5644 (4)0.0447 (11)
N20.2407 (6)0.5338 (5)0.3717 (4)0.0378 (11)
H20.162 (9)0.442 (6)0.329 (5)0.045*
N30.2768 (7)0.5294 (6)0.5858 (5)0.0504 (12)
H3A0.200 (8)0.434 (3)0.548 (5)0.060*
H3B0.337 (9)0.579 (6)0.671 (2)0.060*
O50.0043 (6)0.2393 (4)0.5451 (3)0.0493 (10)
H5A0.050 (10)0.171 (5)0.468 (2)0.074*
H5B0.021 (10)0.205 (6)0.606 (3)0.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.026 (3)0.037 (3)0.041 (3)0.006 (2)0.012 (2)0.009 (3)
C20.024 (3)0.053 (4)0.050 (3)0.008 (2)0.011 (2)0.023 (3)
C30.034 (3)0.034 (3)0.046 (3)0.013 (2)0.015 (2)0.013 (3)
C40.020 (3)0.042 (3)0.040 (3)0.011 (2)0.010 (2)0.006 (3)
C50.027 (3)0.047 (3)0.042 (3)0.016 (2)0.016 (2)0.016 (3)
C60.023 (3)0.045 (3)0.048 (3)0.015 (2)0.015 (2)0.020 (3)
Cl10.0427 (8)0.0484 (9)0.0582 (9)0.0174 (6)0.0181 (7)0.0246 (7)
Cl20.0507 (9)0.0413 (8)0.0540 (9)0.0113 (6)0.0153 (7)0.0161 (7)
O10.058 (2)0.044 (2)0.040 (2)0.0055 (19)0.0164 (19)0.0100 (19)
O20.070 (3)0.049 (2)0.034 (2)0.010 (2)0.0066 (19)0.0145 (18)
O30.052 (2)0.046 (2)0.044 (2)0.0126 (19)0.0096 (19)0.0068 (19)
O40.062 (3)0.046 (2)0.038 (2)0.016 (2)0.0110 (19)0.0117 (17)
C70.024 (3)0.045 (3)0.043 (3)0.018 (2)0.013 (2)0.012 (3)
C80.026 (3)0.047 (3)0.059 (4)0.006 (2)0.015 (3)0.013 (3)
C90.044 (3)0.057 (4)0.053 (4)0.019 (3)0.019 (3)0.029 (3)
C100.040 (3)0.062 (4)0.043 (3)0.021 (3)0.017 (3)0.017 (3)
N10.031 (2)0.048 (3)0.051 (3)0.016 (2)0.010 (2)0.011 (2)
N20.024 (2)0.037 (2)0.044 (3)0.0089 (18)0.0065 (19)0.007 (2)
N30.041 (3)0.052 (3)0.058 (3)0.014 (2)0.017 (3)0.020 (3)
O50.051 (2)0.059 (2)0.040 (2)0.021 (2)0.013 (2)0.0214 (19)
Geometric parameters (Å, º) top
C1—O11.234 (6)C7—N21.347 (6)
C1—C61.419 (7)C7—N11.354 (6)
C1—C21.569 (7)C8—N11.321 (6)
C2—O21.236 (5)C8—C91.355 (7)
C2—C31.412 (7)C8—H80.9300
C3—C41.377 (7)C9—C101.377 (7)
C3—Cl21.738 (5)C9—H90.9300
C4—O31.252 (6)C10—N21.341 (6)
C4—C51.533 (7)C10—H100.9300
C5—O41.308 (6)N2—H20.84 (5)
C5—C61.346 (7)N3—H3A0.86 (2)
C6—Cl11.732 (5)N3—H3B0.86 (2)
O4—H40.83 (2)O5—H5A0.82 (4)
C7—N31.323 (6)O5—H5B0.82 (4)
O1—C1—C6125.3 (5)N3—C7—N1118.2 (5)
O1—C1—C2115.6 (4)N2—C7—N1120.6 (4)
C6—C1—C2119.1 (5)N1—C8—C9125.3 (5)
O2—C2—C3127.1 (5)N1—C8—H8117.3
O2—C2—C1116.4 (5)C9—C8—H8117.3
C3—C2—C1116.5 (4)C8—C9—C10117.1 (5)
C4—C3—C2123.5 (4)C8—C9—H9121.4
C4—C3—Cl2118.9 (4)C10—C9—H9121.4
C2—C3—Cl2117.6 (4)N2—C10—C9118.2 (5)
O3—C4—C3126.8 (5)N2—C10—H10120.9
O3—C4—C5115.2 (4)C9—C10—H10120.9
C3—C4—C5118.1 (5)C8—N1—C7116.5 (5)
O4—C5—C6121.7 (5)C10—N2—C7122.2 (5)
O4—C5—C4116.6 (4)C10—N2—H2112 (3)
C6—C5—C4121.8 (4)C7—N2—H2126 (3)
C5—C6—C1121.0 (5)C7—N3—H3A117 (4)
C5—C6—Cl1121.7 (4)C7—N3—H3B117 (4)
C1—C6—Cl1117.4 (4)H3A—N3—H3B126 (5)
C1—O1—H2135.7 (14)H3A—O5—H5A112 (4)
C2—O2—H5A118.4 (13)H3A—O5—H5B126 (4)
C5—O4—H4109 (4)H5A—O5—H5B114 (3)
N3—C7—N2121.2 (5)
O1—C1—C2—O23.6 (7)O4—C5—C6—Cl11.4 (7)
C6—C1—C2—O2176.2 (4)C4—C5—C6—Cl1179.9 (3)
O1—C1—C2—C3176.3 (4)O1—C1—C6—C5177.2 (5)
C6—C1—C2—C33.9 (7)C2—C1—C6—C53.0 (7)
O2—C2—C3—C4178.5 (5)O1—C1—C6—Cl13.0 (7)
C1—C2—C3—C41.7 (7)C2—C1—C6—Cl1176.8 (3)
O2—C2—C3—Cl21.0 (7)C6—C1—O1—H238 (2)
C1—C2—C3—Cl2178.8 (3)C2—C1—O1—H2143 (2)
C2—C3—C4—O3179.6 (5)C3—C2—O2—H5A163 (2)
Cl2—C3—C4—O30.9 (7)C1—C2—O2—H5A17 (2)
C2—C3—C4—C51.4 (7)N1—C8—C9—C100.4 (8)
Cl2—C3—C4—C5178.1 (3)C8—C9—C10—N20.1 (8)
O3—C4—C5—O40.4 (6)C9—C8—N1—C70.7 (8)
C3—C4—C5—O4178.8 (4)N3—C7—N1—C8179.8 (5)
O3—C4—C5—C6178.4 (4)N2—C7—N1—C82.4 (7)
C3—C4—C5—C62.5 (7)C9—C10—N2—C71.9 (8)
O4—C5—C6—C1178.8 (4)N3—C7—N2—C10179.6 (5)
C4—C5—C6—C10.1 (7)N1—C7—N2—C103.1 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O30.83 (2)2.16 (6)2.651 (5)118 (5)
O4—H4···N1i0.83 (2)2.07 (4)2.795 (6)146 (6)
O5—H5A···O20.82 (4)2.09 (3)2.872 (5)156 (6)
O5—H5A···O10.82 (4)2.34 (4)2.859 (5)121 (4)
O5—H5B···O2ii0.82 (4)2.09 (4)2.830 (5)150 (5)
N3—H3A···O50.86 (2)2.02 (3)2.815 (6)153 (5)
N2—H2···O10.84 (5)1.98 (5)2.793 (6)163 (5)
N3—H3B···O3iii0.86 (2)2.17 (4)2.953 (6)151 (5)
Symmetry codes: (i) x1, y1, z1; (ii) x, y, z+1; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC4H6N3+·C6HCl2O4·H2O
Mr322.10
Crystal system, space groupTriclinic, P1
Temperature (K)292
a, b, c (Å)6.7969 (5), 9.4631 (6), 11.0604 (7)
α, β, γ (°)106.074 (1), 105.892 (1), 101.925 (1)
V3)626.01 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.54
Crystal size (mm)0.27 × 0.10 × 0.04
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.857, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
5691, 2121, 1348
Rint0.071
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.078, 0.197, 0.97
No. of reflections2121
No. of parameters199
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.66, 0.45

Computer programs: SMART (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O30.83 (2)2.16 (6)2.651 (5)118 (5)
O4—H4···N1i0.83 (2)2.07 (4)2.795 (6)146 (6)
O5—H5A···O20.82 (4)2.09 (3)2.872 (5)156 (6)
O5—H5A···O10.82 (4)2.34 (4)2.859 (5)121 (4)
O5—H5B···O2ii0.82 (4)2.09 (4)2.830 (5)150 (5)
N3—H3A···O50.86 (2)2.02 (3)2.815 (6)153 (5)
N2—H2···O10.84 (5)1.98 (5)2.793 (6)163 (5)
N3—H3B···O3iii0.86 (2)2.17 (4)2.953 (6)151 (5)
Symmetry codes: (i) x1, y1, z1; (ii) x, y, z+1; (iii) x+1, y+1, z+1.
 

Acknowledgements

This work received financial support mainly from the National Key Fundamental Project (No. 2002CCA00500).

References

First citationAakeröy, C. B., Fasulo, M., Schultheiss, N., Desper, J. & Moore, C. (2007). J. Am. Chem. Soc. 129, 13772–3773.  Web of Science PubMed Google Scholar
First citationAakeröy, C. B. & Salmon, D. J. (2005). CrystEngComm, 7, 439–448.  Web of Science CrossRef Google Scholar
First citationAbrahams, B. F., Coleiro, J., Ha, K., Hoskins, B. F., Drchard, S. D. & Robson, R. (2002). J. Chem. Soc. Dalton Trans. pp. 1586–1594.  Web of Science CSD CrossRef Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, Q., Waterson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Google Scholar
First citationBruker (2007). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCueto, S., Straumann, H.-P., Rys, P., Petter, W., Gramlich, V. & Rys, F. S. (1992). Acta Cryst. C48, 458–460.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGaballa, A. S., Wagner, C., Teleb, S. M., Nour, E. M., Elmosallamy, M. A. F., Kaluderovic, G. N., Schmidt, H. & Steinborn, D. (2008). J. Mol. Struct. 876, 301–307.  Web of Science CSD CrossRef CAS Google Scholar
First citationGotoh, K., Ishikawa, R. & Ishida, H. (2007a). Acta Cryst. E63, o4433.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGotoh, K., Ishikawa, R. & Ishida, H. (2007c). Acta Cryst. E63, o4518.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGotoh, K., Nagoshi, H. & Ishida, H. (2007b). Acta Cryst. E63, o4295.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGotoh, K., Ishikawa, R. & Ishida, H. (2006). Acta Cryst. E62, o4738–o4740.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJia, L.-H., Mu, Z.-E. & Liu, Z.-L. (2008). Acta Cryst. E64, o32.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKawata, S., Kitagawa, S., Kondo, M., Furuchi, I. & Munakata, M. (1994). Angew. Chem. Int. Ed. 33, 1759–1761.  CrossRef Google Scholar
First citationKawata, S., Kitagawa, S., Kumagai, H., Ishiyama, T., Honda, K., Tobita, H., Adachi, K. & Katada, M. (1998). Chem. Mater. 10, 3902–3912.  Web of Science CSD CrossRef CAS Google Scholar
First citationMeng, X.-G. & Qian, J.-L. (2006). Acta Cryst. E62, o4178–o4180.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMin, K. S., DiPasquale, A. G., Golen, J. A., Rheingold, A. L. & Miller, J. S. (2007). J. Am. Chem. Soc. 129, 2360–2368.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMin, K. S., Rheingold, A. L., DiPasquale, A. & Miller, J. S. (2006). Inorg. Chem. 45, 6135–6137.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMurata, T., Morita, Y., Yakiyama, Y., Fukui, K., Yamochi, H., Saito, G. & Nakasuji, K. (2007). J. Am. Chem. Soc. 129, 10837–10846.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z.-L. & Wei, L.-H. (2005). Acta Cryst. E61, o3129–o3130.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, D.-J. (2007). Acta Cryst. E63, o2600.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 11| November 2008| Pages o2217-o2218
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds