metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(R,SP)-1-Di­phenyl­phosphino-2-(1-eth­oxy­ethyl)ferrocene

aSchool of Chemical Engineering and the Enviroment, Beijing Institute of Technology, Beijing 100081, People's Republic of China
*Correspondence e-mail: zzm@bit.edu.cn

(Received 12 July 2008; accepted 15 October 2008; online 22 October 2008)

In the crystal structure of the title compound, [Fe(C5H5)(C21H22OP)], the cyclo­penta­dienyl (Cp) rings are almost parallel and are essentially eclipsed. The absolute configuration was determined as S for the planar and R for the central chirality.

Related literature

For background to ferrocene derivatives applied as catalysts, see: Blaser & Schmidt (2004[Blaser, H. U. & Schmidt, E. (2004). In Asymmetric Catalysis on Industrial Scale. Weinheim: Wiley-VCH.]); Gomez Arrayas et al. (2006[Gomez Arrayas, R., Adrio, J. & Carretero, J. C. (2006). Angew. Chem. Int. Ed. 45, 7674-7715.]); Hayashi et al. (1988[Hayashi, T., Hayashizaki, K., Kiyoi, T. & Ito, Y. (1988). J. Am. Chem. Soc. 120, 8153-8156.]); Ohmura et al. (1995[Ohmura, H., Matsuhashi, H., Tanaka, M., Kuroboshi, M., Hiyama, T., Hatanaka, Y. & Goda, K. (1995). J. Organomet. Chem. 499, 167-171.]); Ojima (2000[Ojima, I. (2000). In Catalytic Asymmetric Synthesis, 2nd ed. New York: Wiley-VCH.]). For the structures of closely related compounds, see: Jin et al. (2004[Jin, Z., Song, H., Liu, W., Hu, Y., Liu, J., Shao, L. & Fang, J. (2004). Acta Cryst. E60, m1692-m1694.]); Cheelama & Knochel (2007[Cheelama, M. N. & Knochel, P. (2007). Org. Lett. 9, 3089-3092.]); Podlaha et al. (1996[Podlaha, J., Štěpnicka, P., Štěpnicka, L. J. & Císarova, I. (1996). Organometallics, 15, 543-550.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C21H22OP)]

  • Mr = 442.30

  • Orthorhombic, P 21 21 21

  • a = 11.003 (2) Å

  • b = 12.191 (2) Å

  • c = 16.599 (3) Å

  • V = 2226.6 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.76 mm−1

  • T = 113 (2) K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2001[Rigaku (2001). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.914, Tmax = 0.942

  • 22928 measured reflections

  • 3929 independent reflections

  • 3847 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.062

  • S = 1.05

  • 3929 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.28 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 1688 Friedel pairs

  • Flack parameter: 0.019 (12)

Data collection: CrystalClear (Rigaku, 2001[Rigaku (2001). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Asymmetric metal catalysis is one of the most active areas in modern organic chemistry, and considerable efforts have been made to the development of novel ligands for catalytic asymmetric transformations (Ojima, 2000). In this context, ferrocene-based ligands incorporating both chirality are very important (Gomez Arrayas et al., 2006) and some of them have already been applied in industrial processes because of their stability, low price and unique structure (Blaser & Schmidt, 2004).

(S,Rp)-1-(diphenylphosphino)-2-(1-ethoxyethyl)-ferrocene, the enantiomorph of title compound, has been used to synthesize 1,1'-binaphthyls via asymmetric Ni-catalysed Grignard cross-coupling with up to 68% ee, and the (S,Rp)-1-(diphenylphosphino)-2-(1-methoxyethyl)-ferrocene provided axially chiral binaphthalenes in enantioselectivities up to 95% ee (Hayashi et al., 1988). In addition, the (R,Sp)-1-(diphenylphosphino)-2-(1-ethoxyethyl)-ferrocene was also used in asymmetric hydrosilyation (Ohmura et al., 1995).

The Fe—C bond distances within the ferrocene group are in the range of 2.038 (2)–2.050 (2) Å for the unsubstituted cyclopentadienyl (Cp) ring [C1–C5] and 2.025 (2)–2.046 (2) Å for the substituted Cp ring [C6–C10]. The Cp rings are almost parallel, the dihedral angle between the Cp ring planes is 1.80 (10)°. The Cp rings are essentially eclipsed and the Fe–centroid distances are 1.654 (9) (Cg1) and 1.639 (9) Å (Cg2) with Cg1 and Cg2 are the centroids of the [C1–C5] and [C6–C10] rings. The [Cg1—Fe1—Cg2] angle is 178.60 (18)°. The C11 atom is almost in the plane of their carrier Cp ring, while the P1 atom is tilted slightly out of the plane by 0.102 (10) Å.

The two phenyl rings are oriented almost perpendicular, with a dihedral angle of 90.90 (10)°. The O1—C11 and C10—C11 bonds lengths are in agreement with those in the related complex 1-(1-Ferrocenyl-1-methoxy-3-phenyl-2-propyl)-1H-1,2,4-triazole (Jin et al., 2004) and the geometric parameters of the PPh2 group are in agreement with those in the similar structure 1-carboxy-1'-(diphenylphosphino)-ferrocene (Podlaha et al., 1996).

The title compound has both central chirality and planar chirality with the configuration of C11 atom being R, and the configuration of planar chirality being S.

Related literature top

For background to ferrocene derivatives applied as catalysts, see: Blaser & Schmidt (2004); Gomez Arrayas et al. (2006); Hayashi et al. (1988); Ohmura et al. (1995); Ojima (2000). For the structures of closely related compounds, see: Jin et al. (2004); Cheelama & Knochel (2007); Podlaha et al. (1996).

Experimental top

The title compound was prepared from (R,Sp)-1-[1-(acetyloxy)ethyl]-2-(diphenylphosphino)-ferrocene according to literature procedures (Hayashi et al., 1988). Single crystals of the title compound suitable for X-ray diffraction analysis were obtained by slow evaporation of a hexane solution.

Refinement top

All H atoms were positioned with idealized geometry with C—H = 0.93 (aromatic), 0.96 (methyl), 0.97 (methylene) or 0.98 Å (cyclopentadienyl and Cp—CH) and were refined isotropic with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C) using a riding model. The absolute structure was determined on the basis of 1688 Friedel pairs.

Computing details top

Data collection: CrystalClear (Rigaku, 2001); cell refinement: CrystalClear (Rigaku, 2001); data reduction: CrystalClear (Rigaku, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A molecular view of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are draw at the 30% probability level.
(R,SP)-1-Diphenylphosphino-2-(1-ethoxyethyl)ferrocene top
Crystal data top
[Fe(C5H5)(C21H22OP)]F(000) = 928
Mr = 442.30Dx = 1.319 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 7176 reflections
a = 11.003 (2) Åθ = 2.2–27.9°
b = 12.191 (2) ŵ = 0.76 mm1
c = 16.599 (3) ÅT = 113 K
V = 2226.6 (8) Å3Block, red
Z = 40.12 × 0.10 × 0.08 mm
Data collection top
Rigaku Saturn
diffractometer
3929 independent reflections
Radiation source: rotating anode3847 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.050
ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2001)
h = 1312
Tmin = 0.914, Tmax = 0.942k = 1414
22928 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.062 w = 1/[σ2(Fo2) + (0.0301P)2 + 0.2869P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.002
3929 reflectionsΔρmax = 0.18 e Å3
262 parametersΔρmin = 0.28 e Å3
0 restraintsAbsolute structure: Flack (1983), with 1688 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.019 (12)
Crystal data top
[Fe(C5H5)(C21H22OP)]V = 2226.6 (8) Å3
Mr = 442.30Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 11.003 (2) ŵ = 0.76 mm1
b = 12.191 (2) ÅT = 113 K
c = 16.599 (3) Å0.12 × 0.10 × 0.08 mm
Data collection top
Rigaku Saturn
diffractometer
3929 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2001)
3847 reflections with I > 2σ(I)
Tmin = 0.914, Tmax = 0.942Rint = 0.050
22928 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.062Δρmax = 0.18 e Å3
S = 1.05Δρmin = 0.28 e Å3
3929 reflectionsAbsolute structure: Flack (1983), with 1688 Friedel pairs
262 parametersAbsolute structure parameter: 0.019 (12)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.03864 (3)0.77799 (2)0.905322 (18)0.02169 (9)
P10.07707 (4)0.98992 (4)1.01327 (3)0.01930 (12)
O10.18641 (12)1.04499 (11)0.82901 (9)0.0230 (3)
C10.09790 (19)0.66545 (15)0.91286 (14)0.0272 (5)
H1A0.18150.67580.89410.033*
C20.0010 (2)0.62243 (18)0.86702 (16)0.0358 (6)
H2A0.00550.59800.81080.043*
C30.1039 (2)0.62123 (19)0.9163 (2)0.0513 (8)
H3A0.18500.59580.90040.062*
C40.0708 (3)0.6634 (2)0.99241 (18)0.0517 (8)
H4A0.12540.67241.03860.062*
C50.0538 (2)0.69041 (18)0.99089 (14)0.0373 (6)
H5A0.10110.72091.03560.045*
C60.01527 (17)0.94062 (15)0.93016 (11)0.0178 (4)
C70.14254 (18)0.91375 (16)0.92785 (12)0.0210 (4)
H7A0.20040.92240.97230.025*
C80.16938 (19)0.87040 (17)0.84996 (13)0.0260 (5)
H8A0.24890.84420.83150.031*
C90.06047 (19)0.87097 (17)0.80413 (12)0.0230 (4)
H9A0.05190.84490.74860.028*
C100.03465 (19)0.91267 (15)0.85299 (11)0.0198 (4)
C110.16655 (19)0.92877 (16)0.83152 (12)0.0204 (4)
H11A0.21670.89750.87460.024*
C120.2039 (2)0.87699 (19)0.75210 (13)0.0306 (5)
H12A0.28870.89030.74280.046*
H12B0.15720.90860.70910.046*
H12C0.18940.79940.75420.046*
C130.3051 (2)1.07659 (18)0.85426 (15)0.0291 (5)
H13A0.36581.04190.82040.035*
H13B0.31881.05380.90950.035*
C140.3145 (2)1.19937 (17)0.84759 (15)0.0334 (5)
H14A0.39391.22250.86450.050*
H14B0.25411.23290.88130.050*
