organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Bis(2-hy­droxy­ethyl)-N,N′-[ethyl­ene­di­oxy­bis­(o-phenyl­ene­methyl­ene)]­di­ammonium fumarate tetra­hydrate

aDepartment of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
*Correspondence e-mail: majf247nenu@yahoo.com.cn

(Received 17 September 2008; accepted 16 October 2008; online 22 October 2008)

The reaction of 1,2-bis­{2-[(2-hydroxy­ethyl)amino­methyl]­phen­oxy}ethane and fumaric acid in a mixed solution in ethanol–water (1:1 v/v) yields the title compound, C20H30N2O42+·C4H2O42−·4H2O. In the crystal structure, the anions, cations and water mol­ecules are connected via O—H⋯O and N—H⋯O hydrogen bonds into a three-dimensional network. The fumarate anion and the N,N′-bis­(2-hydroxy­ethyl)-N,N′-[ethyl­enedioxy­bis(o-phenyl­enemethylene)]diammonium cation are located on centers of inversion, whereas the two crystallographically independent water mol­ecules occupy general positions.

Related literature

For a related structure, see: Wang & Wei (2005[Wang, Z.-L. & Wei, L.-H. (2005). Acta Cryst. E61, o3129-o3130.]). For background to the synthesis, see: Armstrong & Lindoy (1975[Armstrong, L. G. & Lindoy, L. F. (1975). Inorg. Chem. 14, 1322-1326.]).

[Scheme 1]

Experimental

Crystal data
  • C20H30N2O42+·C4H2O42−·4H2O

  • Mr = 548.58

  • Triclinic, [P \overline 1]

  • a = 7.585 (7) Å

  • b = 8.623 (6) Å

  • c = 11.515 (7) Å

  • α = 104.64 (2)°

  • β = 96.77 (3)°

  • γ = 104.29 (3)°

  • V = 693.0 (9) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 (2) K

  • 0.41 × 0.34 × 0.28 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.952, Tmax = 0.983

  • 6826 measured reflections

  • 3128 independent reflections

  • 2394 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.128

  • S = 1.11

  • 3128 reflections

  • 193 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1C⋯O2W 0.85 (3) 1.97 (3) 2.792 (3) 164 (3)
O2W—H2C⋯O2 0.85 (3) 1.97 (3) 2.828 (3) 176 (3)
N5—H5B⋯O2 0.950 (19) 1.811 (19) 2.749 (2) 168.6 (16)
O1W—H1D⋯O3i 0.91 (3) 1.96 (3) 2.830 (3) 159 (3)
O2W—H2D⋯O4ii 0.86 (3) 2.01 (3) 2.867 (3) 175 (3)
N5—H5A⋯O1Wiii 0.900 (19) 2.125 (19) 2.925 (3) 147.6 (15)
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) x-1, y-1, z; (iii) x+1, y, z.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Currently, many groups are investigating crystal structures of cocrystals containing organic acids and organic bases, which are based on hydrogen bonding (Wang & Wei, 2005). In this context, the crystal structure of the title compound is presented.

The crystal structure consists of one N,N'-bis(2-hydroxyethyl)-N,N'-[ethylenedioxybis(o-phenylenemethylene)]diammonium cation and one fumarate anion located on centers of inversion and two crystallographically independent water molecules that occupy general positions (Fig. 1). In the crystal structure, different O—H···O and N—H···O hydrogen bonds link the components of the title compound into a three-dimensional network (Table 1 and Fig. 2).

Related literature top

For a related structure, see: Wang & Wei (2005). For background to the synthesis, see: Armstrong & Lindoy (1975). [Please check added text]

Experimental top

All chemicals were obtained from commercial sources and used without further purification except for L (L is 1,2-bis{2-[(2-hydroxyethyl)aminomethyl]phenoxy}ethane). 1,4-bis(2-formylphenyl)-1,4-dioxabutuane, which was prepared according to the literature (Armstrong & Lindoy, 1975). 2-aminoethanol (1.22 g, 2.0 mol) in 50 ml of methanol were added slowly to a stirred boiling solution of 1,4-bis(2'-formylphenyl)-1,4-dioxabutuane (2.70 g, 1 mol) in 100 ml of methanol. The mixed solution was refluxed for 1 h, filtered off and cooled to room temperature. 1.52 g NaBH4 were added slowly to the filtrate and stirred for a further 2 h. The solvent was evaporated and 100 ml water of were added. After extraction with chloroform the solvent was evaporated, which led to a white solid of L. Crystals of the title compound were obtained by dissolving L (0.180 g, 1 mmol) and fumaric acid (0.116 g, 1 mmol) in a mixture of ethanol and water (1:1), followed by slow evaporation of the solvents.

Refinement top

The C—H H atoms were positioned with idealized geometry and treated as riding atoms with distances C—H = 0.97 (CH2) and 0.93 Å (CH).90 Å and Uiso = 1.2Ueq(C). The H atoms bonded to N atoms and O atoms were located in a difference Fourier map and were refined vith varying coordinates isotropic with Uiso(H) = 1.5Ueq of the parent atom.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Crystal structure of the title compound with labelling and displacement ellipsoids drawn at the 30% probability level (for the H atoms spheres of arbitrary size are used). Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) -x + 1, -y, -z + 2.
[Figure 2] Fig. 2. Crystal structure of the title compound with hydrogen bonding indicated by dashed lines. For clarity, H atoms not involved in hydrogen bonding are omitted.
N,N'-Bis(2-hydroxyethyl)-N,N'-[ethylenedioxybis(o-phenylenemethylene)]diammonium fumarate tetrahydrate top
Crystal data top
C20H30N2O42+·C4H2O42·4H2OZ = 1
Mr = 548.58F(000) = 294
Triclinic, P1Dx = 1.315 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 7.585 (7) ÅCell parameters from 3128 reflections
b = 8.623 (6) Åθ = 3.1–27.4°
c = 11.515 (7) ŵ = 0.11 mm1
α = 104.64 (2)°T = 293 K
β = 96.77 (3)°Block, colourless
γ = 104.29 (3)°0.41 × 0.34 × 0.28 mm
V = 693.0 (9) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3128 independent reflections
Radiation source: fine-focus sealed tube2394 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Detector resolution: 10.0 pixels mm-1θmax = 27.4°, θmin = 3.1°
ω scansh = 99
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1110
Tmin = 0.952, Tmax = 0.983l = 1414
6826 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0619P)2 + 0.1182P]
where P = (Fo2 + 2Fc2)/3
3128 reflections(Δ/σ)max < 0.001
193 parametersΔρmax = 0.68 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C20H30N2O42+·C4H2O42·4H2Oγ = 104.29 (3)°
Mr = 548.58V = 693.0 (9) Å3
Triclinic, P1Z = 1
a = 7.585 (7) ÅMo Kα radiation
b = 8.623 (6) ŵ = 0.11 mm1
c = 11.515 (7) ÅT = 293 K
α = 104.64 (2)°0.41 × 0.34 × 0.28 mm
β = 96.77 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3128 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2394 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.983Rint = 0.018
6826 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.68 e Å3
3128 reflectionsΔρmin = 0.20 e Å3
193 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4884 (2)0.33265 (18)0.58122 (12)0.0353 (3)
C20.3124 (2)0.2213 (2)0.54836 (15)0.0470 (4)
H20.22570.23680.59770.056*
C30.2632 (3)0.0871 (2)0.44313 (17)0.0582 (5)
H30.14380.01400.42120.070*
C40.3923 (3)0.0628 (2)0.37144 (15)0.0576 (5)
H40.35990.02840.30150.069*
C50.5695 (3)0.1718 (2)0.40173 (14)0.0507 (4)
H50.65600.15390.35280.061*
C60.6173 (2)0.3083 (2)0.50592 (12)0.0388 (3)
C70.5438 (2)0.48184 (19)0.69256 (13)0.0381 (3)
H7A0.59070.58220.66880.046*
H7B0.43550.49140.72770.046*
C80.7528 (2)0.61530 (18)0.90008 (13)0.0406 (3)
H8A0.84080.59310.95740.049*
H8B0.64720.62660.93800.049*
C90.8425 (2)0.77871 (19)0.87634 (15)0.0471 (4)
H9A0.75070.80810.82690.056*
H9B0.88630.86650.95360.056*
C100.9210 (2)0.4234 (2)0.46928 (15)0.0532 (4)
H10A0.87110.42440.38800.064*
H10B0.96100.32350.46230.064*
C110.6218 (2)0.21555 (18)0.97927 (15)0.0403 (3)
C120.5574 (2)0.07174 (19)1.03092 (14)0.0431 (4)
H120.60330.08731.11290.052*
O10.78557 (15)0.42777 (16)0.54483 (10)0.0503 (3)
O20.52895 (15)0.21994 (13)0.88286 (10)0.0485 (3)
O30.76640 (19)0.32235 (16)1.03867 (13)0.0684 (4)
O1W0.0354 (2)0.3790 (2)0.77573 (13)0.0646 (4)
H1C0.050 (4)0.289 (4)0.787 (2)0.097*
H1D0.122 (4)0.462 (4)0.836 (3)0.097*
O2W0.1427 (2)0.09631 (18)0.79075 (15)0.0672 (4)
H2C0.260 (5)0.129 (4)0.818 (3)0.101*
H2D0.101 (4)0.004 (4)0.795 (3)0.101*
O40.99312 (17)0.76942 (15)0.81566 (12)0.0521 (3)
H4A1.073 (3)0.739 (3)0.860 (2)0.078*
N50.68936 (17)0.46959 (14)0.78706 (10)0.0310 (3)
H5A0.792 (3)0.458 (2)0.7581 (16)0.046*
H5B0.638 (2)0.374 (2)0.8117 (15)0.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0385 (8)0.0408 (8)0.0311 (6)0.0160 (6)0.0048 (5)0.0145 (6)
C20.0411 (9)0.0564 (10)0.0431 (8)0.0116 (7)0.0047 (7)0.0178 (7)
C30.0580 (11)0.0534 (10)0.0505 (10)0.0022 (9)0.0066 (8)0.0145 (8)
C40.0831 (14)0.0453 (9)0.0381 (8)0.0208 (9)0.0048 (8)0.0062 (7)
C50.0675 (12)0.0614 (10)0.0326 (7)0.0346 (9)0.0104 (7)0.0139 (7)
C60.0426 (8)0.0501 (9)0.0309 (7)0.0206 (7)0.0070 (6)0.0172 (6)
C70.0407 (8)0.0432 (8)0.0363 (7)0.0194 (6)0.0082 (6)0.0142 (6)
C80.0494 (9)0.0363 (8)0.0324 (7)0.0077 (7)0.0096 (6)0.0077 (6)
C90.0546 (10)0.0323 (8)0.0485 (8)0.0073 (7)0.0042 (7)0.0095 (7)
C100.0455 (9)0.0832 (13)0.0438 (9)0.0271 (9)0.0210 (7)0.0269 (9)
C110.0413 (8)0.0330 (7)0.0523 (9)0.0105 (6)0.0112 (7)0.0213 (7)
C120.0460 (9)0.0398 (8)0.0414 (8)0.0063 (6)0.0036 (6)0.0166 (6)
O10.0404 (6)0.0728 (8)0.0381 (6)0.0139 (6)0.0152 (5)0.0156 (5)
O20.0438 (6)0.0429 (6)0.0542 (7)0.0019 (5)0.0034 (5)0.0230 (5)
O30.0600 (8)0.0487 (7)0.0848 (10)0.0074 (6)0.0187 (7)0.0361 (7)
O1W0.0677 (9)0.0684 (9)0.0612 (8)0.0352 (8)0.0032 (6)0.0141 (7)
O2W0.0480 (8)0.0537 (8)0.1011 (11)0.0065 (6)0.0001 (7)0.0393 (8)
O40.0433 (7)0.0515 (7)0.0639 (7)0.0049 (5)0.0056 (5)0.0319 (6)
N50.0327 (6)0.0306 (6)0.0313 (6)0.0079 (5)0.0087 (5)0.0122 (5)
Geometric parameters (Å, º) top
C1—C21.383 (2)C9—O41.416 (2)
C1—C61.400 (2)C9—H9A0.9700
C1—C71.499 (2)C9—H9B0.9700
C2—C31.385 (3)C10—O11.424 (2)
C2—H20.9300C10—C10i1.492 (4)
C3—C41.374 (3)C10—H10A0.9700
C3—H30.9300C10—H10B0.9700
C4—C51.383 (3)C11—O31.235 (2)
C4—H40.9300C11—O21.257 (2)
C5—C61.389 (2)C11—C121.508 (2)
C5—H50.9300C12—C12ii1.293 (3)
C6—O11.369 (2)C12—H120.9300
C7—N51.499 (2)O1W—H1C0.85 (3)
C7—H7A0.9700O1W—H1D0.91 (3)
C7—H7B0.9700O2W—H2C0.85 (3)
C8—N51.494 (2)O2W—H2D0.86 (3)
C8—C91.513 (2)O4—H4A0.88 (3)
C8—H8A0.9700N5—H5A0.900 (19)
C8—H8B0.9700N5—H5B0.950 (19)
C2—C1—C6118.93 (15)H8A—C8—H8B107.7
C2—C1—C7122.15 (14)O4—C9—C8112.16 (13)
C6—C1—C7118.89 (14)O4—C9—H9A109.2
C1—C2—C3120.98 (17)C8—C9—H9A109.2
C1—C2—H2119.5O4—C9—H9B109.2
C3—C2—H2119.5C8—C9—H9B109.2
C4—C3—C2119.45 (18)H9A—C9—H9B107.9
C4—C3—H3120.3O1—C10—C10i105.74 (17)
C2—C3—H3120.3O1—C10—H10A110.6
C3—C4—C5121.00 (17)C10i—C10—H10A110.6
C3—C4—H4119.5O1—C10—H10B110.6
C5—C4—H4119.5C10i—C10—H10B110.6
C4—C5—C6119.42 (17)H10A—C10—H10B108.7
C4—C5—H5120.3O3—C11—O2125.21 (14)
C6—C5—H5120.3O3—C11—C12114.98 (14)
O1—C6—C5125.51 (15)O2—C11—C12119.81 (14)
O1—C6—C1114.30 (14)C12ii—C12—C11124.47 (19)
C5—C6—C1120.19 (16)C12ii—C12—H12117.8
N5—C7—C1112.04 (12)C11—C12—H12117.8
N5—C7—H7A109.2C6—O1—C10118.86 (13)
C1—C7—H7A109.2H1C—O1W—H1D104 (2)
N5—C7—H7B109.2H2C—O2W—H2D108 (3)
C1—C7—H7B109.2C9—O4—H4A108.2 (15)
H7A—C7—H7B107.9C8—N5—C7114.91 (12)
N5—C8—C9113.42 (13)C8—N5—H5A106.3 (11)
N5—C8—H8A108.9C7—N5—H5A112.5 (11)
C9—C8—H8A108.9C8—N5—H5B106.9 (10)
N5—C8—H8B108.9C7—N5—H5B107.6 (10)
C9—C8—H8B108.9H5A—N5—H5B108.3 (15)
C6—C1—C2—C30.3 (2)C2—C1—C7—N5114.29 (16)
C7—C1—C2—C3178.16 (14)C6—C1—C7—N567.81 (17)
C1—C2—C3—C41.1 (3)N5—C8—C9—O455.82 (19)
C2—C3—C4—C51.0 (3)O3—C11—C12—C12ii160.5 (2)
C3—C4—C5—C60.3 (3)O2—C11—C12—C12ii19.9 (3)
C4—C5—C6—O1178.31 (14)C5—C6—O1—C105.5 (2)
C4—C5—C6—C11.6 (2)C1—C6—O1—C10174.42 (13)
C2—C1—C6—O1178.34 (12)C10i—C10—O1—C6174.87 (16)
C7—C1—C6—O10.37 (18)C9—C8—N5—C761.95 (18)
C2—C1—C6—C51.6 (2)C1—C7—N5—C8179.32 (12)
C7—C1—C6—C5179.58 (13)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1C···O2W0.85 (3)1.97 (3)2.792 (3)164 (3)
O2W—H2C···O20.85 (3)1.97 (3)2.828 (3)176 (3)
N5—H5B···O20.950 (19)1.811 (19)2.749 (2)168.6 (16)
O1W—H1D···O3iii0.91 (3)1.96 (3)2.830 (3)159 (3)
O2W—H2D···O4iv0.86 (3)2.01 (3)2.867 (3)175 (3)
N5—H5A···O1Wv0.900 (19)2.125 (19)2.925 (3)147.6 (15)
Symmetry codes: (iii) x+1, y+1, z+2; (iv) x1, y1, z; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC20H30N2O42+·C4H2O42·4H2O
Mr548.58
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.585 (7), 8.623 (6), 11.515 (7)
α, β, γ (°)104.64 (2), 96.77 (3), 104.29 (3)
V3)693.0 (9)
Z1
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.41 × 0.34 × 0.28
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.952, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
6826, 3128, 2394
Rint0.018
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.128, 1.11
No. of reflections3128
No. of parameters193
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.68, 0.20

Computer programs: PROCESS-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1C···O2W0.85 (3)1.97 (3)2.792 (3)164 (3)
O2W—H2C···O20.85 (3)1.97 (3)2.828 (3)176 (3)
N5—H5B···O20.950 (19)1.811 (19)2.749 (2)168.6 (16)
O1W—H1D···O3i0.91 (3)1.96 (3)2.830 (3)159 (3)
O2W—H2D···O4ii0.86 (3)2.01 (3)2.867 (3)175 (3)
N5—H5A···O1Wiii0.900 (19)2.125 (19)2.925 (3)147.6 (15)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x1, y1, z; (iii) x+1, y, z.
 

Acknowledgements

We thank the Program for New Century Excellent Talents in Chinese Universities (grant No. NCET-05-0320) and the Analysis and Testing Foundation of Northeast Normal University for support.

References

First citationArmstrong, L. G. & Lindoy, L. F. (1975). Inorg. Chem. 14, 1322–1326.  CrossRef CAS Web of Science Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z.-L. & Wei, L.-H. (2005). Acta Cryst. E61, o3129–o3130.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds