organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2H-Tetra­zol-5-yl)pyridinium chloride

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: fudavid88@yahoo.com.cn

(Received 10 September 2008; accepted 9 October 2008; online 15 October 2008)

In the title compound, C6H6N5+·Cl, the pyridinium and tetra­zole rings are essentially coplanar. The pyridine N atoms are protonated. In the crystal structure, mol­ecules are connected via N—H⋯Cl, C—H⋯Cl, C—H⋯N and N—H⋯N hydrogen bonds into layers that are parallel to the (001) plane. There are two crystallographically independent mol­ecules in the asymmetric unit which are located on mirror planes.

Related literature

For related literature on tetra­zole derivatives, see: Dai & Fu (2008[Dai, W. & Fu, D.-W. (2008). Acta Cryst. E64, o1444.]); Wang et al. (2005[Wang, X.-S., Tang, Y.-Z., Huang, X.-F., Qu, Z.-R., Che, C.-M., Chan, C. W. H. & Xiong, R.-G. (2005). Inorg. Chem. 44, 5278-5285.]); Wen (2008[Wen, X.-C. (2008). Acta Cryst. E64, m768.]); Xiong et al. (2002[Xiong, R.-G., Xue, X., Zhao, H., You, X.-Z., Abrahams, B. F. & Xue, Z.-L. (2002). Angew. Chem. Int. Ed. 41, 3800-3803.]).

[Scheme 1]

Experimental

Crystal data
  • C6H6N5+·Cl

  • Mr = 183.61

  • Orthorhombic, P b c m

  • a = 16.375 (3) Å

  • b = 15.313 (3) Å

  • c = 6.5176 (13) Å

  • V = 1634.3 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 298 (2) K

  • 0.25 × 0.20 × 0.18 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.910, Tmax = 0.938

  • 16127 measured reflections

  • 2041 independent reflections

  • 1511 reflections with I > 2σ(I)

  • Rint = 0.076

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.148

  • S = 1.14

  • 2041 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N9—H9A⋯Cl2 0.86 2.14 3.001 (3) 177
N10—H10A⋯Cl1 0.86 2.33 3.088 (3) 147
N2—H2⋯Cl2 0.86 2.22 3.050 (4) 163
N5—H5A⋯Cl1i 0.86 2.29 3.049 (3) 147
N5—H5A⋯N1 0.86 2.55 2.881 (4) 104
N10—H10A⋯N6 0.86 2.52 2.858 (4) 105
C9—H9⋯Cl2 0.93 2.64 3.545 (4) 165
C3—H3⋯N8ii 0.93 2.60 3.329 (5) 136
C6—H6⋯N6i 0.93 2.38 3.260 (5) 159
C10—H10⋯Cl1iii 0.93 2.67 3.596 (4) 174
Symmetry codes: (i) x, y+1, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Tetrazole derivatives have found wide range of applications in coordination chemistry because of their multiple coordination modes as ligands to metal ions and for the construction of novel metal-organic frameworks (Wang et al., 2005; Xiong et al., 2002; Wen, 2008). In our ongoing investigations in this field we report here the crystal of 2-(2H-tetrazol-5-yl)pyridine-1-ium chloride (Fig.1).

In the crystal structure there are two crystallographically independent molecules, both of them located on mirror planes. Therefore, the benzene and tetrazole rings in both independent molecules are essentially planar. The geometric parameters of the tetrazole rings are comparable to those in related molecules (Wang et al., 2005; Dai & Fu, 2008).

The crystal structure is stabilized by N—H···Cl, C—H···Cl, C—H···N and N—H···N hydrogen bonding. The different H bonding interactions connect the molecules into layers, that are parallel to the (0 0 1) plane (Table 1, Fig. 2).

Related literature top

For related literature on tetrazole derivatives, see: Dai & Fu (2008); Wang et al. (2005); Wen (2008); Xiong et al. (2002).

Experimental top

Picolinonitrile (30 mmol), NaN 3 (45 mmol), NH4Cl (33 mmol) and DMF (50 ml) were added in a flask under nitrogen atmosphere and the mixture stirred at 110°C for 20 h. The resulting solution was then poured into ice-water (100 ml), and a white solid was obtained after adding HCl (6 M) till pH=6. The precipitate was filtered and washed with distilled water. Colourless block-shaped crystals suitable for X-ray analysis were obtained from the crude product by slow evaporation of the solvent from an ethanol/HCl (50:1 v/v) solution.

Refinement top

All H atoms were located in difference map but were positioned with idealized geometry with C—H = 0.93 Å and N—H = 0.86 Å and were refined isotropic with Uiso(H) = 1.2Ueq(C or N) using a riding model.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the c axis showing the two-dimensionnal hydrogen bondings network.
2-(2H-Tetrazol-5-yl)pyridinium chloride top
Crystal data top
C6H6N5+·ClF(000) = 752
Mr = 183.61Dx = 1.492 Mg m3
Orthorhombic, PbcmMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2c 2bCell parameters from 2986 reflections
a = 16.375 (3) Åθ = 2.5–27.5°
b = 15.313 (3) ŵ = 0.42 mm1
c = 6.5176 (13) ÅT = 298 K
V = 1634.3 (5) Å3Block, colourless
Z = 80.25 × 0.20 × 0.18 mm
Data collection top
Rigaku Mercury2
diffractometer
2041 independent reflections
Radiation source: fine-focus sealed tube1511 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.077
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 2.5°
ω scansh = 2121
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1919
Tmin = 0.910, Tmax = 0.938l = 88
16127 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0616P)2 + 0.4596P]
where P = (Fo2 + 2Fc2)/3
2041 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C6H6N5+·ClV = 1634.3 (5) Å3
Mr = 183.61Z = 8
Orthorhombic, PbcmMo Kα radiation
a = 16.375 (3) ŵ = 0.42 mm1
b = 15.313 (3) ÅT = 298 K
c = 6.5176 (13) Å0.25 × 0.20 × 0.18 mm
Data collection top
Rigaku Mercury2
diffractometer
2041 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1511 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 0.938Rint = 0.077
16127 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 1.14Δρmax = 0.32 e Å3
2041 reflectionsΔρmin = 0.23 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C90.0640 (2)0.4651 (2)0.25000.0494 (10)
H90.08030.52320.25000.059*
N60.26721 (19)0.3543 (2)0.25000.0476 (8)
N70.33865 (17)0.3973 (2)0.25000.0466 (8)
N80.3269 (2)0.4819 (3)0.25000.0568 (9)
N90.24511 (18)0.4938 (2)0.25000.0480 (8)
H9A0.22020.54320.25000.058*
C70.2096 (2)0.4149 (2)0.25000.0399 (8)
C80.1215 (2)0.3988 (2)0.25000.0373 (8)
N100.09641 (17)0.31585 (19)0.25000.0422 (8)
H10A0.13250.27500.25000.051*
C120.0174 (2)0.2938 (3)0.25000.0516 (10)
H120.00250.23520.25000.062*
C110.0412 (3)0.3566 (3)0.25000.0619 (12)
H110.09620.34140.25000.074*
C100.0181 (2)0.4434 (3)0.25000.0566 (11)
H100.05750.48710.25000.068*
N40.4116 (2)0.8572 (2)0.25000.0671 (11)
N30.3635 (2)0.7880 (2)0.25000.0663 (10)
N20.2886 (2)0.8188 (2)0.25000.0615 (10)
H20.24620.78560.25000.074*
N10.2836 (2)0.9048 (2)0.25000.0591 (10)
N50.33937 (17)1.0833 (2)0.25000.0414 (7)
H5A0.28801.07140.25000.050*
C10.3619 (2)0.9270 (2)0.25000.0422 (9)
C20.3931 (2)1.0162 (2)0.25000.0373 (8)
C30.4760 (2)1.0352 (2)0.25000.0475 (9)
H30.51450.99050.25000.057*
C40.5005 (2)1.1221 (3)0.25000.0533 (10)
H40.55591.13550.25000.064*
C50.4444 (3)1.1881 (3)0.25000.0546 (11)
H50.46111.24610.25000.066*
C60.3620 (2)1.1670 (3)0.25000.0486 (9)
H60.32281.21100.25000.058*
Cl10.15729 (5)0.12495 (6)0.25000.0456 (3)
Cl20.16485 (7)0.66996 (7)0.25000.0764 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C90.048 (2)0.0309 (19)0.070 (3)0.0017 (17)0.0000.000
N60.0410 (18)0.0434 (19)0.059 (2)0.0073 (14)0.0000.000
N70.0324 (16)0.052 (2)0.055 (2)0.0076 (14)0.0000.000
N80.0363 (17)0.061 (2)0.073 (3)0.0044 (15)0.0000.000
N90.0340 (16)0.0395 (18)0.070 (2)0.0027 (13)0.0000.000
C70.041 (2)0.0356 (19)0.043 (2)0.0021 (16)0.0000.000
C80.0345 (18)0.0339 (18)0.044 (2)0.0007 (14)0.0000.000
N100.0408 (17)0.0346 (16)0.051 (2)0.0027 (13)0.0000.000
C120.043 (2)0.043 (2)0.069 (3)0.0116 (18)0.0000.000
C110.036 (2)0.059 (3)0.091 (4)0.0024 (19)0.0000.000
C100.044 (2)0.047 (2)0.078 (3)0.0132 (19)0.0000.000
N40.047 (2)0.040 (2)0.114 (3)0.0033 (16)0.0000.000
N30.053 (2)0.0384 (18)0.107 (3)0.0054 (17)0.0000.000
N20.046 (2)0.0358 (18)0.103 (3)0.0036 (16)0.0000.000
N10.0431 (19)0.0336 (18)0.100 (3)0.0011 (14)0.0000.000
N50.0351 (16)0.0371 (16)0.0520 (19)0.0015 (13)0.0000.000
C10.0372 (19)0.0374 (19)0.052 (2)0.0022 (16)0.0000.000
C20.0327 (18)0.0386 (19)0.041 (2)0.0023 (15)0.0000.000
C30.038 (2)0.047 (2)0.058 (3)0.0049 (17)0.0000.000
C40.043 (2)0.053 (2)0.064 (3)0.0091 (19)0.0000.000
C50.055 (3)0.039 (2)0.071 (3)0.0112 (19)0.0000.000
C60.052 (2)0.035 (2)0.059 (3)0.0049 (17)0.0000.000
Cl10.0394 (5)0.0403 (5)0.0572 (6)0.0005 (4)0.0000.000
Cl20.0564 (7)0.0340 (5)0.1387 (12)0.0022 (5)0.0000.000
Geometric parameters (Å, º) top
C9—C81.384 (5)N4—N31.320 (5)
C9—C101.385 (5)N4—C11.343 (5)
C9—H90.9300N3—N21.315 (4)
N6—C71.324 (5)N2—N11.320 (4)
N6—N71.343 (4)N2—H20.8600
N7—N81.309 (5)N1—C11.326 (5)
N8—N91.352 (4)N5—C61.335 (5)
N9—C71.340 (4)N5—C21.351 (4)
N9—H9A0.8600N5—H5A0.8600
C7—C81.464 (5)C1—C21.459 (5)
C8—N101.334 (4)C2—C31.389 (5)
N10—C121.337 (4)C3—C41.390 (5)
N10—H10A0.8600C3—H30.9300
C12—C111.359 (6)C4—C51.365 (5)
C12—H120.9300C4—H40.9300
C11—C101.382 (6)C5—C61.387 (5)
C11—H110.9300C5—H50.9300
C10—H100.9300C6—H60.9300
C8—C9—C10119.0 (4)N3—N4—C1106.1 (3)
C8—C9—H9120.5N2—N3—N4105.5 (3)
C10—C9—H9120.5N3—N2—N1114.6 (3)
C7—N6—N7106.0 (3)N3—N2—H2122.7
N8—N7—N6111.0 (3)N1—N2—H2122.7
N7—N8—N9106.2 (3)N2—N1—C1101.2 (3)
C7—N9—N8108.0 (3)C6—N5—C2123.3 (3)
C7—N9—H9A126.0C6—N5—H5A118.4
N8—N9—H9A126.0C2—N5—H5A118.4
N6—C7—N9108.9 (3)N1—C1—N4112.5 (3)
N6—C7—C8125.7 (3)N1—C1—C2125.3 (3)
N9—C7—C8125.4 (3)N4—C1—C2122.2 (3)
N10—C8—C9119.3 (3)N5—C2—C3118.5 (3)
N10—C8—C7117.6 (3)N5—C2—C1118.9 (3)
C9—C8—C7123.1 (3)C3—C2—C1122.5 (3)
C8—N10—C12122.6 (3)C2—C3—C4118.8 (3)
C8—N10—H10A118.7C2—C3—H3120.6
C12—N10—H10A118.7C4—C3—H3120.6
N10—C12—C11120.3 (4)C5—C4—C3121.0 (4)
N10—C12—H12119.8C5—C4—H4119.5
C11—C12—H12119.8C3—C4—H4119.5
C12—C11—C10119.1 (4)C4—C5—C6118.8 (4)
C12—C11—H11120.4C4—C5—H5120.6
C10—C11—H11120.4C6—C5—H5120.6
C11—C10—C9119.8 (4)N5—C6—C5119.6 (4)
C11—C10—H10120.1N5—C6—H6120.2
C9—C10—H10120.1C5—C6—H6120.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9A···Cl20.862.143.001 (3)177
N10—H10A···Cl10.862.333.088 (3)147
N2—H2···Cl20.862.223.050 (4)163
N5—H5A···Cl1i0.862.293.049 (3)147
N5—H5A···N10.862.552.881 (4)104
N10—H10A···N60.862.522.858 (4)105
C9—H9···Cl20.932.643.545 (4)165
C3—H3···N8ii0.932.603.329 (5)136
C6—H6···N6i0.932.383.260 (5)159
C10—H10···Cl1iii0.932.673.596 (4)174
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC6H6N5+·Cl
Mr183.61
Crystal system, space groupOrthorhombic, Pbcm
Temperature (K)298
a, b, c (Å)16.375 (3), 15.313 (3), 6.5176 (13)
V3)1634.3 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.42
Crystal size (mm)0.25 × 0.20 × 0.18
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.910, 0.938
No. of measured, independent and
observed [I > 2σ(I)] reflections
16127, 2041, 1511
Rint0.077
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.148, 1.14
No. of reflections2041
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.23

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9A···Cl20.862.143.001 (3)176.8
N10—H10A···Cl10.862.333.088 (3)146.7
N2—H2···Cl20.862.223.050 (4)163.2
N5—H5A···Cl1i0.862.293.049 (3)146.8
N5—H5A···N10.862.552.881 (4)103.9
N10—H10A···N60.862.522.858 (4)104.6
C9—H9···Cl20.932.643.545 (4)165.0
C3—H3···N8ii0.932.603.329 (5)135.6
C6—H6···N6i0.932.383.260 (5)158.9
C10—H10···Cl1iii0.932.673.596 (4)173.8
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by a start-up grant from Southeast University to Professor Ren-Gen Xiong.

References

First citationDai, W. & Fu, D.-W. (2008). Acta Cryst. E64, o1444.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X.-S., Tang, Y.-Z., Huang, X.-F., Qu, Z.-R., Che, C.-M., Chan, C. W. H. & Xiong, R.-G. (2005). Inorg. Chem. 44, 5278–5285.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWen, X.-C. (2008). Acta Cryst. E64, m768.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXiong, R.-G., Xue, X., Zhao, H., You, X.-Z., Abrahams, B. F. & Xue, Z.-L. (2002). Angew. Chem. Int. Ed. 41, 3800–3803.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds