metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Bromo­phen­yl)ferrocene

aSchool of Chemistry, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
*Correspondence e-mail: bala@ukzn.ac.za

(Received 25 August 2008; accepted 1 October 2008; online 9 October 2008)

In the title compound, [Fe(C5H5)(C11H8Br)], the distance of the Fe atom from the centroids of the unsubstituted and substituted cyclo­penta­dienyl (Cp) rings is 1.644 (1) and 1.643 (1) Å, respectively. The ferrocenyl moiety deviates from an eclipsed geometry, with marginally tilted Cp rings and an inter­planar angle between the Cp and benzene rings of 13.0 (4)°. The crystal structure is stabilized by C—H⋯π inter­actions between a cyclo­penta­dienyl H atom and the cyclo­penta­dienyl ring of a neighbouring mol­ecule.

Related literature

For related literature, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]); Anderson et al. (2003[Anderson, F. P., Gallagher, J. F., Kenny, P. T. M., Ryan, C. & Savage, D. (2003). Acta Cryst. C59, m13-m15.]); Cambridge Crystallographic Data Centre (2002[Cambridge Crystallographic Data Centre (2002). CONQUEST. Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 1EZ.]); Coe et al. (1994[Coe, B. J., Foulon, J.-D., Hamor, T. A., Jones, C. J., McCleverty, J. A., Bloor, D., Cross, G. H. & Axon, T. L. (1994). J. Chem. Soc. Dalton Trans. pp. 3427-3439.]); Hor et al. (1991[Hor, T. S. A., Chan, H. S. O., Tan, K.-L., Phang, L.-T., Yan, Y. K., Liu, L. K. & Wen, Y.-S. (1991). Polyhedron, pp. 2437-2441.]); Imrie et al. (2002[Imrie, C., Engelbrecht, P., Loubser, C., McCleland, C. W., Nyamori, V. O., Bogadi, R., Levendis, D. C., Tolom, N., Rooyen, J. & Williams, N. (2002). J. Organomet. Chem. 645, 65-81.], 2003[Imrie, C., Loubser, C., Engelbrecht, P., McCleland, C. W. & Zheng, Y. (2003). J. Organomet. Chem. 665, 48-64.]); Knoesen & Lotz (1999[Knoesen, O. & Lotz, S. (1999). Technetium, Rhenium and other Metals in Chemistry and Nuclear Medicine, edited by M. Nicolini & C. I. Mazzi, pp. 153-156. Padova: S. G. Editoriali.]); Togni & Hayashi (1995[Togni, A. & Hayashi, T. (1995). Ferrocenes. Weinheim: VCH.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C11H8Br)]

  • Mr = 341.02

  • Monoclinic, P 21 /c

  • a = 16.4991 (3) Å

  • b = 9.9578 (2) Å

  • c = 7.9269 (1) Å

  • β = 97.084 (1)°

  • V = 1292.41 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.24 mm−1

  • T = 173 (2) K

  • 0.37 × 0.32 × 0.07 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: integration (XPREP; Bruker, 2005[Bruker (2005). APEX2 and SAINT-Plus (includes XPREP). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.303, Tmax = 0.756

  • 15480 measured reflections

  • 3126 independent reflections

  • 2775 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.075

  • S = 1.15

  • 3126 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C5 cyclopentadienyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Cg1i 0.95 2.90 3.780 (4) 154
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT-Plus (includes XPREP). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2005[Bruker (2005). APEX2 and SAINT-Plus (includes XPREP). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Ferrocene compounds especially those synthesized by reacting a para-substituted phenylferrocene 4-Fc—C6H4-R (R = any atom or group) are of great interest in the field of material chemistry (Togni & Hayashi, 1995). They are employed as precursors in the synthesis of ferrocenomesogens with the ferrocenyl moiety incorporated as a terminal group (Imrie et al., 2002, 2003). Interest in these compounds stems from their potential use either as metathesis catalysts or therapeutic radiopharmaceuticals (Hor et al., 1991; Knoesen & Lotz, 1999). The compounds have also been used to synthesize non-linear optical materials containing molybdenum or tungsten redox centres (Coe et al.,1994).

In the title compound (I, Fig. 1), the distance of the Fe atom from the centroids of the unsubstituted (C1—C5) and the substituted (C6—C10) cyclopentadienyl rings are 1.644 (1) and 1.643 (1) Å respectively, indicating that the para- substitution (bromophenyl group) has little influence on Fe—Cp bonding interactions. The two Cp rings deviate from an eclipsed conformation with torsion angles around 11.0 (2)°. The rings are also marginally tilted towards each other with a tilt angle between the planes of the two rings of 0.83 (2)°. The interplanar angle between the Cp and the phenyl rings of (I) was 13.0 (4)°. This value is very close to the 12.8° observed by Anderson et al. (2003) as the median value upon analysis of 17 structures from the April 2002 version of the Cambridge Structural Database using ConQuest Version 1.4 (Allen, 2002). The molecular packing (Fig. 2) is stabilized by C—H···π interactions between a cyclopentadienyl H atom and the cyclopentadienyl ring of an adjacent molecule, with a C2—H2···Cgi separation of 2.90 Å (Fig. 2 and Table 1; Cg is the centroid of the C1-C5 cyclopentadienyl ring, symmetry code as in Fig. 2).

Related literature top

For related literature, see: Allen (2002); Anderson et al. (2003); Cambridge Crystallographic Data Centre (2002); Coe et al. (1994); Hor et al. (1991); Imrie et al. (2002, 2003); Knoesen & Lotz (1999); Sheldrick (2008); Togni & Hayashi (1995).

Experimental top

The title compound (I) was synthesized via the diazonium reaction as follows: A solution of 4-bromobenzene diazonium sulfate was prepared by the reaction of 4-bromoaniline (20.02 g, 0.12 mol) in dilute sulfuric acid (100 cm3) to which sodium nitrite (11.65 g, 0.17 mol) was slowly added in water at 278 K. The reaction temperature was continually monitored and held at 278 K during the addition. The resultant solution was filtered and the filtrate was immediately added to a cold, well stirred solution of ferrocene(24.60 g, 0.13 mol) in diethyl ether (450 cm3). Stirring was continued at 278 K for 3 h and then at room temperature for a further 12 h. The ether layer was separated, washed with water, dried over anhydrous sodium sulfate and evaporated. The residue was purified by column chromatography on silica gel. Hexane was used to elute unreacted ferrocene and the product was eluted from the column using 1 : 1 hexane : dichloromethane mixture to yield 4.57 g, 11% of pure (I). mp 122–123 °C; Spectroscopic analysis: IR νmax(KBr/cm-1) 3086, 3053, 2925, 2853, 1588, 1509, 1446, 1406, 1383, 1278, 1103, 1088, 1066,1050, 1030, 1001, 884, 819; 1H NMR (CDCl3, 300 MHz) δH 7.41 (2H, d, J 8.5, ArH), 7.34 (2H, d, J 8.5, ArH), 4.62 (2H, t, J 1.8, C5H4),4.34 (2H, t, J 1.8, C5H4), 4.04 (5H, s, C5H5);

EI–MS 70 eV m/z 343 (18), 342 (96), 341 (22), 340 (M+, 100), 260 (3), 205 (23), 203 (10), 202 (9); Elemental analysis (Found: C, 56.4; H, 3.8%; M, 339.9551. required for C16H13FeBr: C, 56.6; H, 3.9%; M, 339.9550).

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title complex with the atom labelling scheme. Ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A stereoview of the interactions in the crystal structure of (I). [Symmetry code: (i) x, -y+3/2, z-1/2; (ii) x, -y+3/2, z+1/2.]
1-(4-Bromophenyl)ferrocene top
Crystal data top
[Fe(C5H5)(C11H8Br)]F(000) = 680
Mr = 341.02Dx = 1.753 Mg m3
Monoclinic, P21/cMelting point = 395–396 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 16.4991 (3) ÅCell parameters from 8414 reflections
b = 9.9578 (2) Åθ = 2.4–28.4°
c = 7.9269 (1) ŵ = 4.24 mm1
β = 97.084 (1)°T = 173 K
V = 1292.41 (4) Å3Plate, orange
Z = 40.37 × 0.32 × 0.07 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3126 independent reflections
Radiation source: fine-focus sealed tube2775 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 10.0 pixels mm-1θmax = 28.0°, θmin = 1.2°
ϕ and ω scansh = 2121
Absorption correction: integration
(XPREP; Bruker, 2005)
k = 1313
Tmin = 0.303, Tmax = 0.756l = 1010
15480 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0124P)2 + 2.8125P]
where P = (Fo2 + 2Fc2)/3
3126 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
[Fe(C5H5)(C11H8Br)]V = 1292.41 (4) Å3
Mr = 341.02Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.4991 (3) ŵ = 4.24 mm1
b = 9.9578 (2) ÅT = 173 K
c = 7.9269 (1) Å0.37 × 0.32 × 0.07 mm
β = 97.084 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3126 independent reflections
Absorption correction: integration
(XPREP; Bruker, 2005)
2775 reflections with I > 2σ(I)
Tmin = 0.303, Tmax = 0.756Rint = 0.039
15480 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 1.15Δρmax = 0.53 e Å3
3126 reflectionsΔρmin = 0.40 e Å3
163 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.055964 (19)0.43903 (4)0.29425 (5)0.04324 (11)
Fe0.35189 (2)0.48664 (4)0.27601 (5)0.01850 (9)
C10.27574 (19)0.6354 (3)0.3370 (4)0.0346 (7)
H10.22560.66120.27320.042*
C20.3538 (2)0.6885 (3)0.3185 (4)0.0307 (7)
H20.36530.75600.24010.037*
C30.41137 (19)0.6237 (3)0.4365 (4)0.0308 (6)
H30.46860.63970.45200.037*
C40.3689 (2)0.5298 (3)0.5287 (4)0.0334 (7)
H40.39250.47200.61670.040*
C50.2854 (2)0.5381 (3)0.4659 (4)0.0360 (7)
H50.24280.48650.50430.043*
C60.29438 (16)0.3883 (3)0.0676 (3)0.0208 (5)
C70.36479 (16)0.4587 (3)0.0264 (3)0.0225 (5)
H70.36520.52720.05680.027*
C80.43450 (17)0.4078 (3)0.1324 (4)0.0261 (6)
H80.48940.43630.13130.031*
C90.40733 (18)0.3072 (3)0.2393 (4)0.0258 (6)
H90.44080.25690.32260.031*
C100.32169 (18)0.2951 (3)0.2001 (4)0.0237 (6)
H100.28790.23500.25290.028*
C110.20996 (16)0.4044 (3)0.0135 (3)0.0213 (5)
C120.18754 (19)0.5119 (3)0.1218 (4)0.0309 (6)
H120.22690.57850.13920.037*
C130.1081 (2)0.5237 (3)0.2055 (4)0.0340 (7)
H130.09330.59700.27970.041*
C140.05166 (17)0.4264 (3)0.1775 (4)0.0295 (6)
C150.07133 (19)0.3200 (3)0.0704 (4)0.0337 (7)
H150.03140.25450.05260.040*
C160.15020 (18)0.3097 (3)0.0114 (4)0.0285 (6)
H160.16400.23640.08620.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.02264 (15)0.0582 (2)0.0466 (2)0.00362 (14)0.00493 (13)0.00758 (17)
Fe0.02091 (18)0.01753 (18)0.01723 (19)0.00139 (14)0.00303 (14)0.00126 (14)
C10.0301 (15)0.0309 (16)0.0423 (19)0.0082 (13)0.0019 (13)0.0127 (14)
C20.0456 (18)0.0172 (13)0.0304 (16)0.0021 (12)0.0082 (14)0.0022 (11)
C30.0297 (15)0.0293 (15)0.0330 (16)0.0040 (12)0.0022 (12)0.0130 (12)
C40.054 (2)0.0295 (15)0.0171 (14)0.0031 (14)0.0049 (13)0.0048 (11)
C50.0425 (18)0.0341 (17)0.0358 (18)0.0090 (14)0.0226 (14)0.0120 (14)
C60.0250 (13)0.0199 (12)0.0178 (13)0.0013 (10)0.0036 (10)0.0017 (10)
C70.0237 (13)0.0271 (14)0.0174 (13)0.0009 (11)0.0057 (10)0.0008 (10)
C80.0214 (13)0.0325 (15)0.0243 (14)0.0014 (11)0.0026 (11)0.0061 (11)
C90.0294 (14)0.0239 (13)0.0231 (14)0.0055 (11)0.0015 (11)0.0036 (11)
C100.0313 (14)0.0180 (12)0.0217 (14)0.0025 (11)0.0023 (11)0.0018 (10)
C110.0231 (13)0.0225 (13)0.0187 (13)0.0003 (10)0.0037 (10)0.0032 (10)
C120.0292 (15)0.0301 (15)0.0325 (16)0.0060 (12)0.0003 (12)0.0061 (12)
C130.0328 (16)0.0331 (16)0.0337 (17)0.0012 (13)0.0051 (13)0.0047 (13)
C140.0180 (12)0.0402 (17)0.0296 (16)0.0027 (12)0.0007 (11)0.0085 (13)
C150.0250 (14)0.0360 (16)0.0406 (18)0.0068 (13)0.0061 (13)0.0038 (14)
C160.0275 (14)0.0272 (14)0.0307 (16)0.0028 (11)0.0038 (12)0.0026 (12)
Geometric parameters (Å, º) top
Br—C141.902 (3)C6—C71.429 (4)
Fe—C32.033 (3)C6—C101.432 (4)
Fe—C42.034 (3)C6—C111.469 (4)
Fe—C52.035 (3)C7—C81.431 (4)
Fe—C72.035 (3)C7—H70.9500
Fe—C22.037 (3)C8—C91.420 (4)
Fe—C82.038 (3)C8—H80.9500
Fe—C12.039 (3)C9—C101.414 (4)
Fe—C102.043 (3)C9—H90.9500
Fe—C92.044 (3)C10—H100.9500
Fe—C62.050 (3)C11—C121.394 (4)
C1—C51.403 (5)C11—C161.396 (4)
C1—C21.417 (4)C12—C131.399 (4)
C1—H10.9500C12—H120.9500
C2—C31.405 (4)C13—C141.381 (4)
C2—H20.9500C13—H130.9500
C3—C41.424 (5)C14—C151.371 (5)
C3—H30.9500C15—C161.384 (4)
C4—C51.408 (5)C15—H150.9500
C4—H40.9500C16—H160.9500
C5—H50.9500
C3—Fe—C440.98 (13)Fe—C3—H3126.1
C3—Fe—C568.36 (13)C5—C4—C3107.6 (3)
C4—Fe—C540.50 (14)C5—C4—Fe69.79 (18)
C3—Fe—C7126.85 (12)C3—C4—Fe69.49 (17)
C4—Fe—C7165.51 (13)C5—C4—H4126.2
C5—Fe—C7152.17 (14)C3—C4—H4126.2
C3—Fe—C240.37 (13)Fe—C4—H4126.1
C4—Fe—C268.37 (13)C1—C5—C4108.4 (3)
C5—Fe—C268.20 (13)C1—C5—Fe69.99 (17)
C7—Fe—C2107.11 (12)C4—C5—Fe69.71 (17)
C3—Fe—C8107.68 (12)C1—C5—H5125.8
C4—Fe—C8127.68 (13)C4—C5—H5125.8
C5—Fe—C8165.74 (14)Fe—C5—H5126.1
C7—Fe—C841.13 (11)C7—C6—C10107.1 (2)
C2—Fe—C8118.32 (13)C7—C6—C11126.9 (2)
C3—Fe—C168.17 (13)C10—C6—C11126.0 (2)
C4—Fe—C168.10 (14)C7—C6—Fe68.97 (15)
C5—Fe—C140.30 (14)C10—C6—Fe69.28 (15)
C7—Fe—C1118.13 (13)C11—C6—Fe128.33 (19)
C2—Fe—C140.69 (13)C6—C7—C8108.0 (2)
C8—Fe—C1152.45 (14)C6—C7—Fe70.09 (15)
C3—Fe—C10153.13 (12)C8—C7—Fe69.56 (16)
C4—Fe—C10119.09 (12)C6—C7—H7126.0
C5—Fe—C10108.57 (12)C8—C7—H7126.0
C7—Fe—C1068.70 (11)Fe—C7—H7125.9
C2—Fe—C10165.43 (12)C9—C8—C7108.1 (2)
C8—Fe—C1068.36 (12)C9—C8—Fe69.89 (16)
C1—Fe—C10127.81 (13)C7—C8—Fe69.32 (15)
C3—Fe—C9119.06 (12)C9—C8—H8126.0
C4—Fe—C9108.37 (12)C7—C8—H8126.0
C5—Fe—C9128.08 (13)Fe—C8—H8126.4
C7—Fe—C968.88 (11)C10—C9—C8108.0 (2)
C2—Fe—C9152.56 (13)C10—C9—Fe69.72 (16)
C8—Fe—C940.70 (12)C8—C9—Fe69.41 (16)
C1—Fe—C9165.56 (13)C10—C9—H9126.0
C10—Fe—C940.48 (11)C8—C9—H9126.0
C3—Fe—C6164.67 (12)Fe—C9—H9126.5
C4—Fe—C6152.67 (12)C9—C10—C6108.7 (2)
C5—Fe—C6118.56 (12)C9—C10—Fe69.81 (16)
C7—Fe—C640.94 (10)C6—C10—Fe69.77 (15)
C2—Fe—C6126.92 (12)C9—C10—H10125.6
C8—Fe—C668.94 (11)C6—C10—H10125.6
C1—Fe—C6107.50 (12)Fe—C10—H10126.4
C10—Fe—C640.95 (11)C12—C11—C16117.9 (3)
C9—Fe—C668.80 (11)C12—C11—C6121.3 (2)
C5—C1—C2108.1 (3)C16—C11—C6120.8 (3)
C5—C1—Fe69.70 (18)C11—C12—C13121.2 (3)
C2—C1—Fe69.60 (17)C11—C12—H12119.4
C5—C1—H1126.0C13—C12—H12119.4
C2—C1—H1126.0C14—C13—C12118.4 (3)
Fe—C1—H1126.3C14—C13—H13120.8
C3—C2—C1107.9 (3)C12—C13—H13120.8
C3—C2—Fe69.66 (17)C15—C14—C13121.9 (3)
C1—C2—Fe69.71 (17)C15—C14—Br119.2 (2)
C3—C2—H2126.0C13—C14—Br118.9 (2)
C1—C2—H2126.0C14—C15—C16119.0 (3)
Fe—C2—H2126.2C14—C15—H15120.5
C2—C3—C4108.0 (3)C16—C15—H15120.5
C2—C3—Fe69.96 (17)C15—C16—C11121.5 (3)
C4—C3—Fe69.53 (17)C15—C16—H16119.2
C2—C3—H3126.0C11—C16—H16119.2
C4—C3—H3126.0
C3—Fe—C1—C581.8 (2)C9—Fe—C6—C1037.07 (17)
C4—Fe—C1—C537.5 (2)C3—Fe—C6—C1179.1 (5)
C7—Fe—C1—C5156.93 (19)C4—Fe—C6—C1168.0 (4)
C2—Fe—C1—C5119.4 (3)C5—Fe—C6—C1134.3 (3)
C8—Fe—C1—C5168.4 (2)C7—Fe—C6—C11121.0 (3)
C10—Fe—C1—C573.0 (2)C2—Fe—C6—C1148.8 (3)
C9—Fe—C1—C541.0 (6)C8—Fe—C6—C11159.0 (3)
C6—Fe—C1—C5113.8 (2)C1—Fe—C6—C118.0 (3)
C3—Fe—C1—C237.54 (19)C10—Fe—C6—C11120.1 (3)
C4—Fe—C1—C281.9 (2)C9—Fe—C6—C11157.2 (3)
C5—Fe—C1—C2119.4 (3)C10—C6—C7—C80.4 (3)
C7—Fe—C1—C283.7 (2)C11—C6—C7—C8177.7 (2)
C8—Fe—C1—C249.0 (3)Fe—C6—C7—C859.43 (19)
C10—Fe—C1—C2167.57 (17)C10—C6—C7—Fe59.00 (18)
C9—Fe—C1—C2160.4 (4)C11—C6—C7—Fe122.8 (3)
C6—Fe—C1—C2126.84 (18)C3—Fe—C7—C6167.24 (17)
C5—C1—C2—C30.1 (3)C4—Fe—C7—C6163.3 (4)
Fe—C1—C2—C359.4 (2)C5—Fe—C7—C651.6 (3)
C5—C1—C2—Fe59.3 (2)C2—Fe—C7—C6127.18 (17)
C4—Fe—C2—C338.05 (19)C8—Fe—C7—C6119.1 (2)
C5—Fe—C2—C381.8 (2)C1—Fe—C7—C684.50 (19)
C7—Fe—C2—C3127.35 (18)C10—Fe—C7—C638.03 (16)
C8—Fe—C2—C384.2 (2)C9—Fe—C7—C681.59 (17)
C1—Fe—C2—C3119.2 (3)C3—Fe—C7—C873.7 (2)
C10—Fe—C2—C3161.7 (4)C4—Fe—C7—C844.2 (5)
C9—Fe—C2—C350.4 (3)C5—Fe—C7—C8170.7 (2)
C6—Fe—C2—C3168.12 (17)C2—Fe—C7—C8113.71 (18)
C3—Fe—C2—C1119.2 (3)C1—Fe—C7—C8156.39 (18)
C4—Fe—C2—C181.1 (2)C10—Fe—C7—C881.08 (18)
C5—Fe—C2—C137.4 (2)C9—Fe—C7—C837.51 (17)
C7—Fe—C2—C1113.5 (2)C6—Fe—C7—C8119.1 (2)
C8—Fe—C2—C1156.65 (19)C6—C7—C8—C90.4 (3)
C10—Fe—C2—C142.5 (5)Fe—C7—C8—C959.35 (19)
C9—Fe—C2—C1169.5 (2)C6—C7—C8—Fe59.76 (18)
C6—Fe—C2—C172.7 (2)C3—Fe—C8—C9114.28 (18)
C1—C2—C3—C40.0 (3)C4—Fe—C8—C973.3 (2)
Fe—C2—C3—C459.4 (2)C5—Fe—C8—C942.8 (6)
C1—C2—C3—Fe59.4 (2)C7—Fe—C8—C9119.4 (2)
C4—Fe—C3—C2119.1 (3)C2—Fe—C8—C9156.84 (17)
C5—Fe—C3—C281.4 (2)C1—Fe—C8—C9169.2 (2)
C7—Fe—C3—C271.7 (2)C10—Fe—C8—C937.46 (16)
C8—Fe—C3—C2113.20 (19)C6—Fe—C8—C981.58 (18)
C1—Fe—C3—C237.82 (19)C3—Fe—C8—C7126.30 (17)
C10—Fe—C3—C2169.9 (2)C4—Fe—C8—C7167.27 (17)
C9—Fe—C3—C2156.04 (18)C5—Fe—C8—C7162.2 (5)
C6—Fe—C3—C238.5 (5)C2—Fe—C8—C783.74 (19)
C5—Fe—C3—C437.7 (2)C1—Fe—C8—C749.8 (3)
C7—Fe—C3—C4169.18 (18)C10—Fe—C8—C781.96 (17)
C2—Fe—C3—C4119.1 (3)C9—Fe—C8—C7119.4 (2)
C8—Fe—C3—C4127.70 (19)C6—Fe—C8—C737.84 (16)
C1—Fe—C3—C481.3 (2)C7—C8—C9—C100.2 (3)
C10—Fe—C3—C450.8 (3)Fe—C8—C9—C1059.22 (19)
C9—Fe—C3—C484.9 (2)C7—C8—C9—Fe59.00 (19)
C6—Fe—C3—C4157.6 (4)C3—Fe—C9—C10157.07 (17)
C2—C3—C4—C50.0 (3)C4—Fe—C9—C10113.59 (18)
Fe—C3—C4—C559.6 (2)C5—Fe—C9—C1072.8 (2)
C2—C3—C4—Fe59.6 (2)C7—Fe—C9—C1081.54 (17)
C3—Fe—C4—C5118.8 (3)C2—Fe—C9—C10168.1 (2)
C7—Fe—C4—C5155.7 (4)C8—Fe—C9—C10119.4 (2)
C2—Fe—C4—C581.3 (2)C1—Fe—C9—C1040.2 (6)
C8—Fe—C4—C5168.89 (19)C6—Fe—C9—C1037.49 (16)
C1—Fe—C4—C537.35 (19)C3—Fe—C9—C883.5 (2)
C10—Fe—C4—C584.8 (2)C4—Fe—C9—C8126.99 (18)
C9—Fe—C4—C5127.73 (19)C5—Fe—C9—C8167.72 (18)
C6—Fe—C4—C548.5 (3)C7—Fe—C9—C837.89 (16)
C5—Fe—C4—C3118.8 (3)C2—Fe—C9—C848.7 (3)
C7—Fe—C4—C336.9 (6)C1—Fe—C9—C8159.7 (5)
C2—Fe—C4—C337.50 (18)C10—Fe—C9—C8119.4 (2)
C8—Fe—C4—C372.3 (2)C6—Fe—C9—C881.94 (17)
C1—Fe—C4—C381.5 (2)C8—C9—C10—C60.0 (3)
C10—Fe—C4—C3156.36 (18)Fe—C9—C10—C659.08 (19)
C9—Fe—C4—C3113.45 (19)C8—C9—C10—Fe59.03 (19)
C6—Fe—C4—C3167.3 (2)C7—C6—C10—C90.3 (3)
C2—C1—C5—C40.1 (3)C11—C6—C10—C9177.9 (2)
Fe—C1—C5—C459.3 (2)Fe—C6—C10—C959.10 (19)
C2—C1—C5—Fe59.2 (2)C7—C6—C10—Fe58.80 (18)
C3—C4—C5—C10.1 (3)C11—C6—C10—Fe123.0 (3)
Fe—C4—C5—C159.5 (2)C3—Fe—C10—C948.9 (3)
C3—C4—C5—Fe59.4 (2)C4—Fe—C10—C984.5 (2)
C3—Fe—C5—C181.3 (2)C5—Fe—C10—C9127.49 (19)
C4—Fe—C5—C1119.5 (3)C7—Fe—C10—C982.01 (18)
C7—Fe—C5—C147.8 (3)C2—Fe—C10—C9157.9 (4)
C2—Fe—C5—C137.72 (19)C8—Fe—C10—C937.67 (17)
C8—Fe—C5—C1157.7 (5)C1—Fe—C10—C9168.24 (18)
C10—Fe—C5—C1127.14 (19)C6—Fe—C10—C9120.0 (2)
C9—Fe—C5—C1168.01 (18)C3—Fe—C10—C6168.9 (2)
C6—Fe—C5—C183.5 (2)C4—Fe—C10—C6155.50 (17)
C3—Fe—C5—C438.18 (19)C5—Fe—C10—C6112.47 (18)
C7—Fe—C5—C4167.3 (2)C7—Fe—C10—C638.02 (16)
C2—Fe—C5—C481.8 (2)C2—Fe—C10—C637.8 (5)
C8—Fe—C5—C438.2 (6)C8—Fe—C10—C682.37 (17)
C1—Fe—C5—C4119.5 (3)C1—Fe—C10—C671.7 (2)
C10—Fe—C5—C4113.35 (19)C9—Fe—C10—C6120.0 (2)
C9—Fe—C5—C472.5 (2)C7—C6—C11—C1212.5 (4)
C6—Fe—C5—C4156.95 (18)C10—C6—C11—C12169.7 (3)
C3—Fe—C6—C742.0 (5)Fe—C6—C11—C1278.7 (3)
C4—Fe—C6—C7171.0 (2)C7—C6—C11—C16165.4 (3)
C5—Fe—C6—C7155.38 (18)C10—C6—C11—C1612.4 (4)
C2—Fe—C6—C772.3 (2)Fe—C6—C11—C16103.4 (3)
C8—Fe—C6—C738.01 (16)C16—C11—C12—C131.1 (5)
C1—Fe—C6—C7113.01 (18)C6—C11—C12—C13176.9 (3)
C10—Fe—C6—C7118.9 (2)C11—C12—C13—C140.4 (5)
C9—Fe—C6—C781.79 (17)C12—C13—C14—C150.3 (5)
C3—Fe—C6—C10160.8 (4)C12—C13—C14—Br178.6 (2)
C4—Fe—C6—C1052.1 (3)C13—C14—C15—C160.3 (5)
C5—Fe—C6—C1085.8 (2)Br—C14—C15—C16178.6 (2)
C7—Fe—C6—C10118.9 (2)C14—C15—C16—C110.4 (5)
C2—Fe—C6—C10168.88 (17)C12—C11—C16—C151.0 (4)
C8—Fe—C6—C1080.85 (18)C6—C11—C16—C15176.9 (3)
C1—Fe—C6—C10128.13 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Cg1i0.952.903.780 (4)154
Symmetry code: (i) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C11H8Br)]
Mr341.02
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)16.4991 (3), 9.9578 (2), 7.9269 (1)
β (°) 97.084 (1)
V3)1292.41 (4)
Z4
Radiation typeMo Kα
µ (mm1)4.24
Crystal size (mm)0.37 × 0.32 × 0.07
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionIntegration
(XPREP; Bruker, 2005)
Tmin, Tmax0.303, 0.756
No. of measured, independent and
observed [I > 2σ(I)] reflections
15480, 3126, 2775
Rint0.039
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.075, 1.15
No. of reflections3126
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.40

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2005), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2003) and ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Cg1i0.952.903.780 (4)153.9
Symmetry code: (i) x, y+3/2, z1/2.
 

Acknowledgements

The authors thank Dr Manuel Fernandez for data collection, and the University of KwaZulu-Natal and the NRF for financial support.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAnderson, F. P., Gallagher, J. F., Kenny, P. T. M., Ryan, C. & Savage, D. (2003). Acta Cryst. C59, m13–m15.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2005). APEX2 and SAINT-Plus (includes XPREP). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCambridge Crystallographic Data Centre (2002). CONQUEST. Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 1EZ.  Google Scholar
First citationCoe, B. J., Foulon, J.-D., Hamor, T. A., Jones, C. J., McCleverty, J. A., Bloor, D., Cross, G. H. & Axon, T. L. (1994). J. Chem. Soc. Dalton Trans. pp. 3427–3439.  CSD CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHor, T. S. A., Chan, H. S. O., Tan, K.-L., Phang, L.-T., Yan, Y. K., Liu, L. K. & Wen, Y.-S. (1991). Polyhedron, pp. 2437–2441.  CSD CrossRef Web of Science Google Scholar
First citationImrie, C., Engelbrecht, P., Loubser, C., McCleland, C. W., Nyamori, V. O., Bogadi, R., Levendis, D. C., Tolom, N., Rooyen, J. & Williams, N. (2002). J. Organomet. Chem. 645, 65–81.  Web of Science CSD CrossRef CAS Google Scholar
First citationImrie, C., Loubser, C., Engelbrecht, P., McCleland, C. W. & Zheng, Y. (2003). J. Organomet. Chem. 665, 48–64.  Web of Science CSD CrossRef CAS Google Scholar
First citationKnoesen, O. & Lotz, S. (1999). Technetium, Rhenium and other Metals in Chemistry and Nuclear Medicine, edited by M. Nicolini & C. I. Mazzi, pp. 153–156. Padova: S. G. Editoriali.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTogni, A. & Hayashi, T. (1995). Ferrocenes. Weinheim: VCH.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds