metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2,9-Dieth­­oxy-1,10-phenanthroline-κ2N,N′)bis­­(thio­cyanato-κN)cobalt(II)

aCollege of Sciences, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
*Correspondence e-mail: niu_cy2000@yahoo.com.cn

(Received 23 October 2008; accepted 27 October 2008; online 31 October 2008)

In the title complex, [Co(NCS)2(C16H16N2O2)], the CoII ion is coordinated by two N atoms from one 2,9-dieth­oxy-1,10-phenanthroline ligand and two N atoms from two different thio­cyanate ligands in a distorted tetra­hedral environment. The Co—N bonds involving the thio­cyanate ligands are significantly shorter than the other two Co—N bonds. The atoms of one of the eth­oxy groups are essentially coplanar with the phenanthroline ring [N=C—O—C = 178.8 (4)°], while the other eth­oxy group is slightly twisted from the phenanthroline ring plane [N=C—O—C = 167.2 (4)°]. In the crystal structure, there is a weak ππ stacking inter­action between two symmetry-related phenanthroline rings with a centroid–centroid distance of 3.706 (4) Å.

Related literature

For 1,10-phenanthroline coordination compounds with transition metal atoms as potential strong luminescent materials, see: Majumdera et al. (2006[Majumdera, A. Westerhausen, M., Kneifel, A. N., Sutter, J. P., Daroc, N. & Mitra, S. (2006). Inorg. Chim. Acta, 359, 3841-3846.]); Bie et al. (2006[Bie, H. Y., Wei, J., Yu, J. H., Wang, T. G., Lu, J. & Xu, J. Q. (2006). Mater. Lett. 60, 2475-2479.]); Pijper et al. (1984[Pijper, P. L., Van der, G. H., Timmerman, H. & Nauta, W. T. (1984). Eur. J. Med. Chem. 19, 399-404.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(NCS)2(C16H16N2O2)]

  • Mr = 443.40

  • Monoclinic, P 21 /n

  • a = 8.7072 (16) Å

  • b = 15.625 (3) Å

  • c = 14.828 (3) Å

  • β = 95.082 (3)°

  • V = 2009.4 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.08 mm−1

  • T = 291 (2) K

  • 0.34 × 0.20 × 0.10 mm

Data collection
  • Siemens SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.707, Tmax = 0.899

  • 10517 measured reflections

  • 3726 independent reflections

  • 2904 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.239

  • S = 1.07

  • 3726 reflections

  • 246 parameters

  • H-atom parameters constrained

  • Δρmax = 1.80 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Selected geometric parameters (Å, °)

Co1—N3 1.928 (4)
Co1—N4 1.930 (5)
Co1—N1 2.035 (4)
Co1—N2 2.038 (4)
N3—Co1—N4 109.33 (18)
N3—Co1—N1 116.67 (17)
N4—Co1—N1 119.86 (17)
N3—Co1—N2 114.22 (17)
N4—Co1—N2 113.12 (18)
N1—Co1—N2 81.08 (16)

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART. Siemens Analytical X-ray Instrum ents Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1994[Siemens (1994). SAINT. Siemens Analytical X-ray Instrum ents Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Derivatives of 1,10-phenanthroline can be used as multi-dentate ligands. Their coordination compounds with transition metal atoms possess potential as strong luminescent materials (Majumdera et al., 2006; Bie, et al., 2006) and antimycoplasmal activity (Pijper, et al., 1984).

In the title compound the CoII ion is coordinated by two nitrogen atoms from one phenanthroline ring (N1, N2) and two nitrogen atoms from two different thiocyanate ligands (N3, N4) forming a distorted tetrahedral enviroment (Fig. 1). The Co1—N1 and Co1—N2 bond lengths are longer than the Co1—N3 and Co1—N4 bond lengths. The N1—Co1—N2 bond angle of 81.08 (16) ° involving the two phenanthroline nitrogen atoms is the smallest coordination angle (Table 1). All other N—Co1—N bond angles are larger than the ideal 109.5 °. The atoms of one of the ethoxy groups are essentially co-planar with the phenanthroline ring [N2C10-O2-C17 = 178.8 (4)°] while the other ethoxy group is slightly twisted from the phenanthroline ring plane [N1C1-O1-C15 = 167.2 (4)°]. In the crystal structure, weak ππ stacking interactions between pairs of symmetry related phenanthroline rings form a centroid-to-centroid distance of 3.706 (4) Å (Fig. 2).

Related literature top

For 1,10-phenanthroline coordination compounds with transition metal atoms as potential strong luminescent materials, see: Majumdera et al. (2006); Bie et al. (2006); Pijper et al. (1984).

Experimental top

The organic ligand 2,9-diethoxy-1,10-phenanthroline was prepared according to the procedure of literature (Pijper, et al., 1984). The slow evaporation of mixture of the ligand (0.024 g, 0.1 mmol), NH4SCN (0.016 g, 0.2 mmol), and Co(ClO4)2.6H2O (0.037 g, 0.1 mmol) in 30 ml me thanol afforded blue block single crystals in about 10 days (yield about 67%).

Refinement top

The H atoms were positioned geometrically and refined using a riding model [C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms; C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for methylene H atoms; C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms]. The final difference Fourier map had a highest peak at 0.90 Å from atom O1 and a deepest hole at 0.90 Å from atom S2, but were otherwise featureless.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1994); data reduction: SAINT (Siemens, 1994); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title complex, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal structure showing intermolecular ππ stacking indicated by dashed lines. All H atoms have been omitted for clarity.
(2,9-Diethoxy-1,10-phenanthroline-κ2N,N')bis(thiocyanato-κN)cobalt(II) top
Crystal data top
[Co(NCS)2(C16H16N2O2)]F(000) = 908
Mr = 443.40Dx = 1.466 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3449 reflections
a = 8.7072 (16) Åθ = 2.6–25.5°
b = 15.625 (3) ŵ = 1.08 mm1
c = 14.828 (3) ÅT = 291 K
β = 95.082 (3)°Block, blue
V = 2009.4 (6) Å30.34 × 0.20 × 0.10 mm
Z = 4
Data collection top
Siemens SMART CCD
diffractometer
3726 independent reflections
Radiation source: fine-focus sealed tube2904 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 25.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.707, Tmax = 0.899k = 1812
10517 measured reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.239H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.1606P)2 + 1.5683P]
where P = (Fo2 + 2Fc2)/3
3726 reflections(Δ/σ)max < 0.001
246 parametersΔρmax = 1.80 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
[Co(NCS)2(C16H16N2O2)]V = 2009.4 (6) Å3
Mr = 443.40Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.7072 (16) ŵ = 1.08 mm1
b = 15.625 (3) ÅT = 291 K
c = 14.828 (3) Å0.34 × 0.20 × 0.10 mm
β = 95.082 (3)°
Data collection top
Siemens SMART CCD
diffractometer
3726 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2904 reflections with I > 2σ(I)
Tmin = 0.707, Tmax = 0.899Rint = 0.031
10517 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0700 restraints
wR(F2) = 0.239H-atom parameters constrained
S = 1.07Δρmax = 1.80 e Å3
3726 reflectionsΔρmin = 0.49 e Å3
246 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.90632 (7)0.18324 (4)0.31994 (4)0.0446 (3)
S10.6802 (3)0.18997 (12)0.02186 (11)0.0835 (6)
S21.4386 (2)0.18412 (11)0.30008 (16)0.0841 (6)
O10.8363 (4)0.3691 (2)0.3802 (2)0.0599 (9)
O20.9610 (5)0.0115 (2)0.2896 (3)0.0668 (10)
N10.8007 (4)0.2359 (3)0.4237 (2)0.0474 (9)
N20.8523 (5)0.0737 (3)0.3847 (3)0.0508 (10)
N30.8028 (5)0.1958 (3)0.2003 (3)0.0577 (11)
N41.1253 (5)0.1983 (3)0.3143 (3)0.0571 (11)
C10.7782 (5)0.3180 (3)0.4418 (3)0.0461 (11)
C20.7004 (7)0.3438 (4)0.5164 (4)0.0658 (15)
H20.68610.40170.52750.079*
C30.6473 (7)0.2855 (5)0.5710 (4)0.0685 (16)
H30.59630.30320.62030.082*
C40.6667 (6)0.1969 (4)0.5557 (4)0.0601 (14)
C50.6155 (7)0.1293 (5)0.6092 (4)0.0719 (17)
H50.56110.14240.65860.086*
C60.6434 (7)0.0464 (5)0.5905 (4)0.0741 (18)
H60.60900.00360.62740.089*
C70.7254 (6)0.0239 (4)0.5145 (4)0.0593 (13)
C80.7608 (7)0.0601 (4)0.4899 (4)0.0698 (16)
H80.73020.10550.52470.084*
C90.8390 (7)0.0767 (4)0.4160 (4)0.0680 (15)
H90.86240.13260.40040.082*
C100.8837 (6)0.0064 (3)0.3637 (4)0.0556 (12)
C110.7747 (5)0.0888 (3)0.4597 (3)0.0508 (12)
C120.7455 (5)0.1759 (3)0.4801 (3)0.0455 (11)
C130.7502 (6)0.1927 (3)0.1260 (4)0.0503 (12)
C141.2557 (6)0.1921 (3)0.3084 (3)0.0512 (12)
C150.8523 (7)0.4599 (4)0.3978 (4)0.0715 (16)
H15A0.90040.46970.45850.086*
H15B0.75220.48750.39220.086*
C160.9501 (8)0.4942 (4)0.3297 (5)0.090 (2)
H16A1.05000.46780.33750.135*
H16B0.96080.55500.33740.135*
H16C0.90320.48210.27010.135*
C171.0080 (7)0.0937 (4)0.2575 (5)0.0732 (16)
H17A0.91880.12870.23880.088*
H17B1.07130.12370.30450.088*
C181.0986 (8)0.0743 (5)0.1784 (5)0.092 (2)
H18A1.03660.04090.13480.139*
H18B1.12740.12690.15100.139*
H18C1.18970.04280.19890.139*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0453 (4)0.0551 (5)0.0342 (4)0.0015 (3)0.0081 (3)0.0025 (3)
S10.1125 (15)0.0887 (12)0.0451 (9)0.0064 (9)0.0165 (9)0.0053 (7)
S20.0513 (9)0.0844 (12)0.1190 (16)0.0024 (7)0.0205 (9)0.0091 (10)
O10.071 (2)0.058 (2)0.052 (2)0.0013 (17)0.0125 (17)0.0004 (17)
O20.080 (3)0.053 (2)0.069 (2)0.0074 (18)0.017 (2)0.0040 (18)
N10.0404 (19)0.068 (3)0.0341 (19)0.0015 (17)0.0057 (15)0.0015 (18)
N20.049 (2)0.059 (2)0.044 (2)0.0027 (18)0.0031 (16)0.0038 (19)
N30.052 (2)0.079 (3)0.042 (2)0.003 (2)0.0059 (19)0.004 (2)
N40.047 (2)0.079 (3)0.047 (2)0.005 (2)0.0087 (18)0.001 (2)
C10.042 (2)0.051 (3)0.045 (3)0.0039 (18)0.0017 (19)0.005 (2)
C20.062 (3)0.082 (4)0.054 (3)0.011 (3)0.011 (3)0.017 (3)
C30.058 (3)0.108 (5)0.042 (3)0.008 (3)0.017 (2)0.014 (3)
C40.044 (3)0.096 (4)0.039 (3)0.000 (2)0.001 (2)0.001 (3)
C50.060 (3)0.119 (6)0.039 (3)0.013 (3)0.016 (2)0.008 (3)
C60.067 (4)0.110 (5)0.047 (3)0.022 (3)0.013 (3)0.020 (3)
C70.053 (3)0.076 (4)0.048 (3)0.016 (3)0.001 (2)0.013 (3)
C80.068 (4)0.076 (4)0.063 (4)0.016 (3)0.007 (3)0.026 (3)
C90.070 (4)0.059 (3)0.072 (4)0.008 (3)0.007 (3)0.012 (3)
C100.053 (3)0.056 (3)0.055 (3)0.001 (2)0.006 (2)0.002 (2)
C110.044 (2)0.070 (3)0.037 (2)0.007 (2)0.0017 (18)0.008 (2)
C120.037 (2)0.064 (3)0.035 (2)0.0055 (19)0.0021 (18)0.008 (2)
C130.055 (3)0.052 (3)0.044 (3)0.001 (2)0.007 (2)0.005 (2)
C140.060 (3)0.051 (3)0.043 (3)0.005 (2)0.007 (2)0.001 (2)
C150.072 (4)0.064 (4)0.079 (4)0.000 (3)0.008 (3)0.009 (3)
C160.090 (5)0.065 (4)0.120 (6)0.007 (4)0.033 (4)0.009 (4)
C170.069 (4)0.062 (3)0.088 (4)0.007 (3)0.001 (3)0.016 (3)
C180.090 (5)0.084 (5)0.106 (6)0.006 (4)0.026 (4)0.022 (4)
Geometric parameters (Å, º) top
Co1—N31.928 (4)C5—C61.352 (9)
Co1—N41.930 (5)C5—H50.9300
Co1—N12.035 (4)C6—C71.431 (8)
Co1—N22.038 (4)C6—H60.9300
S1—C131.609 (5)C7—C111.391 (7)
S2—C141.613 (6)C7—C81.403 (9)
O1—C11.345 (6)C8—C91.365 (9)
O1—C151.447 (7)C8—H80.9300
O2—C101.341 (7)C9—C101.419 (8)
O2—C171.441 (7)C9—H90.9300
N1—C11.329 (6)C11—C121.422 (7)
N1—C121.371 (6)C15—C161.478 (8)
N2—C101.324 (7)C15—H15A0.9700
N2—C111.372 (6)C15—H15B0.9700
N3—C131.156 (7)C16—H16A0.9600
N4—C141.151 (7)C16—H16B0.9600
C1—C21.406 (7)C16—H16C0.9600
C2—C31.330 (9)C17—C181.501 (9)
C2—H20.9300C17—H17A0.9700
C3—C41.415 (9)C17—H17B0.9700
C3—H30.9300C18—H18A0.9600
C4—C121.404 (7)C18—H18B0.9600
C4—C51.417 (9)C18—H18C0.9600
N3—Co1—N4109.33 (18)C7—C8—H8119.2
N3—Co1—N1116.67 (17)C8—C9—C10118.2 (6)
N4—Co1—N1119.86 (17)C8—C9—H9120.9
N3—Co1—N2114.22 (17)C10—C9—H9120.9
N4—Co1—N2113.12 (18)N2—C10—O2112.2 (4)
N1—Co1—N281.08 (16)N2—C10—C9122.1 (5)
C1—O1—C15119.7 (4)O2—C10—C9125.7 (5)
C10—O2—C17120.1 (4)N2—C11—C7123.2 (5)
C1—N1—C12118.1 (4)N2—C11—C12116.5 (4)
C1—N1—Co1128.9 (3)C7—C11—C12120.3 (5)
C12—N1—Co1113.0 (3)N1—C12—C4123.3 (5)
C10—N2—C11118.7 (4)N1—C12—C11116.5 (4)
C10—N2—Co1128.5 (3)C4—C12—C11120.1 (4)
C11—N2—Co1112.8 (3)N3—C13—S1178.6 (5)
C13—N3—Co1170.6 (4)N4—C14—S2179.6 (5)
C14—N4—Co1168.0 (4)O1—C15—C16106.5 (5)
N1—C1—O1111.4 (4)O1—C15—H15A110.4
N1—C1—C2121.7 (5)C16—C15—H15A110.4
O1—C1—C2126.9 (5)O1—C15—H15B110.4
C3—C2—C1120.0 (6)C16—C15—H15B110.4
C3—C2—H2120.0H15A—C15—H15B108.6
C1—C2—H2120.0C15—C16—H16A109.5
C2—C3—C4121.3 (5)C15—C16—H16B109.5
C2—C3—H3119.3H16A—C16—H16B109.5
C4—C3—H3119.3C15—C16—H16C109.5
C12—C4—C3115.5 (5)H16A—C16—H16C109.5
C12—C4—C5118.3 (6)H16B—C16—H16C109.5
C3—C4—C5126.2 (6)O2—C17—C18105.2 (5)
C6—C5—C4121.9 (5)O2—C17—H17A110.7
C6—C5—H5119.1C18—C17—H17A110.7
C4—C5—H5119.1O2—C17—H17B110.7
C5—C6—C7120.6 (5)C18—C17—H17B110.7
C5—C6—H6119.7H17A—C17—H17B108.8
C7—C6—H6119.7C17—C18—H18A109.5
C11—C7—C8116.4 (5)C17—C18—H18B109.5
C11—C7—C6118.8 (6)H18A—C18—H18B109.5
C8—C7—C6124.8 (5)C17—C18—H18C109.5
C9—C8—C7121.5 (5)H18A—C18—H18C109.5
C9—C8—H8119.2H18B—C18—H18C109.5
N3—Co1—N1—C168.1 (4)C6—C7—C8—C9179.7 (5)
N4—Co1—N1—C167.6 (4)C7—C8—C9—C100.3 (8)
N2—Co1—N1—C1179.2 (4)C11—N2—C10—O2179.4 (4)
N3—Co1—N1—C12111.0 (3)Co1—N2—C10—O20.1 (6)
N4—Co1—N1—C12113.3 (3)C11—N2—C10—C90.3 (7)
N2—Co1—N1—C121.7 (3)Co1—N2—C10—C9179.6 (4)
N3—Co1—N2—C1066.4 (4)C17—O2—C10—N2178.8 (4)
N4—Co1—N2—C1059.6 (5)C17—O2—C10—C90.9 (8)
N1—Co1—N2—C10178.3 (4)C8—C9—C10—N20.3 (8)
N3—Co1—N2—C11114.3 (3)C8—C9—C10—O2179.9 (5)
N4—Co1—N2—C11119.8 (3)C10—N2—C11—C70.8 (7)
N1—Co1—N2—C111.0 (3)Co1—N2—C11—C7179.8 (4)
N3—Co1—N4—C1490 (2)C10—N2—C11—C12179.2 (4)
N1—Co1—N4—C14132 (2)Co1—N2—C11—C120.2 (5)
N2—Co1—N4—C1439 (2)C8—C7—C11—N20.7 (7)
C12—N1—C1—O1179.1 (4)C6—C7—C11—N2179.1 (4)
Co1—N1—C1—O10.0 (6)C8—C7—C11—C12179.3 (5)
C12—N1—C1—C20.0 (7)C6—C7—C11—C120.8 (7)
Co1—N1—C1—C2179.1 (4)C1—N1—C12—C40.0 (7)
C15—O1—C1—N1167.2 (4)Co1—N1—C12—C4179.2 (4)
C15—O1—C1—C213.7 (8)C1—N1—C12—C11178.7 (4)
N1—C1—C2—C30.1 (8)Co1—N1—C12—C112.1 (5)
O1—C1—C2—C3179.0 (5)C3—C4—C12—N10.2 (7)
C1—C2—C3—C40.3 (9)C5—C4—C12—N1179.8 (5)
C2—C3—C4—C120.3 (8)C3—C4—C12—C11178.4 (5)
C2—C3—C4—C5179.9 (5)C5—C4—C12—C111.1 (7)
C12—C4—C5—C61.4 (8)N2—C11—C12—N11.3 (6)
C3—C4—C5—C6178.1 (6)C7—C11—C12—N1178.8 (4)
C4—C5—C6—C70.6 (9)N2—C11—C12—C4180.0 (4)
C5—C6—C7—C110.6 (8)C7—C11—C12—C40.0 (7)
C5—C6—C7—C8179.6 (6)C1—O1—C15—C16167.3 (5)
C11—C7—C8—C90.1 (8)C10—O2—C17—C18176.5 (5)

Experimental details

Crystal data
Chemical formula[Co(NCS)2(C16H16N2O2)]
Mr443.40
Crystal system, space groupMonoclinic, P21/n
Temperature (K)291
a, b, c (Å)8.7072 (16), 15.625 (3), 14.828 (3)
β (°) 95.082 (3)
V3)2009.4 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.08
Crystal size (mm)0.34 × 0.20 × 0.10
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.707, 0.899
No. of measured, independent and
observed [I > 2σ(I)] reflections
10517, 3726, 2904
Rint0.031
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.239, 1.07
No. of reflections3726
No. of parameters246
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.80, 0.49

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1994), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2005), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Co1—N31.928 (4)Co1—N12.035 (4)
Co1—N41.930 (5)Co1—N22.038 (4)
N3—Co1—N4109.33 (18)N3—Co1—N2114.22 (17)
N3—Co1—N1116.67 (17)N4—Co1—N2113.12 (18)
N4—Co1—N1119.86 (17)N1—Co1—N281.08 (16)
 

Acknowledgements

We also gratefully acknowledge financial support from the Natural Science Foundation of Henan Province (2008B150008) and the Science and Technology Key Task of Henan Province (0624040011).

References

First citationBie, H. Y., Wei, J., Yu, J. H., Wang, T. G., Lu, J. & Xu, J. Q. (2006). Mater. Lett. 60, 2475–2479.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationMajumdera, A. Westerhausen, M., Kneifel, A. N., Sutter, J. P., Daroc, N. & Mitra, S. (2006). Inorg. Chim. Acta, 359, 3841–3846.  Google Scholar
First citationPijper, P. L., Van der, G. H., Timmerman, H. & Nauta, W. T. (1984). Eur. J. Med. Chem. 19, 399–404.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). SAINT. Siemens Analytical X-ray Instrum ents Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSiemens (1996). SMART. Siemens Analytical X-ray Instrum ents Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds