organic compounds
Ethyl 3,7-dichloroquinoline-8-carboxylate
aJiangsu Key Laboratory for the Chemistry of Low-dimensional Materials, Department of Chemistry, Huaiyin Teachers College, Huaian 223300, Jiangsu Province, People's Republic of China
*Correspondence e-mail: annleet@126.com
The title compound, C12H9Cl2NO2, was prepared by the esterification of 3,7-dichloroquinoline-8-carboxylic acid with triethyl phosphite. The is stabilized by aromatic π–π stacking between the benzene and the pyridine rings of neighbouring molecules [centroid–centroid distances = 3.716 (2) and 3.642 (2) Å]. In addition, weak intermolecular C—H⋯N hydrogen bonds are present in the structure.
Related literature
For the use of 3,7-dichloroquinoline-8-carboxylic acid as a herbicide, see: Nuria et al. (1997); Pornprom et al. (2006); Sunohara & Matsumoto (2004); Tresch & Grossmann (2002). For the usual preparative route, see: Yang et al. (2002). For related complexes, see: An et al. (2008); Che et al. (2005); Guo (2008); Li et al. (2008); Turel et al. (2004); Zhang et al. (2007). For 3,7-dichloroquinoline-8-carboxylic acid derivatives, see: Liang et al. (2006);
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).
Supporting information
10.1107/S1600536808034995/lx2075sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808034995/lx2075Isup2.hkl
Ethyl 3,7-dichloroquinoline-8-carboxylate was obtained from the reaction of 3,7-dichloroquinoline-8-carboxylic acid with triethyl phosphite in refluxing condition. After recrystallization from ethanol, then it was dissolved the mixture of acetone/petroleum ether (1:4, V/V). The suitable single-crystal for X-ray analysis was obtained by slow evaporation.
All H atoms were geometrically positioned and refined using a riding model, with C—H = 0.93 (aromatic), 0.97 (methylene) and 0.96 Å (methyl) H atoms, and with Uiso(H) = 1.2Ueq(C) (aromatic, methylene) and 1.5Ueq(C) (methyl) H atoms.
Data collection: APEX2 (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).C12H9Cl2NO2 | Dx = 1.504 Mg m−3 |
Mr = 270.10 | Melting point: not measured K |
Tetragonal, I41/a | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -I_4ad | Cell parameters from 2208 reflections |
a = 25.4806 (3) Å | θ = 1.6–26.0° |
c = 7.3497 (2) Å | µ = 0.53 mm−1 |
V = 4771.87 (15) Å3 | T = 296 K |
Z = 16 | Needle, colorless |
F(000) = 2208 | 0.10 × 0.08 × 0.06 mm |
Bruker SMART APEX2 diffractometer | 2750 independent reflections |
Radiation source: fine-focus sealed tube | 1625 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.045 |
Detector resolution: 10.0 pixels mm-1 | θmax = 27.5°, θmin = 1.6° |
ϕ and ω scans | h = −32→33 |
Absorption correction: multi-scan (SADABS; Bruker, 1999) | k = −33→32 |
Tmin = 0.950, Tmax = 0.969 | l = −9→9 |
19332 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.043 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.117 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0469P)2 + 1.2301P] where P = (Fo2 + 2Fc2)/3 |
2750 reflections | (Δ/σ)max < 0.001 |
155 parameters | Δρmax = 0.20 e Å−3 |
0 restraints | Δρmin = −0.25 e Å−3 |
C12H9Cl2NO2 | Z = 16 |
Mr = 270.10 | Mo Kα radiation |
Tetragonal, I41/a | µ = 0.53 mm−1 |
a = 25.4806 (3) Å | T = 296 K |
c = 7.3497 (2) Å | 0.10 × 0.08 × 0.06 mm |
V = 4771.87 (15) Å3 |
Bruker SMART APEX2 diffractometer | 2750 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1999) | 1625 reflections with I > 2σ(I) |
Tmin = 0.950, Tmax = 0.969 | Rint = 0.045 |
19332 measured reflections |
R[F2 > 2σ(F2)] = 0.043 | 0 restraints |
wR(F2) = 0.117 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.20 e Å−3 |
2750 reflections | Δρmin = −0.25 e Å−3 |
155 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.65771 (2) | 0.53635 (3) | 0.60570 (9) | 0.0725 (2) | |
Cl2 | 0.34654 (3) | 0.47136 (3) | 0.89519 (10) | 0.0809 (3) | |
O1 | 0.57642 (7) | 0.63042 (6) | 0.8389 (2) | 0.0714 (5) | |
O2 | 0.55721 (6) | 0.62556 (5) | 0.5418 (2) | 0.0560 (4) | |
N1 | 0.46789 (7) | 0.56227 (7) | 0.7898 (3) | 0.0535 (5) | |
C1 | 0.55677 (8) | 0.54727 (8) | 0.7053 (3) | 0.0479 (5) | |
C2 | 0.59627 (8) | 0.51296 (8) | 0.6642 (3) | 0.0511 (5) | |
C3 | 0.58827 (9) | 0.45826 (9) | 0.6676 (3) | 0.0582 (6) | |
H3 | 0.6157 | 0.4356 | 0.6390 | 0.070* | |
C4 | 0.54076 (9) | 0.43888 (9) | 0.7125 (3) | 0.0594 (6) | |
H4 | 0.5358 | 0.4027 | 0.7144 | 0.071* | |
C5 | 0.44775 (9) | 0.45445 (8) | 0.8039 (3) | 0.0574 (6) | |
H5 | 0.4405 | 0.4187 | 0.8107 | 0.069* | |
C6 | 0.40972 (9) | 0.49023 (9) | 0.8394 (3) | 0.0555 (6) | |
C7 | 0.42156 (9) | 0.54368 (9) | 0.8316 (3) | 0.0577 (6) | |
H7 | 0.3949 | 0.5675 | 0.8577 | 0.069* | |
C8 | 0.50652 (8) | 0.52712 (8) | 0.7514 (3) | 0.0458 (5) | |
C9 | 0.49847 (8) | 0.47219 (8) | 0.7565 (3) | 0.0492 (5) | |
C10 | 0.56464 (8) | 0.60545 (8) | 0.7069 (3) | 0.0505 (5) | |
C11 | 0.56478 (9) | 0.68194 (8) | 0.5254 (3) | 0.0609 (6) | |
H11A | 0.5999 | 0.6915 | 0.5639 | 0.073* | |
H11B | 0.5398 | 0.7004 | 0.6015 | 0.073* | |
C12 | 0.55684 (13) | 0.69615 (10) | 0.3318 (4) | 0.0967 (10) | |
H12A | 0.5809 | 0.6766 | 0.2574 | 0.145* | |
H12B | 0.5630 | 0.7330 | 0.3160 | 0.145* | |
H12C | 0.5215 | 0.6880 | 0.2967 | 0.145* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0602 (4) | 0.0814 (5) | 0.0760 (5) | 0.0005 (3) | 0.0113 (3) | −0.0024 (3) |
Cl2 | 0.0661 (4) | 0.1000 (5) | 0.0765 (5) | −0.0247 (4) | −0.0006 (3) | 0.0114 (4) |
O1 | 0.0916 (13) | 0.0584 (10) | 0.0642 (12) | −0.0132 (9) | −0.0061 (9) | −0.0109 (8) |
O2 | 0.0650 (10) | 0.0406 (8) | 0.0624 (11) | −0.0065 (7) | −0.0037 (8) | 0.0032 (7) |
N1 | 0.0524 (11) | 0.0480 (10) | 0.0601 (12) | 0.0009 (9) | −0.0024 (9) | 0.0023 (8) |
C1 | 0.0560 (13) | 0.0447 (12) | 0.0430 (13) | −0.0014 (10) | −0.0049 (10) | 0.0001 (9) |
C2 | 0.0580 (13) | 0.0529 (13) | 0.0424 (12) | 0.0009 (10) | −0.0021 (10) | −0.0015 (10) |
C3 | 0.0704 (16) | 0.0530 (14) | 0.0511 (14) | 0.0128 (11) | −0.0018 (11) | −0.0042 (10) |
C4 | 0.0804 (17) | 0.0423 (12) | 0.0555 (15) | 0.0022 (12) | −0.0030 (12) | −0.0035 (10) |
C5 | 0.0778 (17) | 0.0462 (12) | 0.0483 (14) | −0.0158 (12) | −0.0057 (11) | 0.0036 (10) |
C6 | 0.0584 (14) | 0.0637 (15) | 0.0445 (13) | −0.0129 (11) | −0.0065 (10) | 0.0043 (10) |
C7 | 0.0557 (14) | 0.0595 (14) | 0.0578 (15) | 0.0034 (11) | −0.0035 (11) | 0.0037 (11) |
C8 | 0.0567 (13) | 0.0418 (12) | 0.0389 (12) | 0.0007 (10) | −0.0072 (9) | 0.0002 (9) |
C9 | 0.0667 (15) | 0.0412 (12) | 0.0397 (13) | −0.0033 (10) | −0.0077 (10) | 0.0014 (9) |
C10 | 0.0456 (12) | 0.0497 (13) | 0.0562 (15) | −0.0038 (10) | 0.0016 (10) | −0.0020 (11) |
C11 | 0.0583 (14) | 0.0392 (12) | 0.0851 (18) | −0.0080 (10) | 0.0071 (12) | 0.0011 (11) |
C12 | 0.139 (3) | 0.0547 (16) | 0.097 (2) | −0.0178 (17) | −0.0243 (19) | 0.0215 (15) |
Cl1—C2 | 1.729 (2) | C4—H4 | 0.9300 |
Cl2—C6 | 1.730 (2) | C5—C6 | 1.356 (3) |
O1—C10 | 1.198 (2) | C5—C9 | 1.413 (3) |
O2—C10 | 1.331 (2) | C5—H5 | 0.9300 |
O2—C11 | 1.454 (2) | C6—C7 | 1.396 (3) |
N1—C7 | 1.309 (3) | C7—H7 | 0.9300 |
N1—C8 | 1.360 (2) | C8—C9 | 1.415 (3) |
C1—C2 | 1.367 (3) | C11—C12 | 1.482 (3) |
C1—C8 | 1.420 (3) | C11—H11A | 0.9700 |
C1—C10 | 1.496 (3) | C11—H11B | 0.9700 |
C2—C3 | 1.409 (3) | C12—H12A | 0.9600 |
C3—C4 | 1.348 (3) | C12—H12B | 0.9600 |
C3—H3 | 0.9300 | C12—H12C | 0.9600 |
C4—C9 | 1.409 (3) | ||
C10—O2—C11 | 115.91 (17) | C6—C7—H7 | 118.1 |
C7—N1—C8 | 117.60 (18) | N1—C8—C9 | 122.72 (19) |
C2—C1—C8 | 119.03 (18) | N1—C8—C1 | 117.63 (17) |
C2—C1—C10 | 122.47 (18) | C9—C8—C1 | 119.65 (19) |
C8—C1—C10 | 118.49 (18) | C4—C9—C5 | 124.3 (2) |
C1—C2—C3 | 121.5 (2) | C4—C9—C8 | 118.6 (2) |
C1—C2—Cl1 | 120.06 (16) | C5—C9—C8 | 117.1 (2) |
C3—C2—Cl1 | 118.45 (17) | O1—C10—O2 | 124.7 (2) |
C4—C3—C2 | 119.8 (2) | O1—C10—C1 | 124.5 (2) |
C4—C3—H3 | 120.1 | O2—C10—C1 | 110.81 (18) |
C2—C3—H3 | 120.1 | O2—C11—C12 | 107.63 (19) |
C3—C4—C9 | 121.5 (2) | O2—C11—H11A | 110.2 |
C3—C4—H4 | 119.3 | C12—C11—H11A | 110.2 |
C9—C4—H4 | 119.3 | O2—C11—H11B | 110.2 |
C6—C5—C9 | 119.07 (19) | C12—C11—H11B | 110.2 |
C6—C5—H5 | 120.5 | H11A—C11—H11B | 108.5 |
C9—C5—H5 | 120.5 | C11—C12—H12A | 109.5 |
C5—C6—C7 | 119.6 (2) | C11—C12—H12B | 109.5 |
C5—C6—Cl2 | 121.59 (18) | H12A—C12—H12B | 109.5 |
C7—C6—Cl2 | 118.82 (19) | C11—C12—H12C | 109.5 |
N1—C7—C6 | 123.9 (2) | H12A—C12—H12C | 109.5 |
N1—C7—H7 | 118.1 | H12B—C12—H12C | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
C11—H11A···N1i | 0.97 | 2.46 | 3.299 (3) | 145 |
Symmetry code: (i) −y+5/4, x+1/4, −z+5/4. |
Experimental details
Crystal data | |
Chemical formula | C12H9Cl2NO2 |
Mr | 270.10 |
Crystal system, space group | Tetragonal, I41/a |
Temperature (K) | 296 |
a, c (Å) | 25.4806 (3), 7.3497 (2) |
V (Å3) | 4771.87 (15) |
Z | 16 |
Radiation type | Mo Kα |
µ (mm−1) | 0.53 |
Crystal size (mm) | 0.10 × 0.08 × 0.06 |
Data collection | |
Diffractometer | Bruker SMART APEX2 diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 1999) |
Tmin, Tmax | 0.950, 0.969 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 19332, 2750, 1625 |
Rint | 0.045 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.043, 0.117, 1.06 |
No. of reflections | 2750 |
No. of parameters | 155 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.20, −0.25 |
Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).
D—H···A | D—H | H···A | D···A | D—H···A |
C11—H11A···N1i | 0.97 | 2.46 | 3.299 (3) | 144.9 |
Symmetry code: (i) −y+5/4, x+1/4, −z+5/4. |
Acknowledgements
This work was supported financially by Jiangsu Key Laboratory for the Chemistry of Low-dimensional Materials.
References
An, L.-T., Zhou, J., Zhou, J.-F. & Xia, M. (2008). Acta Cryst. E64, m1170. Web of Science CrossRef IUCr Journals Google Scholar
Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Che, G.-B., Liu, C.-B., Cui, Y.-C. & Li, C.-B. (2005). Acta Cryst. E61, m2207–m2208. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Guo, X.-H. (2008). Acta Cryst. E64, o1786. Web of Science CSD CrossRef IUCr Journals Google Scholar
Li, Z., Wu, F., Gong, Y., Zhang, Y. & Bai, C. (2008). Acta Cryst. E64, m227. Web of Science CSD CrossRef IUCr Journals Google Scholar
Liang, Y., He, H.-W., Wang, Y.-Z. & Chen, T. (2006). Acta Cryst. E62, o3652–o3654. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nuria, L. M., George, M. & Rafael, D. P. (1997). Pestic. Sci. 51, 171–175. CrossRef Google Scholar
Pornprom, T., Mahatamuchoke, P. & Usui, K. (2006). Pest Manag. Sci. 62, 1109–1115. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sunohara, Y. & Matsumoto, H. (2004). Plant Sci. 167, 597–606. Web of Science CrossRef CAS Google Scholar
Tresch, S. & Grossmann, K. (2002). Pestic. Biochem. Physiol. 75, 73–78. Web of Science CrossRef Google Scholar
Turel, I., Milena, P., Amalija, G., Enzo, A., Barbara, S., Alberta, B. & Gianni, S. (2004). Inorg. Chim. Acta, 98, 239–401. Google Scholar
Yang, L., Wang, P. & Zhou, D. R. (2002). J. Harbin Inst. Technol. 9, 401–404. CAS Google Scholar
Zhang, Y.-H., Wu, F.-J., Li, X.-M., Zhu, M.-C. & Gong, Y. (2007). Acta Cryst. E63, m1557. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Quinclorac (3,7-dichloroquinoline-8-carboxylic acid) is one of the most effective herbicides (Nuria et al., 1997; Pornprom et al., 2006; Sunohara & Matsumoto, 2004; Tresch & Grossmann, 2002). Usually, it was prepared via Skraup cyclization from 2-methyl-3- chloroaniline, followed by chlorination and oxidation (Yang et al., 2002). Furthermore, quinolinecarboxylates can chelate to metal atoms, forming the complexes, such as trans-Dimethanolbis(quinoline-8-carboxylato-κ2N,O)- cobalt(II) (Che et al.,2005),catena-Poly[nickel(II)-bis(µ-3,7-dichloroquinoline-8-χarboxylato-κ3N,O:O')] (Zhang et al., 2007), catena-Poly[cobalt(II)-bis (l-3,7-dichloroquinoline-8-carboxylato-κ3N,O:O')] (Li et al., 2008). More recently, we also have reported a Zinc-quinclorac complex (An et al., 2008) and quinclorac (Guo, 2008). But the derivatives of 3,7-dichloroquinoline-8-carboxylic acid have been less reported (Liang et al., 2006). Here we report the crystal structure of the title compound, ethyl 3,7-dichloroquinoline-8-carboxylate (I) (Fig. 1).
In the title compound (I), as shown in Fig. 1, the plane (O1—C10—O2—C11) is nearly vertical to the quinoline ring, in which the dihedral angel is 86.6 (1). The quinoline unit is essentially planar, with a mean deviation of 0.007 (2) Å from the least-squares plane defined by the ten constituent atoms. The molecular packing (Fig. 2) is stabilized by aromatic π—π stackings between the benzene and the pyridine rings of the adjacent molecules. The Cg1···Cg2ii and Cg1···Cg2iii distances are 3.716 (2) and 3.642 (2) Å (Fig. 2; Cg1 and Cg2 are the centroids of the C1/C2/C3/C4/C9/C8 benzene ring and the N1/C7/C6/C5/C9/C8 pyridine ring, respectively, symmetry code as in Fig. 2). The crystal structure is further stabilized by intermolecular C11—H11A···Ni hydrogen bonds (Fig. 2 and Table 1; symmetry code as in Fig. 2).