H14C0.30141.22100.79270.050*
C150.06768 (17)1.14024 (16)1.00256 (11)0.0189 (4)
C160.1436 (2)1.20172 (18)1.05214 (12)0.0253 (5)
H16A0.19451.16611.08850.030*
C170.1443 (2)1.31563 (18)1.04809 (13)0.0308 (5)
H17A0.19501.35581.08190.037*
C180.0702 (2)1.36905 (18)0.99405 (13)0.0300 (5)
H18A0.07021.44520.99130.036*
C190.0040 (2)1.30890 (18)0.94408 (14)0.0305 (5)
H19A0.05401.34480.90740.037*
C200.00485 (19)1.19497 (17)0.94788 (13)0.0263 (5)
H20A0.05471.15530.91330.032*
C210.02654 (17)0.96925 (15)1.09878 (11)0.0203 (4)
C220.13214 (18)1.03066 (16)1.10886 (12)0.0231 (5)
H22A0.15241.08401.07110.028*
C230.2073 (2)1.01308 (18)1.17447 (13)0.0277 (5)
H23A0.27721.05511.18090.033*
C240.1788 (2)0.93330 (19)1.23050 (13)0.0303 (5)
H24A0.22970.92151.27440.036*
C250.0752 (2)0.8714 (2)1.22134 (13)0.0319 (5)
H25A0.05620.81731.25880.038*
C260.0012 (2)0.88959 (18)1.15610 (12)0.0281 (5)
H26A0.07160.84811.15060.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.02261 (15)0.01571 (14)0.02675 (16)0.00025 (12)0.00374 (13)0.00058 (13)
P10.0201 (3)0.0192 (3)0.0186 (3)0.0020 (2)0.0007 (2)0.0016 (2)
O10.0219 (7)0.0174 (7)0.0297 (8)0.0010 (6)0.0016 (6)0.0015 (6)
C10.0283 (11)0.0154 (10)0.0378 (12)0.0046 (9)0.0035 (11)0.0019 (10)
C20.0387 (14)0.0162 (11)0.0525 (15)0.0022 (10)0.0012 (12)0.0069 (10)
C30.0332 (14)0.0176 (12)0.103 (3)0.0032 (10)0.0143 (17)0.0083 (16)
C40.066 (2)0.0258 (13)0.0637 (19)0.0156 (12)0.0410 (16)0.0200 (13)
C50.0570 (16)0.0207 (11)0.0343 (13)0.0130 (11)0.0039 (13)0.0061 (10)
C60.0184 (10)0.0137 (9)0.0212 (10)0.0026 (8)0.0010 (8)0.0027 (8)
C70.0203 (10)0.0186 (10)0.0240 (11)0.0018 (8)0.0014 (9)0.0005 (8)
C80.0229 (11)0.0258 (11)0.0292 (12)0.0001 (10)0.0050 (10)0.0000 (10)
C90.0275 (11)0.0218 (10)0.0196 (10)0.0000 (9)0.0023 (9)0.0007 (8)
C100.0247 (11)0.0148 (10)0.0198 (10)0.0011 (9)0.0010 (9)0.0004 (8)
C110.0243 (11)0.0159 (10)0.0209 (10)0.0003 (9)0.0016 (9)0.0005 (8)
C120.0309 (12)0.0322 (12)0.0287 (12)0.0012 (10)0.0077 (10)0.0052 (10)
C130.0230 (11)0.0258 (12)0.0386 (13)0.0053 (9)0.0007 (11)0.0006 (10)
C140.0289 (12)0.0259 (12)0.0454 (14)0.0053 (10)0.0065 (11)0.0037 (11)
C150.0182 (11)0.0198 (10)0.0188 (10)0.0007 (8)0.0048 (8)0.0003 (8)
C160.0269 (11)0.0293 (12)0.0198 (10)0.0029 (9)0.0046 (9)0.0015 (9)
C170.0350 (13)0.0291 (12)0.0282 (12)0.0125 (10)0.0001 (11)0.0055 (10)
C180.0364 (14)0.0188 (11)0.0349 (13)0.0005 (9)0.0095 (11)0.0023 (10)
C190.0310 (12)0.0240 (12)0.0366 (12)0.0028 (9)0.0037 (11)0.0091 (10)
C200.0267 (11)0.0229 (11)0.0292 (11)0.0015 (9)0.0055 (10)0.0005 (9)
C210.0235 (10)0.0193 (10)0.0181 (9)0.0017 (8)0.0012 (10)0.0015 (8)
C220.0309 (12)0.0192 (10)0.0190 (10)0.0000 (9)0.0003 (9)0.0004 (8)
C230.0291 (12)0.0276 (12)0.0264 (11)0.0029 (10)0.0045 (10)0.0071 (10)
C240.0346 (13)0.0367 (13)0.0196 (11)0.0114 (11)0.0040 (10)0.0014 (10)
C250.0382 (14)0.0332 (13)0.0243 (12)0.0045 (11)0.0031 (10)0.0095 (10)
C260.0313 (12)0.0285 (12)0.0245 (11)0.0005 (10)0.0039 (10)0.0038 (9)
Geometric parameters (Å, º) top
Fe1—C102.025 (2)C11—C121.518 (3)
Fe1—C12.038 (2)C11—H11A0.9800
Fe1—C92.041 (2)C12—H12A0.9600
Fe1—C62.041 (2)C12—H12B0.9600
Fe1—C42.042 (2)C12—H12C0.9600
Fe1—C82.045 (2)C13—C141.505 (3)
Fe1—C72.046 (2)C13—H13A0.9700
Fe1—C22.047 (2)C13—H13B0.9700
Fe1—C52.047 (2)C14—H14A0.9600
Fe1—C32.050 (2)C14—H14B0.9600
P1—C61.816 (2)C14—H14C0.9600
P1—C211.838 (2)C15—C201.381 (3)
P1—C151.844 (2)C15—C161.392 (3)
O1—C131.424 (3)C16—C171.390 (3)
O1—C111.434 (2)C16—H16A0.9300
C1—C21.411 (3)C17—C181.376 (3)
C1—C51.416 (3)C17—H17A0.9300
C1—H1A0.9800C18—C191.375 (3)
C2—C31.415 (4)C18—H18A0.9300
C2—H2A0.9800C19—C201.390 (3)
C3—C41.412 (4)C19—H19A0.9300
C3—H3A0.9800C20—H20A0.9300
C4—C51.410 (4)C21—C221.392 (3)
C4—H4A0.9800C21—C261.393 (3)
C5—H5A0.9800C22—C231.384 (3)
C6—C101.435 (3)C22—H22A0.9300
C6—C71.439 (3)C23—C241.382 (3)
C7—C81.428 (3)C23—H23A0.9300
C7—H7A0.9800C24—C251.376 (3)
C8—C91.419 (3)C24—H24A0.9300
C8—H8A0.9800C25—C261.388 (3)
C9—C101.418 (3)C25—H25A0.9300
C9—H9A0.9800C26—H26A0.9300
C10—C111.507 (3)
C10—Fe1—C1106.17 (9)C8—C7—C6108.05 (18)
C10—Fe1—C940.83 (8)C8—C7—Fe169.55 (12)
C1—Fe1—C9120.74 (9)C6—C7—Fe169.22 (11)
C10—Fe1—C641.32 (7)C8—C7—H7A126.0
C1—Fe1—C6123.26 (8)C6—C7—H7A126.0
C9—Fe1—C668.99 (8)Fe1—C7—H7A126.0
C10—Fe1—C4158.10 (11)C9—C8—C7107.99 (18)
C1—Fe1—C467.90 (9)C9—C8—Fe169.49 (12)
C9—Fe1—C4160.50 (11)C7—C8—Fe169.60 (12)
C6—Fe1—C4122.93 (10)C9—C8—H8A126.0
C10—Fe1—C868.94 (9)C7—C8—H8A126.0
C1—Fe1—C8156.45 (9)Fe1—C8—H8A126.0
C9—Fe1—C840.66 (8)C10—C9—C8108.57 (18)
C6—Fe1—C869.17 (8)C10—C9—Fe169.00 (11)
C4—Fe1—C8124.97 (10)C8—C9—Fe169.86 (12)
C10—Fe1—C769.21 (8)C10—C9—H9A125.7
C1—Fe1—C7160.92 (8)C8—C9—H9A125.7
C9—Fe1—C768.61 (8)Fe1—C9—H9A125.7
C6—Fe1—C741.22 (8)C9—C10—C6108.25 (18)
C4—Fe1—C7109.11 (9)C9—C10—C11128.47 (18)
C8—Fe1—C740.85 (8)C6—C10—C11123.28 (18)
C10—Fe1—C2122.21 (9)C9—C10—Fe170.17 (12)
C1—Fe1—C240.41 (9)C6—C10—Fe169.95 (11)
C9—Fe1—C2106.50 (9)C11—C10—Fe1126.19 (14)
C6—Fe1—C2159.33 (9)O1—C11—C10106.40 (16)
C4—Fe1—C267.84 (10)O1—C11—C12110.14 (17)
C8—Fe1—C2121.37 (10)C10—C11—C12114.32 (17)
C7—Fe1—C2157.70 (9)O1—C11—H11A108.6
C10—Fe1—C5121.51 (10)C10—C11—H11A108.6
C1—Fe1—C540.56 (9)C12—C11—H11A108.6
C9—Fe1—C5156.82 (9)C11—C12—H12A109.5
C6—Fe1—C5107.69 (9)C11—C12—H12B109.5
C4—Fe1—C540.35 (11)H12A—C12—H12B109.5
C8—Fe1—C5161.50 (9)C11—C12—H12C109.5
C7—Fe1—C5124.93 (9)H12A—C12—H12C109.5
C2—Fe1—C568.07 (10)H12B—C12—H12C109.5
C10—Fe1—C3158.99 (11)O1—C13—C14108.08 (18)
C1—Fe1—C368.00 (9)O1—C13—H13A110.1
C9—Fe1—C3123.33 (12)C14—C13—H13A110.1
C6—Fe1—C3158.72 (10)O1—C13—H13B110.1
C4—Fe1—C340.39 (12)C14—C13—H13B110.1
C8—Fe1—C3107.86 (10)H13A—C13—H13B108.4
C7—Fe1—C3122.83 (10)C13—C14—H14A109.5
C2—Fe1—C340.40 (10)C13—C14—H14B109.5
C5—Fe1—C368.07 (11)H14A—C14—H14B109.5
C6—P1—C21101.20 (9)C13—C14—H14C109.5
C6—P1—C15102.97 (9)H14A—C14—H14C109.5
C21—P1—C15100.13 (8)H14B—C14—H14C109.5
C13—O1—C11113.47 (16)C20—C15—C16118.39 (19)
C2—C1—C5108.3 (2)C20—C15—P1125.17 (15)
C2—C1—Fe170.13 (13)C16—C15—P1116.40 (15)
C5—C1—Fe170.05 (12)C17—C16—C15120.8 (2)
C2—C1—H1A125.9C17—C16—H16A119.6
C5—C1—H1A125.9C15—C16—H16A119.6
Fe1—C1—H1A125.9C18—C17—C16120.0 (2)
C1—C2—C3108.0 (2)C18—C17—H17A120.0
C1—C2—Fe169.47 (12)C16—C17—H17A120.0
C3—C2—Fe169.90 (13)C19—C18—C17119.5 (2)
C1—C2—H2A126.0C19—C18—H18A120.2
C3—C2—H2A126.0C17—C18—H18A120.2
Fe1—C2—H2A126.0C18—C19—C20120.6 (2)
C4—C3—C2107.6 (2)C18—C19—H19A119.7
C4—C3—Fe169.49 (14)C20—C19—H19A119.7
C2—C3—Fe169.70 (13)C15—C20—C19120.57 (19)
C4—C3—H3A126.2C15—C20—H20A119.7
C2—C3—H3A126.2C19—C20—H20A119.7
Fe1—C3—H3A126.2C22—C21—C26118.38 (19)
C5—C4—C3108.6 (2)C22—C21—P1122.46 (15)
C5—C4—Fe170.04 (14)C26—C21—P1119.16 (15)
C3—C4—Fe170.12 (15)C23—C22—C21120.66 (19)
C5—C4—H4A125.7C23—C22—H22A119.7
C3—C4—H4A125.7C21—C22—H22A119.7
Fe1—C4—H4A125.7C24—C23—C22120.2 (2)
C4—C5—C1107.4 (2)C24—C23—H23A119.9
C4—C5—Fe169.61 (15)C22—C23—H23A119.9
C1—C5—Fe169.39 (13)C25—C24—C23120.0 (2)
C4—C5—H5A126.3C25—C24—H24A120.0
C1—C5—H5A126.3C23—C24—H24A120.0
Fe1—C5—H5A126.3C24—C25—C26120.0 (2)
C10—C6—C7107.14 (18)C24—C25—H25A120.0
C10—C6—P1122.87 (15)C26—C25—H25A120.0
C7—C6—P1129.82 (15)C25—C26—C21120.8 (2)
C10—C6—Fe168.73 (11)C25—C26—H26A119.6
C7—C6—Fe169.57 (11)C21—C26—H26A119.6
P1—C6—Fe1123.06 (10)
C10—Fe1—C1—C2121.03 (14)Fe1—C6—C7—C858.89 (14)
C9—Fe1—C1—C279.11 (16)C10—C6—C7—Fe158.67 (13)
C6—Fe1—C1—C2162.88 (13)P1—C6—C7—Fe1116.57 (17)
C4—Fe1—C1—C281.32 (16)C10—Fe1—C7—C881.47 (13)
C8—Fe1—C1—C246.7 (3)C1—Fe1—C7—C8160.7 (2)
C7—Fe1—C1—C2166.0 (2)C9—Fe1—C7—C837.56 (12)
C5—Fe1—C1—C2119.1 (2)C6—Fe1—C7—C8119.68 (17)
C3—Fe1—C1—C237.59 (16)C4—Fe1—C7—C8121.79 (15)
C10—Fe1—C1—C5119.87 (14)C2—Fe1—C7—C843.7 (3)
C9—Fe1—C1—C5161.79 (14)C5—Fe1—C7—C8163.90 (13)
C6—Fe1—C1—C578.03 (16)C3—Fe1—C7—C879.16 (17)
C4—Fe1—C1—C537.78 (16)C10—Fe1—C7—C638.21 (11)
C8—Fe1—C1—C5165.8 (2)C1—Fe1—C7—C641.0 (3)
C7—Fe1—C1—C546.9 (3)C9—Fe1—C7—C682.12 (12)
C2—Fe1—C1—C5119.1 (2)C4—Fe1—C7—C6118.53 (14)
C3—Fe1—C1—C581.51 (17)C8—Fe1—C7—C6119.68 (17)
C5—C1—C2—C30.4 (2)C2—Fe1—C7—C6163.4 (2)
Fe1—C1—C2—C359.49 (16)C5—Fe1—C7—C676.41 (15)
C5—C1—C2—Fe159.89 (14)C3—Fe1—C7—C6161.16 (15)
C10—Fe1—C2—C176.58 (16)C6—C7—C8—C90.4 (2)
C9—Fe1—C2—C1118.33 (14)Fe1—C7—C8—C959.09 (14)
C6—Fe1—C2—C144.2 (3)C6—C7—C8—Fe158.68 (13)
C4—Fe1—C2—C181.47 (16)C10—Fe1—C8—C937.24 (12)
C8—Fe1—C2—C1160.08 (13)C1—Fe1—C8—C944.9 (3)
C7—Fe1—C2—C1167.9 (2)C6—Fe1—C8—C981.63 (13)
C5—Fe1—C2—C137.77 (14)C4—Fe1—C8—C9162.03 (14)
C3—Fe1—C2—C1119.2 (2)C7—Fe1—C8—C9119.40 (17)
C10—Fe1—C2—C3164.18 (16)C2—Fe1—C8—C978.50 (15)
C1—Fe1—C2—C3119.2 (2)C5—Fe1—C8—C9165.2 (3)
C9—Fe1—C2—C3122.42 (17)C3—Fe1—C8—C9120.72 (15)
C6—Fe1—C2—C3163.5 (3)C10—Fe1—C8—C782.16 (12)
C4—Fe1—C2—C337.78 (18)C1—Fe1—C8—C7164.33 (19)
C8—Fe1—C2—C380.68 (19)C9—Fe1—C8—C7119.40 (17)
C7—Fe1—C2—C348.7 (3)C6—Fe1—C8—C737.77 (12)
C5—Fe1—C2—C381.48 (18)C4—Fe1—C8—C778.57 (16)
C1—C2—C3—C40.2 (3)C2—Fe1—C8—C7162.10 (12)
Fe1—C2—C3—C459.38 (16)C5—Fe1—C8—C745.8 (3)
C1—C2—C3—Fe159.22 (15)C3—Fe1—C8—C7119.88 (15)
C10—Fe1—C3—C4158.9 (2)C7—C8—C9—C100.9 (2)
C1—Fe1—C3—C481.29 (16)Fe1—C8—C9—C1058.27 (14)
C9—Fe1—C3—C4165.50 (15)C7—C8—C9—Fe159.16 (14)
C6—Fe1—C3—C445.1 (4)C1—Fe1—C9—C1078.90 (14)
C8—Fe1—C3—C4123.40 (15)C6—Fe1—C9—C1038.18 (11)
C7—Fe1—C3—C480.96 (18)C4—Fe1—C9—C10169.5 (3)
C2—Fe1—C3—C4118.9 (2)C8—Fe1—C9—C10120.27 (18)
C5—Fe1—C3—C437.39 (15)C7—Fe1—C9—C1082.54 (13)
C10—Fe1—C3—C240.1 (3)C2—Fe1—C9—C10120.49 (13)
C1—Fe1—C3—C237.59 (15)C5—Fe1—C9—C1047.8 (3)
C9—Fe1—C3—C275.63 (18)C3—Fe1—C9—C10161.40 (12)
C6—Fe1—C3—C2163.9 (2)C10—Fe1—C9—C8120.27 (18)
C4—Fe1—C3—C2118.9 (2)C1—Fe1—C9—C8160.83 (12)
C8—Fe1—C3—C2117.72 (16)C6—Fe1—C9—C882.09 (13)
C7—Fe1—C3—C2160.17 (14)C4—Fe1—C9—C849.2 (3)
C5—Fe1—C3—C281.48 (16)C7—Fe1—C9—C837.73 (12)
C2—C3—C4—C50.1 (3)C2—Fe1—C9—C8119.24 (13)
Fe1—C3—C4—C559.65 (16)C5—Fe1—C9—C8168.1 (2)
C2—C3—C4—Fe159.51 (16)C3—Fe1—C9—C878.33 (16)
C10—Fe1—C4—C540.2 (3)C8—C9—C10—C61.0 (2)
C1—Fe1—C4—C537.97 (14)Fe1—C9—C10—C659.82 (13)
C9—Fe1—C4—C5158.4 (2)C8—C9—C10—C11179.80 (19)
C6—Fe1—C4—C578.28 (16)Fe1—C9—C10—C11121.0 (2)
C8—Fe1—C4—C5164.60 (13)C8—C9—C10—Fe158.80 (15)
C7—Fe1—C4—C5121.88 (14)C7—C6—C10—C90.8 (2)
C2—Fe1—C4—C581.75 (15)P1—C6—C10—C9176.41 (14)
C3—Fe1—C4—C5119.5 (2)Fe1—C6—C10—C959.96 (14)
C10—Fe1—C4—C3159.8 (2)C7—C6—C10—C11179.99 (17)
C1—Fe1—C4—C381.58 (15)P1—C6—C10—C114.4 (3)
C9—Fe1—C4—C338.8 (3)Fe1—C6—C10—C11120.81 (18)
C6—Fe1—C4—C3162.18 (14)C7—C6—C10—Fe159.20 (13)
C8—Fe1—C4—C375.85 (17)P1—C6—C10—Fe1116.45 (14)
C7—Fe1—C4—C3118.57 (15)C1—Fe1—C10—C9118.58 (13)
C2—Fe1—C4—C337.80 (15)C6—Fe1—C10—C9119.07 (17)
C5—Fe1—C4—C3119.5 (2)C4—Fe1—C10—C9170.6 (2)
C3—C4—C5—C10.4 (3)C8—Fe1—C10—C937.08 (12)
Fe1—C4—C5—C159.31 (15)C7—Fe1—C10—C980.95 (13)
C3—C4—C5—Fe159.71 (17)C2—Fe1—C10—C977.55 (15)
C2—C1—C5—C40.5 (2)C5—Fe1—C10—C9159.99 (13)
Fe1—C1—C5—C459.45 (16)C3—Fe1—C10—C948.0 (3)
C2—C1—C5—Fe159.94 (15)C1—Fe1—C10—C6122.34 (12)
C10—Fe1—C5—C4163.58 (15)C9—Fe1—C10—C6119.07 (17)
C1—Fe1—C5—C4118.8 (2)C4—Fe1—C10—C651.5 (3)
C9—Fe1—C5—C4161.8 (2)C8—Fe1—C10—C681.99 (12)
C6—Fe1—C5—C4120.39 (16)C7—Fe1—C10—C638.12 (11)
C8—Fe1—C5—C443.3 (4)C2—Fe1—C10—C6163.37 (12)
C7—Fe1—C5—C478.15 (18)C5—Fe1—C10—C680.93 (14)
C2—Fe1—C5—C481.13 (16)C3—Fe1—C10—C6167.1 (2)
C3—Fe1—C5—C437.42 (16)C1—Fe1—C10—C115.16 (19)
C10—Fe1—C5—C177.66 (15)C9—Fe1—C10—C11123.7 (2)
C9—Fe1—C5—C143.0 (3)C6—Fe1—C10—C11117.2 (2)
C6—Fe1—C5—C1120.84 (13)C4—Fe1—C10—C1165.6 (3)
C4—Fe1—C5—C1118.8 (2)C8—Fe1—C10—C11160.82 (19)
C8—Fe1—C5—C1162.1 (2)C7—Fe1—C10—C11155.30 (19)
C7—Fe1—C5—C1163.08 (12)C2—Fe1—C10—C1146.2 (2)
C2—Fe1—C5—C137.63 (13)C5—Fe1—C10—C1136.2 (2)
C3—Fe1—C5—C181.34 (15)C3—Fe1—C10—C1175.7 (3)
C21—P1—C6—C10163.25 (16)C13—O1—C11—C10146.74 (17)
C15—P1—C6—C1093.47 (17)C13—O1—C11—C1288.9 (2)
C21—P1—C6—C711.3 (2)C9—C10—C11—O1111.4 (2)
C15—P1—C6—C791.94 (19)C6—C10—C11—O167.6 (2)
C21—P1—C6—Fe178.69 (12)Fe1—C10—C11—O1156.03 (13)
C15—P1—C6—Fe1178.04 (11)C9—C10—C11—C1210.4 (3)
C1—Fe1—C6—C1076.02 (14)C6—C10—C11—C12170.58 (18)
C9—Fe1—C6—C1037.74 (12)Fe1—C10—C11—C1282.2 (2)
C4—Fe1—C6—C10159.63 (14)C11—O1—C13—C14179.14 (17)
C8—Fe1—C6—C1081.41 (12)C6—P1—C15—C205.9 (2)
C7—Fe1—C6—C10118.85 (17)C21—P1—C15—C2098.16 (18)
C2—Fe1—C6—C1043.3 (3)C6—P1—C15—C16171.67 (15)
C5—Fe1—C6—C10117.91 (13)C21—P1—C15—C1684.23 (16)
C3—Fe1—C6—C10167.2 (3)C20—C15—C16—C171.5 (3)
C10—Fe1—C6—C7118.85 (16)P1—C15—C16—C17179.30 (17)
C1—Fe1—C6—C7165.12 (12)C15—C16—C17—C180.6 (3)
C9—Fe1—C6—C781.11 (12)C16—C17—C18—C190.3 (3)
C4—Fe1—C6—C781.52 (15)C17—C18—C19—C200.2 (3)
C8—Fe1—C6—C737.44 (12)C16—C15—C20—C191.6 (3)
C2—Fe1—C6—C7162.1 (2)P1—C15—C20—C19179.18 (17)
C5—Fe1—C6—C7123.24 (13)C18—C19—C20—C150.8 (3)
C3—Fe1—C6—C748.4 (3)C6—P1—C21—C2268.60 (17)
C10—Fe1—C6—P1116.20 (17)C15—P1—C21—C2236.93 (18)
C1—Fe1—C6—P140.17 (16)C6—P1—C21—C26111.64 (17)
C9—Fe1—C6—P1153.94 (14)C15—P1—C21—C26142.83 (16)
C4—Fe1—C6—P143.43 (16)C26—C21—C22—C230.3 (3)
C8—Fe1—C6—P1162.39 (14)P1—C21—C22—C23179.51 (16)
C7—Fe1—C6—P1124.95 (17)C21—C22—C23—C240.6 (3)
C2—Fe1—C6—P172.9 (3)C22—C23—C24—C250.3 (3)
C5—Fe1—C6—P11.71 (14)C23—C24—C25—C260.4 (3)
C3—Fe1—C6—P176.6 (3)C24—C25—C26—C210.8 (3)
C10—C6—C7—C80.2 (2)C22—C21—C26—C250.5 (3)
P1—C6—C7—C8175.46 (15)P1—C21—C26—C25179.76 (17)

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C21H22OP)]
Mr442.30
Crystal system, space groupOrthorhombic, P212121
Temperature (K)113
a, b, c (Å)11.003 (2), 12.191 (2), 16.599 (3)
V3)2226.6 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.76
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerRigaku Saturn
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2001)
Tmin, Tmax0.914, 0.942
No. of measured, independent and
observed [I > 2σ(I)] reflections
22928, 3929, 3847
Rint0.050
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.062, 1.05
No. of reflections3929
No. of parameters262
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.28
Absolute structureFlack (1983), with 1688 Friedel pairs
Absolute structure parameter0.019 (12)

Computer programs: CrystalClear (Rigaku, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
P1—C61.816 (2)O1—C111.434 (2)
P1—C211.838 (2)C10—C111.507 (3)
P1—C151.844 (2)C11—C121.518 (3)
O1—C131.424 (3)
C6—P1—C21101.20 (9)C7—C6—P1129.82 (15)
C6—P1—C15102.97 (9)O1—C11—C10106.40 (16)
C13—O1—C11113.47 (16)C10—C11—C12114.32 (17)
C10—C6—P1122.87 (15)
C15—P1—C6—C1093.47 (17)C6—P1—C15—C16171.67 (15)
 

Acknowledgements

The authors thank the Natural Science Foundation of China (grant No. 20572009) and the Basic Research Fund of Beijing Institute of Technology (grant No. 000Y05 for financial support of this work.

References

First citationBlaser, H. U. & Schmidt, E. (2004). In Asymmetric Catalysis on Industrial Scale. Weinheim: Wiley-VCH.  Google Scholar
First citationCheelama, M. N. & Knochel, P. (2007). Org. Lett. 9, 3089–3092.  Web of Science PubMed Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGomez Arrayas, R., Adrio, J. & Carretero, J. C. (2006). Angew. Chem. Int. Ed. 45, 7674–7715.  Web of Science CrossRef CAS Google Scholar
First citationHayashi, T., Hayashizaki, K., Kiyoi, T. & Ito, Y. (1988). J. Am. Chem. Soc. 120, 8153–8156.  CrossRef Web of Science Google Scholar
First citationJin, Z., Song, H., Liu, W., Hu, Y., Liu, J., Shao, L. & Fang, J. (2004). Acta Cryst. E60, m1692–m1694.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOhmura, H., Matsuhashi, H., Tanaka, M., Kuroboshi, M., Hiyama, T., Hatanaka, Y. & Goda, K. (1995). J. Organomet. Chem. 499, 167–171.  CrossRef CAS Web of Science Google Scholar
First citationOjima, I. (2000). In Catalytic Asymmetric Synthesis, 2nd ed. New York: Wiley-VCH.  Google Scholar
First citationPodlaha, J., Štěpnicka, P., Štěpnicka, L. J. & Císarova, I. (1996). Organometallics, 15, 543–550.  CSD CrossRef CAS Web of Science Google Scholar
First citationRigaku (2001). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds