organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(2-Amino­ethyl)-2-(4-fluoroanilino)­quinazolin-4(3H)-one

aFaculty of Chemistry and Life Science, Xianning University, Xianning 437100, People's Republic of China
*Correspondence e-mail: minghuwu@hotmail.com

(Received 20 October 2008; accepted 28 October 2008; online 31 October 2008)

In the title mol­ecule, C16H15FN4O, the dihedral angle between the fluoro-substituted benzene ring and the pyrimidinone ring is 52.34 (7)°, while the dihedral angle between the fused benzene ring and the pyrimidinone ring is 3.30 (6)°. An intra­molecular N—H⋯N hydrogen bond may, in part, influence the conformation of the mol­ecule. In the crystal structure, inter­molecular N—H⋯N hydrogen bonds and weak C—H⋯π(arene) inter­actions link pairs of mol­ecules into centrosymmetric dimers.

Related literature

For the biological properties of quinazolinones and their derivatives, see: Armarego (1963[Armarego, W. L. (1963). Adv. Heterocycl. Chem. 11, 253-309.]); Witt & Bergman (2003[Witt, A. & Bergman, J. (2003). Curr. Org. Chem. 7, 659-677.]). For details of our ongoing heterocyclic synthesis and drug discovery project, see: Yang et al. (2008[Yang, X. H., Wu, M. H., Sun, S. F., Ding, M. W., Xie, J. L. & Xia, Q. H. (2008). J. Heterocycl. Chem. 5, 1365-1369.]).

[Scheme 1]

Experimental

Crystal data
  • C16H15FN4O

  • Mr = 298.32

  • Triclinic, [P \overline 1]

  • a = 8.2836 (8) Å

  • b = 9.3103 (10) Å

  • c = 9.4952 (10) Å

  • α = 89.36 (1)°

  • β = 80.537 (10)°

  • γ = 77.163 (10)°

  • V = 704.03 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 292 (2) K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.970, Tmax = 0.990

  • 4078 measured reflections

  • 2726 independent reflections

  • 2318 reflections with I > 2σ(I)

  • Rint = 0.012

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.111

  • S = 1.05

  • 2726 reflections

  • 209 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N4 0.908 (17) 1.925 (17) 2.8049 (17) 162.8 (14)
N4—H4A⋯N2i 0.889 (16) 2.323 (16) 3.1321 (18) 151.4 (13)
C3—H3⋯Cgi 0.93 2.77 (1) 3.4741 (15) 132 (1)
Symmetry code: (i) -x, -y+1, -z+1. Cg is the centroid of atoms N2/C7/N3/C14/C13/C8.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Quinazolinones and their derivatives are now known to have a wide range of useful biological properties, such as hypnotic, sedative, analgesic, anti-convulsant, anti-tussive, anti-bacterial, anti-diabetic, anti-inflammatory and anti-tumor (Armarego, 1963; Witt & Bergman, 2003). In connection with our ongoing heterocyclic synthesis and drug discovery project (Yang et al., 2008), we have focused our research on the synthesis of quinazolinones and pyrazolo pyrimidinones. Herein, the title compound was synthesized and its crystal structure was determined.

In the molecule (Fig. 1), the dihedral angle between the fluorophenyl and pyrimidinone ring is 52.34 (7)°, and the dihedral angle between the fused benzene ring and pyrimidinone ring is 3.30 (6)°. The torsion angles of N2–C7–N1–C4 and N3–C7–N1–C4 are -4.7 (2) and 176.42 (11)°, respectively.

An intramolecular N-H···N hydrogen bond may, in part, influence the conformation of the molecule. In the crystal structure, intermolecular N-H···N hydrogen bonds and weak C–H···π(arene) interactions link pairs of molecules into centrosymmetric dimers (see Table 1 and Fig. 2).

Related literature top

For the biological properties of quinazolinones and their derivatives, see: Armarego (1963); Witt & Bergman (2003). For our ongoing heterocyclic synthesis and drugdiscovery project, see: Yang et al. (2008). Cg is the centroid of atoms N2/C7/N3/C14/C13/C8.

Experimental top

To a solution of 2-ethoxycarbonyliminophosphorane (1.27 g, 3 mmol) in 10 ml anhydrous THF, 4-chlorophenylisocyanate (0.46 g, 3 mmol) was added dropwise at room temperature. The reaction mixture was left unstirred for 6 h at 273–278 K, whereafter the above resulting solution was added dropwise to a solution of ethylenediamine (0.18 g, 3 mmol) in 5 ml anhydrous THF. After that, the reaction mixture was stirred overnight, the reaction mixture was cooled and the reaction product was recrystallized from CH3OH—CH2Cl2 to give colorless crystals of the title compound in yield 85%, which were suitable for X-ray analysis.

Refinement top

H atoms bonded to C atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and included in the riding model approximation. The positional parameters of H atoms bonded to N atoms were refined independently. For all H atoms Uiso (H) = 1.2Uiso (C,N).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title molecule with the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound showing hydrogen bonds as dashed lines.
3-(2-Aminoethyl)-2-(4-fluoroanilino)quinazolin-4(3H)-one top
Crystal data top
C16H15FN4OZ = 2
Mr = 298.32F(000) = 312
Triclinic, P1Dx = 1.407 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2836 (8) ÅCell parameters from 2276 reflections
b = 9.3103 (10) Åθ = 2.2–28.9°
c = 9.4952 (10) ŵ = 0.10 mm1
α = 89.36 (1)°T = 292 K
β = 80.537 (10)°Block, colourless
γ = 77.163 (10)°0.20 × 0.10 × 0.10 mm
V = 704.03 (13) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
2726 independent reflections
Radiation source: fine-focus sealed tube2318 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.012
ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 910
Tmin = 0.970, Tmax = 0.990k = 1111
4078 measured reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0572P)2 + 0.1074P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2726 reflectionsΔρmax = 0.16 e Å3
209 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.033 (5)
Crystal data top
C16H15FN4Oγ = 77.163 (10)°
Mr = 298.32V = 704.03 (13) Å3
Triclinic, P1Z = 2
a = 8.2836 (8) ÅMo Kα radiation
b = 9.3103 (10) ŵ = 0.10 mm1
c = 9.4952 (10) ÅT = 292 K
α = 89.36 (1)°0.20 × 0.10 × 0.10 mm
β = 80.537 (10)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2726 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2318 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.990Rint = 0.012
4078 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.16 e Å3
2726 reflectionsΔρmin = 0.15 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.26560 (18)0.91647 (15)0.45066 (18)0.0596 (4)
C20.1522 (2)0.87525 (15)0.37986 (16)0.0589 (4)
H20.14510.90310.28630.071*
C30.04783 (17)0.79107 (14)0.45047 (14)0.0503 (3)
H30.03080.76240.40400.060*
C40.05872 (15)0.74874 (13)0.58961 (14)0.0449 (3)
C50.17665 (17)0.79171 (15)0.65820 (16)0.0536 (3)
H50.18600.76320.75120.064*
C60.28049 (18)0.87722 (16)0.58782 (18)0.0604 (4)
H60.35900.90740.63330.073*
C70.02621 (15)0.55612 (14)0.74400 (13)0.0424 (3)
C80.15458 (16)0.37171 (14)0.83809 (13)0.0444 (3)
C90.31903 (18)0.30166 (17)0.85105 (16)0.0573 (4)
H90.40750.34400.81210.069*
C100.3511 (2)0.17169 (18)0.92037 (17)0.0670 (4)
H100.46130.12600.92720.080*
C110.2208 (2)0.10669 (18)0.98092 (18)0.0690 (4)
H110.24380.01771.02710.083*
C120.0591 (2)0.17479 (17)0.97182 (16)0.0587 (4)
H120.02840.13261.01360.070*
C130.02374 (16)0.30663 (14)0.90063 (13)0.0459 (3)
C140.14830 (17)0.37725 (15)0.88772 (14)0.0479 (3)
C150.33989 (16)0.58408 (16)0.79762 (15)0.0523 (3)
H15A0.34620.68930.80100.063*
H15B0.41530.56130.87990.063*
C160.39955 (16)0.54589 (16)0.66308 (16)0.0555 (4)
H16A0.36510.44030.64470.067*
H16B0.52120.57310.67720.067*
F10.36536 (13)1.00298 (12)0.38271 (13)0.0901 (4)
N10.06114 (14)0.67357 (13)0.65917 (13)0.0496 (3)
H10.151 (2)0.6763 (17)0.6150 (16)0.060*
N20.12716 (13)0.49763 (12)0.75954 (11)0.0459 (3)
H4A0.2947 (19)0.5633 (17)0.4621 (17)0.055*
H4B0.411 (2)0.6934 (17)0.5178 (15)0.055*
N30.16619 (13)0.50507 (12)0.80814 (11)0.0448 (3)
N40.33145 (16)0.62199 (16)0.53930 (14)0.0590 (3)
O10.27139 (13)0.33072 (12)0.94041 (12)0.0654 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0477 (8)0.0456 (7)0.0809 (10)0.0143 (6)0.0073 (7)0.0107 (7)
C20.0648 (9)0.0473 (7)0.0579 (8)0.0098 (7)0.0053 (7)0.0068 (6)
C30.0511 (8)0.0419 (7)0.0559 (8)0.0093 (6)0.0050 (6)0.0015 (6)
C40.0364 (6)0.0387 (6)0.0566 (7)0.0069 (5)0.0015 (5)0.0050 (5)
C50.0434 (7)0.0536 (8)0.0647 (8)0.0136 (6)0.0081 (6)0.0092 (6)
C60.0413 (7)0.0536 (8)0.0880 (11)0.0148 (6)0.0097 (7)0.0079 (7)
C70.0381 (7)0.0470 (7)0.0433 (6)0.0146 (5)0.0034 (5)0.0022 (5)
C80.0434 (7)0.0514 (7)0.0409 (6)0.0159 (6)0.0071 (5)0.0053 (5)
C90.0435 (8)0.0697 (9)0.0620 (8)0.0185 (7)0.0115 (6)0.0179 (7)
C100.0518 (9)0.0761 (10)0.0731 (10)0.0097 (8)0.0183 (7)0.0242 (8)
C110.0698 (10)0.0655 (10)0.0738 (10)0.0170 (8)0.0177 (8)0.0287 (8)
C120.0584 (9)0.0619 (9)0.0592 (8)0.0235 (7)0.0063 (7)0.0159 (7)
C130.0462 (7)0.0517 (7)0.0421 (6)0.0177 (6)0.0050 (5)0.0039 (5)
C140.0447 (7)0.0547 (7)0.0460 (7)0.0201 (6)0.0007 (5)0.0026 (6)
C150.0348 (7)0.0582 (8)0.0595 (8)0.0086 (6)0.0028 (6)0.0021 (6)
C160.0334 (7)0.0580 (8)0.0755 (9)0.0106 (6)0.0095 (6)0.0043 (7)
F10.0763 (7)0.0820 (7)0.1149 (9)0.0407 (6)0.0059 (6)0.0289 (6)
N10.0379 (6)0.0532 (7)0.0607 (7)0.0154 (5)0.0099 (5)0.0125 (5)
N20.0382 (6)0.0514 (6)0.0498 (6)0.0157 (5)0.0054 (4)0.0094 (5)
N30.0353 (6)0.0517 (6)0.0476 (6)0.0142 (5)0.0013 (4)0.0029 (5)
N40.0429 (7)0.0710 (8)0.0621 (8)0.0101 (6)0.0096 (6)0.0019 (6)
O10.0476 (6)0.0723 (7)0.0788 (7)0.0275 (5)0.0011 (5)0.0166 (5)
Geometric parameters (Å, º) top
C1—C21.362 (2)C10—C111.392 (2)
C1—F11.3626 (16)C10—H100.9300
C1—C61.366 (2)C11—C121.365 (2)
C2—C31.3819 (19)C11—H110.9300
C2—H20.9300C12—C131.3914 (19)
C3—C41.3859 (19)C12—H120.9300
C3—H30.9300C13—C141.4551 (19)
C4—C51.388 (2)C14—O11.2254 (15)
C4—N11.4123 (16)C14—N31.3955 (17)
C5—C61.3870 (19)C15—N31.4821 (16)
C5—H50.9300C15—C161.516 (2)
C6—H60.9300C15—H15A0.9700
C7—N21.2980 (16)C15—H15B0.9700
C7—N11.3581 (17)C16—N41.464 (2)
C7—N31.3956 (15)C16—H16A0.9700
C8—N21.3785 (16)C16—H16B0.9700
C8—C91.3981 (19)N1—H10.908 (17)
C8—C131.4023 (18)N4—H4A0.889 (16)
C9—C101.366 (2)N4—H4B0.872 (16)
C9—H90.9300
C2—C1—F1118.49 (14)C10—C11—H11120.3
C2—C1—C6122.61 (13)C11—C12—C13120.67 (14)
F1—C1—C6118.88 (15)C11—C12—H12119.7
C1—C2—C3118.37 (14)C13—C12—H12119.7
C1—C2—H2120.8C12—C13—C8120.13 (13)
C3—C2—H2120.8C12—C13—C14120.69 (12)
C2—C3—C4120.93 (13)C8—C13—C14119.18 (12)
C2—C3—H3119.5O1—C14—N3120.70 (12)
C4—C3—H3119.5O1—C14—C13124.22 (13)
C3—C4—C5119.19 (12)N3—C14—C13115.08 (11)
C3—C4—N1117.79 (12)N3—C15—C16113.90 (11)
C5—C4—N1122.81 (12)N3—C15—H15A108.8
C6—C5—C4119.92 (14)C16—C15—H15A108.8
C6—C5—H5120.0N3—C15—H15B108.8
C4—C5—H5120.0C16—C15—H15B108.8
C1—C6—C5118.98 (14)H15A—C15—H15B107.7
C1—C6—H6120.5N4—C16—C15111.68 (12)
C5—C6—H6120.5N4—C16—H16A109.3
N2—C7—N1120.96 (11)C15—C16—H16A109.3
N2—C7—N3124.41 (11)N4—C16—H16B109.3
N1—C7—N3114.62 (11)C15—C16—H16B109.3
N2—C8—C9119.28 (12)H16A—C16—H16B107.9
N2—C8—C13122.38 (12)C7—N1—C4124.69 (11)
C9—C8—C13118.27 (12)C7—N1—H1114.5 (10)
C10—C9—C8120.65 (14)C4—N1—H1115.2 (10)
C10—C9—H9119.7C7—N2—C8117.77 (11)
C8—C9—H9119.7C14—N3—C7121.02 (11)
C9—C10—C11120.84 (14)C14—N3—C15116.82 (11)
C9—C10—H10119.6C7—N3—C15122.16 (11)
C11—C10—H10119.6C16—N4—H4A112.6 (10)
C12—C11—C10119.42 (14)C16—N4—H4B109.1 (10)
C12—C11—H11120.3H4A—N4—H4B106.8 (14)
F1—C1—C2—C3178.16 (12)C8—C13—C14—O1178.72 (13)
C6—C1—C2—C30.4 (2)C12—C13—C14—N3177.09 (12)
C1—C2—C3—C40.4 (2)C8—C13—C14—N31.78 (18)
C2—C3—C4—C50.1 (2)N3—C15—C16—N478.30 (15)
C2—C3—C4—N1174.74 (12)N2—C7—N1—C44.7 (2)
C3—C4—C5—C60.7 (2)N3—C7—N1—C4176.42 (11)
N1—C4—C5—C6173.93 (12)C3—C4—N1—C7138.77 (13)
C2—C1—C6—C50.2 (2)C5—C4—N1—C746.58 (19)
F1—C1—C6—C5178.68 (12)N1—C7—N2—C8174.97 (11)
C4—C5—C6—C10.7 (2)N3—C7—N2—C83.84 (19)
N2—C8—C9—C10175.78 (14)C9—C8—N2—C7176.85 (12)
C13—C8—C9—C101.3 (2)C13—C8—N2—C70.13 (19)
C8—C9—C10—C110.6 (3)O1—C14—N3—C7177.93 (12)
C9—C10—C11—C120.6 (3)C13—C14—N3—C71.58 (17)
C10—C11—C12—C131.2 (3)O1—C14—N3—C153.07 (19)
C11—C12—C13—C80.5 (2)C13—C14—N3—C15177.42 (11)
C11—C12—C13—C14178.40 (13)N2—C7—N3—C144.69 (19)
N2—C8—C13—C12176.23 (12)N1—C7—N3—C14174.18 (11)
C9—C8—C13—C120.8 (2)N2—C7—N3—C15174.25 (12)
N2—C8—C13—C142.65 (19)N1—C7—N3—C156.87 (17)
C9—C8—C13—C14179.65 (12)C16—C15—N3—C1496.27 (14)
C12—C13—C14—O12.4 (2)C16—C15—N3—C784.75 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N40.908 (17)1.925 (17)2.8049 (17)162.8 (14)
N4—H4A···N2i0.889 (16)2.323 (16)3.1321 (18)151.4 (13)
C3—H3···Cgi0.932.77 (1)3.4741 (15)132 (1)
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC16H15FN4O
Mr298.32
Crystal system, space groupTriclinic, P1
Temperature (K)292
a, b, c (Å)8.2836 (8), 9.3103 (10), 9.4952 (10)
α, β, γ (°)89.36 (1), 80.537 (10), 77.163 (10)
V3)704.03 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.970, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
4078, 2726, 2318
Rint0.012
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.111, 1.05
No. of reflections2726
No. of parameters209
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.15

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N40.908 (17)1.925 (17)2.8049 (17)162.8 (14)
N4—H4A···N2i0.889 (16)2.323 (16)3.1321 (18)151.4 (13)
C3—H3···Cgi0.930002.769 (12)3.4741 (15)132.0 (10)
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

We gratefully acknowledge financial support of this work by the the Natural Science Foundation of Hubei Province (grant No. 2006ABA334).

References

First citationArmarego, W. L. (1963). Adv. Heterocycl. Chem. 11, 253–309.  CrossRef PubMed CAS Web of Science Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWitt, A. & Bergman, J. (2003). Curr. Org. Chem. 7, 659–677.  Web of Science CrossRef CAS Google Scholar
First citationYang, X. H., Wu, M. H., Sun, S. F., Ding, M. W., Xie, J. L. & Xia, Q. H. (2008). J. Heterocycl. Chem. 5, 1365–1369.  CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds