metal-organic compounds
(2,9-Diethoxy-1,10-phenanthroline-κ2N,N′)bis(thiocyanato-κN)cobalt(II)
aCollege of Sciences, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
*Correspondence e-mail: niu_cy2000@yahoo.com.cn
In the title complex, [Co(NCS)2(C16H16N2O2)], the CoII ion is coordinated by two N atoms from one 2,9-diethoxy-1,10-phenanthroline ligand and two N atoms from two different thiocyanate ligands in a distorted tetrahedral environment. The Co—N bonds involving the thiocyanate ligands are significantly shorter than the other two Co—N bonds. The atoms of one of the ethoxy groups are essentially coplanar with the phenanthroline ring [N=C—O—C = 178.8 (4)°], while the other ethoxy group is slightly twisted from the phenanthroline ring plane [N=C—O—C = 167.2 (4)°]. In the there is a weak π–π stacking interaction between two symmetry-related phenanthroline rings with a centroid–centroid distance of 3.706 (4) Å.
Related literature
For 1,10-phenanthroline coordination compounds with transition metal atoms as potential strong luminescent materials, see: Majumdera et al. (2006); Bie et al. (2006); Pijper et al. (1984).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Siemens, 1996); cell SAINT (Siemens, 1994); data reduction: SAINT; program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
10.1107/S160053680803496X/lh2718sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053680803496X/lh2718Isup2.hkl
The organic ligand 2,9-diethoxy-1,10-phenanthroline was prepared according to the procedure of literature (Pijper, et al., 1984). The slow evaporation of mixture of the ligand (0.024 g, 0.1 mmol), NH4SCN (0.016 g, 0.2 mmol), and Co(ClO4)2.6H2O (0.037 g, 0.1 mmol) in 30 ml me thanol afforded blue block single crystals in about 10 days (yield about 67%).
The H atoms were positioned geometrically and refined using a riding model [C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms; C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for methylene H atoms; C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms]. The final difference Fourier map had a highest peak at 0.90 Å from atom O1 and a deepest hole at 0.90 Å from atom S2, but were otherwise featureless.
Data collection: SMART (Siemens, 1996); cell
SAINT (Siemens, 1994); data reduction: SAINT (Siemens, 1994); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Co(NCS)2(C16H16N2O2)] | F(000) = 908 |
Mr = 443.40 | Dx = 1.466 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 3449 reflections |
a = 8.7072 (16) Å | θ = 2.6–25.5° |
b = 15.625 (3) Å | µ = 1.08 mm−1 |
c = 14.828 (3) Å | T = 291 K |
β = 95.082 (3)° | Block, blue |
V = 2009.4 (6) Å3 | 0.34 × 0.20 × 0.10 mm |
Z = 4 |
Siemens SMART CCD diffractometer | 3726 independent reflections |
Radiation source: fine-focus sealed tube | 2904 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.031 |
ϕ and ω scans | θmax = 25.5°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −10→10 |
Tmin = 0.707, Tmax = 0.899 | k = −18→12 |
10517 measured reflections | l = −17→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.070 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.239 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.1606P)2 + 1.5683P] where P = (Fo2 + 2Fc2)/3 |
3726 reflections | (Δ/σ)max < 0.001 |
246 parameters | Δρmax = 1.80 e Å−3 |
0 restraints | Δρmin = −0.49 e Å−3 |
[Co(NCS)2(C16H16N2O2)] | V = 2009.4 (6) Å3 |
Mr = 443.40 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 8.7072 (16) Å | µ = 1.08 mm−1 |
b = 15.625 (3) Å | T = 291 K |
c = 14.828 (3) Å | 0.34 × 0.20 × 0.10 mm |
β = 95.082 (3)° |
Siemens SMART CCD diffractometer | 3726 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2904 reflections with I > 2σ(I) |
Tmin = 0.707, Tmax = 0.899 | Rint = 0.031 |
10517 measured reflections |
R[F2 > 2σ(F2)] = 0.070 | 0 restraints |
wR(F2) = 0.239 | H-atom parameters constrained |
S = 1.07 | Δρmax = 1.80 e Å−3 |
3726 reflections | Δρmin = −0.49 e Å−3 |
246 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.90632 (7) | 0.18324 (4) | 0.31994 (4) | 0.0446 (3) | |
S1 | 0.6802 (3) | 0.18997 (12) | 0.02186 (11) | 0.0835 (6) | |
S2 | 1.4386 (2) | 0.18412 (11) | 0.30008 (16) | 0.0841 (6) | |
O1 | 0.8363 (4) | 0.3691 (2) | 0.3802 (2) | 0.0599 (9) | |
O2 | 0.9610 (5) | −0.0115 (2) | 0.2896 (3) | 0.0668 (10) | |
N1 | 0.8007 (4) | 0.2359 (3) | 0.4237 (2) | 0.0474 (9) | |
N2 | 0.8523 (5) | 0.0737 (3) | 0.3847 (3) | 0.0508 (10) | |
N3 | 0.8028 (5) | 0.1958 (3) | 0.2003 (3) | 0.0577 (11) | |
N4 | 1.1253 (5) | 0.1983 (3) | 0.3143 (3) | 0.0571 (11) | |
C1 | 0.7782 (5) | 0.3180 (3) | 0.4418 (3) | 0.0461 (11) | |
C2 | 0.7004 (7) | 0.3438 (4) | 0.5164 (4) | 0.0658 (15) | |
H2 | 0.6861 | 0.4017 | 0.5275 | 0.079* | |
C3 | 0.6473 (7) | 0.2855 (5) | 0.5710 (4) | 0.0685 (16) | |
H3 | 0.5963 | 0.3032 | 0.6203 | 0.082* | |
C4 | 0.6667 (6) | 0.1969 (4) | 0.5557 (4) | 0.0601 (14) | |
C5 | 0.6155 (7) | 0.1293 (5) | 0.6092 (4) | 0.0719 (17) | |
H5 | 0.5611 | 0.1424 | 0.6586 | 0.086* | |
C6 | 0.6434 (7) | 0.0464 (5) | 0.5905 (4) | 0.0741 (18) | |
H6 | 0.6090 | 0.0036 | 0.6274 | 0.089* | |
C7 | 0.7254 (6) | 0.0239 (4) | 0.5145 (4) | 0.0593 (13) | |
C8 | 0.7608 (7) | −0.0601 (4) | 0.4899 (4) | 0.0698 (16) | |
H8 | 0.7302 | −0.1055 | 0.5247 | 0.084* | |
C9 | 0.8390 (7) | −0.0767 (4) | 0.4160 (4) | 0.0680 (15) | |
H9 | 0.8624 | −0.1326 | 0.4004 | 0.082* | |
C10 | 0.8837 (6) | −0.0064 (3) | 0.3637 (4) | 0.0556 (12) | |
C11 | 0.7747 (5) | 0.0888 (3) | 0.4597 (3) | 0.0508 (12) | |
C12 | 0.7455 (5) | 0.1759 (3) | 0.4801 (3) | 0.0455 (11) | |
C13 | 0.7502 (6) | 0.1927 (3) | 0.1260 (4) | 0.0503 (12) | |
C14 | 1.2557 (6) | 0.1921 (3) | 0.3084 (3) | 0.0512 (12) | |
C15 | 0.8523 (7) | 0.4599 (4) | 0.3978 (4) | 0.0715 (16) | |
H15A | 0.9004 | 0.4697 | 0.4585 | 0.086* | |
H15B | 0.7522 | 0.4875 | 0.3922 | 0.086* | |
C16 | 0.9501 (8) | 0.4942 (4) | 0.3297 (5) | 0.090 (2) | |
H16A | 1.0500 | 0.4678 | 0.3375 | 0.135* | |
H16B | 0.9608 | 0.5550 | 0.3374 | 0.135* | |
H16C | 0.9032 | 0.4821 | 0.2701 | 0.135* | |
C17 | 1.0080 (7) | −0.0937 (4) | 0.2575 (5) | 0.0732 (16) | |
H17A | 0.9188 | −0.1287 | 0.2388 | 0.088* | |
H17B | 1.0713 | −0.1237 | 0.3045 | 0.088* | |
C18 | 1.0986 (8) | −0.0743 (5) | 0.1784 (5) | 0.092 (2) | |
H18A | 1.0366 | −0.0409 | 0.1348 | 0.139* | |
H18B | 1.1274 | −0.1269 | 0.1510 | 0.139* | |
H18C | 1.1897 | −0.0428 | 0.1989 | 0.139* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.0453 (4) | 0.0551 (5) | 0.0342 (4) | −0.0015 (3) | 0.0081 (3) | 0.0025 (3) |
S1 | 0.1125 (15) | 0.0887 (12) | 0.0451 (9) | −0.0064 (9) | −0.0165 (9) | 0.0053 (7) |
S2 | 0.0513 (9) | 0.0844 (12) | 0.1190 (16) | 0.0024 (7) | 0.0205 (9) | 0.0091 (10) |
O1 | 0.071 (2) | 0.058 (2) | 0.052 (2) | 0.0013 (17) | 0.0125 (17) | −0.0004 (17) |
O2 | 0.080 (3) | 0.053 (2) | 0.069 (2) | 0.0074 (18) | 0.017 (2) | −0.0040 (18) |
N1 | 0.0404 (19) | 0.068 (3) | 0.0341 (19) | −0.0015 (17) | 0.0057 (15) | 0.0015 (18) |
N2 | 0.049 (2) | 0.059 (2) | 0.044 (2) | −0.0027 (18) | 0.0031 (16) | 0.0038 (19) |
N3 | 0.052 (2) | 0.079 (3) | 0.042 (2) | −0.003 (2) | 0.0059 (19) | 0.004 (2) |
N4 | 0.047 (2) | 0.079 (3) | 0.047 (2) | −0.005 (2) | 0.0087 (18) | −0.001 (2) |
C1 | 0.042 (2) | 0.051 (3) | 0.045 (3) | 0.0039 (18) | 0.0017 (19) | −0.005 (2) |
C2 | 0.062 (3) | 0.082 (4) | 0.054 (3) | 0.011 (3) | 0.011 (3) | −0.017 (3) |
C3 | 0.058 (3) | 0.108 (5) | 0.042 (3) | 0.008 (3) | 0.017 (2) | −0.014 (3) |
C4 | 0.044 (3) | 0.096 (4) | 0.039 (3) | 0.000 (2) | −0.001 (2) | −0.001 (3) |
C5 | 0.060 (3) | 0.119 (6) | 0.039 (3) | −0.013 (3) | 0.016 (2) | 0.008 (3) |
C6 | 0.067 (4) | 0.110 (5) | 0.047 (3) | −0.022 (3) | 0.013 (3) | 0.020 (3) |
C7 | 0.053 (3) | 0.076 (4) | 0.048 (3) | −0.016 (3) | −0.001 (2) | 0.013 (3) |
C8 | 0.068 (4) | 0.076 (4) | 0.063 (4) | −0.016 (3) | −0.007 (3) | 0.026 (3) |
C9 | 0.070 (4) | 0.059 (3) | 0.072 (4) | −0.008 (3) | −0.007 (3) | 0.012 (3) |
C10 | 0.053 (3) | 0.056 (3) | 0.055 (3) | 0.001 (2) | −0.006 (2) | 0.002 (2) |
C11 | 0.044 (2) | 0.070 (3) | 0.037 (2) | −0.007 (2) | −0.0017 (18) | 0.008 (2) |
C12 | 0.037 (2) | 0.064 (3) | 0.035 (2) | −0.0055 (19) | 0.0021 (18) | 0.008 (2) |
C13 | 0.055 (3) | 0.052 (3) | 0.044 (3) | 0.001 (2) | 0.007 (2) | 0.005 (2) |
C14 | 0.060 (3) | 0.051 (3) | 0.043 (3) | −0.005 (2) | 0.007 (2) | −0.001 (2) |
C15 | 0.072 (4) | 0.064 (4) | 0.079 (4) | 0.000 (3) | 0.008 (3) | −0.009 (3) |
C16 | 0.090 (5) | 0.065 (4) | 0.120 (6) | −0.007 (4) | 0.033 (4) | 0.009 (4) |
C17 | 0.069 (4) | 0.062 (3) | 0.088 (4) | 0.007 (3) | −0.001 (3) | −0.016 (3) |
C18 | 0.090 (5) | 0.084 (5) | 0.106 (6) | 0.006 (4) | 0.026 (4) | −0.022 (4) |
Co1—N3 | 1.928 (4) | C5—C6 | 1.352 (9) |
Co1—N4 | 1.930 (5) | C5—H5 | 0.9300 |
Co1—N1 | 2.035 (4) | C6—C7 | 1.431 (8) |
Co1—N2 | 2.038 (4) | C6—H6 | 0.9300 |
S1—C13 | 1.609 (5) | C7—C11 | 1.391 (7) |
S2—C14 | 1.613 (6) | C7—C8 | 1.403 (9) |
O1—C1 | 1.345 (6) | C8—C9 | 1.365 (9) |
O1—C15 | 1.447 (7) | C8—H8 | 0.9300 |
O2—C10 | 1.341 (7) | C9—C10 | 1.419 (8) |
O2—C17 | 1.441 (7) | C9—H9 | 0.9300 |
N1—C1 | 1.329 (6) | C11—C12 | 1.422 (7) |
N1—C12 | 1.371 (6) | C15—C16 | 1.478 (8) |
N2—C10 | 1.324 (7) | C15—H15A | 0.9700 |
N2—C11 | 1.372 (6) | C15—H15B | 0.9700 |
N3—C13 | 1.156 (7) | C16—H16A | 0.9600 |
N4—C14 | 1.151 (7) | C16—H16B | 0.9600 |
C1—C2 | 1.406 (7) | C16—H16C | 0.9600 |
C2—C3 | 1.330 (9) | C17—C18 | 1.501 (9) |
C2—H2 | 0.9300 | C17—H17A | 0.9700 |
C3—C4 | 1.415 (9) | C17—H17B | 0.9700 |
C3—H3 | 0.9300 | C18—H18A | 0.9600 |
C4—C12 | 1.404 (7) | C18—H18B | 0.9600 |
C4—C5 | 1.417 (9) | C18—H18C | 0.9600 |
N3—Co1—N4 | 109.33 (18) | C7—C8—H8 | 119.2 |
N3—Co1—N1 | 116.67 (17) | C8—C9—C10 | 118.2 (6) |
N4—Co1—N1 | 119.86 (17) | C8—C9—H9 | 120.9 |
N3—Co1—N2 | 114.22 (17) | C10—C9—H9 | 120.9 |
N4—Co1—N2 | 113.12 (18) | N2—C10—O2 | 112.2 (4) |
N1—Co1—N2 | 81.08 (16) | N2—C10—C9 | 122.1 (5) |
C1—O1—C15 | 119.7 (4) | O2—C10—C9 | 125.7 (5) |
C10—O2—C17 | 120.1 (4) | N2—C11—C7 | 123.2 (5) |
C1—N1—C12 | 118.1 (4) | N2—C11—C12 | 116.5 (4) |
C1—N1—Co1 | 128.9 (3) | C7—C11—C12 | 120.3 (5) |
C12—N1—Co1 | 113.0 (3) | N1—C12—C4 | 123.3 (5) |
C10—N2—C11 | 118.7 (4) | N1—C12—C11 | 116.5 (4) |
C10—N2—Co1 | 128.5 (3) | C4—C12—C11 | 120.1 (4) |
C11—N2—Co1 | 112.8 (3) | N3—C13—S1 | 178.6 (5) |
C13—N3—Co1 | 170.6 (4) | N4—C14—S2 | 179.6 (5) |
C14—N4—Co1 | 168.0 (4) | O1—C15—C16 | 106.5 (5) |
N1—C1—O1 | 111.4 (4) | O1—C15—H15A | 110.4 |
N1—C1—C2 | 121.7 (5) | C16—C15—H15A | 110.4 |
O1—C1—C2 | 126.9 (5) | O1—C15—H15B | 110.4 |
C3—C2—C1 | 120.0 (6) | C16—C15—H15B | 110.4 |
C3—C2—H2 | 120.0 | H15A—C15—H15B | 108.6 |
C1—C2—H2 | 120.0 | C15—C16—H16A | 109.5 |
C2—C3—C4 | 121.3 (5) | C15—C16—H16B | 109.5 |
C2—C3—H3 | 119.3 | H16A—C16—H16B | 109.5 |
C4—C3—H3 | 119.3 | C15—C16—H16C | 109.5 |
C12—C4—C3 | 115.5 (5) | H16A—C16—H16C | 109.5 |
C12—C4—C5 | 118.3 (6) | H16B—C16—H16C | 109.5 |
C3—C4—C5 | 126.2 (6) | O2—C17—C18 | 105.2 (5) |
C6—C5—C4 | 121.9 (5) | O2—C17—H17A | 110.7 |
C6—C5—H5 | 119.1 | C18—C17—H17A | 110.7 |
C4—C5—H5 | 119.1 | O2—C17—H17B | 110.7 |
C5—C6—C7 | 120.6 (5) | C18—C17—H17B | 110.7 |
C5—C6—H6 | 119.7 | H17A—C17—H17B | 108.8 |
C7—C6—H6 | 119.7 | C17—C18—H18A | 109.5 |
C11—C7—C8 | 116.4 (5) | C17—C18—H18B | 109.5 |
C11—C7—C6 | 118.8 (6) | H18A—C18—H18B | 109.5 |
C8—C7—C6 | 124.8 (5) | C17—C18—H18C | 109.5 |
C9—C8—C7 | 121.5 (5) | H18A—C18—H18C | 109.5 |
C9—C8—H8 | 119.2 | H18B—C18—H18C | 109.5 |
N3—Co1—N1—C1 | −68.1 (4) | C6—C7—C8—C9 | 179.7 (5) |
N4—Co1—N1—C1 | 67.6 (4) | C7—C8—C9—C10 | −0.3 (8) |
N2—Co1—N1—C1 | 179.2 (4) | C11—N2—C10—O2 | −179.4 (4) |
N3—Co1—N1—C12 | 111.0 (3) | Co1—N2—C10—O2 | −0.1 (6) |
N4—Co1—N1—C12 | −113.3 (3) | C11—N2—C10—C9 | 0.3 (7) |
N2—Co1—N1—C12 | −1.7 (3) | Co1—N2—C10—C9 | 179.6 (4) |
N3—Co1—N2—C10 | 66.4 (4) | C17—O2—C10—N2 | 178.8 (4) |
N4—Co1—N2—C10 | −59.6 (5) | C17—O2—C10—C9 | −0.9 (8) |
N1—Co1—N2—C10 | −178.3 (4) | C8—C9—C10—N2 | 0.3 (8) |
N3—Co1—N2—C11 | −114.3 (3) | C8—C9—C10—O2 | 179.9 (5) |
N4—Co1—N2—C11 | 119.8 (3) | C10—N2—C11—C7 | −0.8 (7) |
N1—Co1—N2—C11 | 1.0 (3) | Co1—N2—C11—C7 | 179.8 (4) |
N3—Co1—N4—C14 | −90 (2) | C10—N2—C11—C12 | 179.2 (4) |
N1—Co1—N4—C14 | 132 (2) | Co1—N2—C11—C12 | −0.2 (5) |
N2—Co1—N4—C14 | 39 (2) | C8—C7—C11—N2 | 0.7 (7) |
C12—N1—C1—O1 | −179.1 (4) | C6—C7—C11—N2 | −179.1 (4) |
Co1—N1—C1—O1 | 0.0 (6) | C8—C7—C11—C12 | −179.3 (5) |
C12—N1—C1—C2 | 0.0 (7) | C6—C7—C11—C12 | 0.8 (7) |
Co1—N1—C1—C2 | 179.1 (4) | C1—N1—C12—C4 | 0.0 (7) |
C15—O1—C1—N1 | −167.2 (4) | Co1—N1—C12—C4 | −179.2 (4) |
C15—O1—C1—C2 | 13.7 (8) | C1—N1—C12—C11 | −178.7 (4) |
N1—C1—C2—C3 | 0.1 (8) | Co1—N1—C12—C11 | 2.1 (5) |
O1—C1—C2—C3 | 179.0 (5) | C3—C4—C12—N1 | −0.2 (7) |
C1—C2—C3—C4 | −0.3 (9) | C5—C4—C12—N1 | −179.8 (5) |
C2—C3—C4—C12 | 0.3 (8) | C3—C4—C12—C11 | 178.4 (5) |
C2—C3—C4—C5 | 179.9 (5) | C5—C4—C12—C11 | −1.1 (7) |
C12—C4—C5—C6 | 1.4 (8) | N2—C11—C12—N1 | −1.3 (6) |
C3—C4—C5—C6 | −178.1 (6) | C7—C11—C12—N1 | 178.8 (4) |
C4—C5—C6—C7 | −0.6 (9) | N2—C11—C12—C4 | 180.0 (4) |
C5—C6—C7—C11 | −0.6 (8) | C7—C11—C12—C4 | 0.0 (7) |
C5—C6—C7—C8 | 179.6 (6) | C1—O1—C15—C16 | 167.3 (5) |
C11—C7—C8—C9 | −0.1 (8) | C10—O2—C17—C18 | −176.5 (5) |
Experimental details
Crystal data | |
Chemical formula | [Co(NCS)2(C16H16N2O2)] |
Mr | 443.40 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 291 |
a, b, c (Å) | 8.7072 (16), 15.625 (3), 14.828 (3) |
β (°) | 95.082 (3) |
V (Å3) | 2009.4 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.08 |
Crystal size (mm) | 0.34 × 0.20 × 0.10 |
Data collection | |
Diffractometer | Siemens SMART CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.707, 0.899 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10517, 3726, 2904 |
Rint | 0.031 |
(sin θ/λ)max (Å−1) | 0.606 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.070, 0.239, 1.07 |
No. of reflections | 3726 |
No. of parameters | 246 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.80, −0.49 |
Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1994), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2005), SHELXTL (Sheldrick, 2008).
Co1—N3 | 1.928 (4) | Co1—N1 | 2.035 (4) |
Co1—N4 | 1.930 (5) | Co1—N2 | 2.038 (4) |
N3—Co1—N4 | 109.33 (18) | N3—Co1—N2 | 114.22 (17) |
N3—Co1—N1 | 116.67 (17) | N4—Co1—N2 | 113.12 (18) |
N4—Co1—N1 | 119.86 (17) | N1—Co1—N2 | 81.08 (16) |
Acknowledgements
We also gratefully acknowledge financial support from the Natural Science Foundation of Henan Province (2008B150008) and the Science and Technology Key Task of Henan Province (0624040011).
References
Bie, H. Y., Wei, J., Yu, J. H., Wang, T. G., Lu, J. & Xu, J. Q. (2006). Mater. Lett. 60, 2475–2479. Web of Science CSD CrossRef CAS Google Scholar
Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Majumdera, A. Westerhausen, M., Kneifel, A. N., Sutter, J. P., Daroc, N. & Mitra, S. (2006). Inorg. Chim. Acta, 359, 3841–3846. Google Scholar
Pijper, P. L., Van der, G. H., Timmerman, H. & Nauta, W. T. (1984). Eur. J. Med. Chem. 19, 399–404. CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1994). SAINT. Siemens Analytical X-ray Instrum ents Inc., Madison, Wisconsin, USA. Google Scholar
Siemens (1996). SMART. Siemens Analytical X-ray Instrum ents Inc., Madison, Wisconsin, USA. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Derivatives of 1,10-phenanthroline can be used as multi-dentate ligands. Their coordination compounds with transition metal atoms possess potential as strong luminescent materials (Majumdera et al., 2006; Bie, et al., 2006) and antimycoplasmal activity (Pijper, et al., 1984).
In the title compound the CoII ion is coordinated by two nitrogen atoms from one phenanthroline ring (N1, N2) and two nitrogen atoms from two different thiocyanate ligands (N3, N4) forming a distorted tetrahedral enviroment (Fig. 1). The Co1—N1 and Co1—N2 bond lengths are longer than the Co1—N3 and Co1—N4 bond lengths. The N1—Co1—N2 bond angle of 81.08 (16) ° involving the two phenanthroline nitrogen atoms is the smallest coordination angle (Table 1). All other N—Co1—N bond angles are larger than the ideal 109.5 °. The atoms of one of the ethoxy groups are essentially co-planar with the phenanthroline ring [N2═C10-O2-C17 = 178.8 (4)°] while the other ethoxy group is slightly twisted from the phenanthroline ring plane [N1═C1-O1-C15 = 167.2 (4)°]. In the crystal structure, weak π–π stacking interactions between pairs of symmetry related phenanthroline rings form a centroid-to-centroid distance of 3.706 (4) Å (Fig. 2).