organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(Benzimidazolium-2-yl)propionate dihydrate

aKey Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, People's Republic of China, and bInstitute of Applied Chemistry, Guizhou University, Guiyang 550025, People's Republic of China
*Correspondence e-mail: gyhxxiaoxin@163.com

(Received 4 September 2008; accepted 27 September 2008; online 4 October 2008)

In the crystal struture of the title compound, C10H10N2O2·2H2O, the component species are linked to the water mol­ecules by N—H⋯O and O—H⋯O hydrogen bonds to form a three-dimensional network structure.

Related literature

For general background, see: Day & Arnold (2000[Day, A. I. & Arnold, A. P. (2000). Int. Patent WO/2000/068232.]); Day et al. (2002[Day, A. I., Blanch, R. J., Arnold, A. P., Lorenzo, S., Lewis, G. R. & Dance, I. (2002). Angew. Chem. Int. Ed. 41, 275-277.]); Freeman et al. (1981[Freeman, W. A., Mock, W. L. & Shih, N. Y. (1981). J. Am. Chem. Soc. 103, 7367-7368.]); Kim et al. (2000[Kim, J., Jung, I.-S., Kim, S.-Y., Lee, E., Kang, J.-K., Sakamoto, S., Yamaguchi, K. & Kim, K. (2000). J. Am. Chem. Soc. 122, 540-541.]). For related structure, see: Ge et al. (2007[Ge, J. Y., Xue, S. F., Zhu, Q. J., Tao, Z. & Zhang, J., X. (2007). J. Incl. Phenom. Macro. 58, 63-69.]).

[Scheme 1]

Experimental

Crystal data
  • C10H10N2O2·2H2O

  • Mr = 226.23

  • Monoclinic, P 21 /c

  • a = 18.444 (3) Å

  • b = 4.9730 (8) Å

  • c = 11.9097 (19) Å

  • β = 94.530 (5)°

  • V = 1089.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 273 (2) K

  • 0.29 × 0.26 × 0.20 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: none

  • 7787 measured reflections

  • 2002 independent reflections

  • 1394 reflections with I > 2σ(I)

  • Rint = 0.066

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.113

  • S = 1.08

  • 1971 reflections

  • 161 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.86 1.86 2.700 (2) 166
N2—H2N⋯O2ii 0.86 1.80 2.654 (3) 170
O2W—H2W1⋯O1Wiii 0.841 (17) 2.007 (18) 2.842 (3) 172 (3)
Symmetry codes: (i) x, y+1, z; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As part of our ongoing investigation on benzimidazole compounds, we present a compound containing multiple functional groups that can develop strong intermolecular interactions with cucurbit[n]urils (CB[n]) (Freeman et al., 1981; Day & Arnold, 2000; Day et al., 2002; Kim et al., 2000; Ge et al., 2007).

The crystal structure of the title compound (Fig. 1) consists of a 3-(1H-benzo[d]imidazol-2-yl) propanoic acid organic molecule and two lattice water molecules. the dihedral angle between the benzene ring (C1,C2,C3,C4,C5,C6) and the imidazole ring (C5,C6,C9,N2,C7,N1) is 0.61 (13)°. The C7—C8—C9—C10 torsion angle is -66.3 (3)°. The title compound forms intermolecular H bonds whereas the protonated N1 and N2 atoms act as hydrogen-bond donors and the O1 and O2 atoms act as hydrogen-bond acceptors, the O—H···O hydrogen bonds are also observed between the water molecules O2W and O1W (Table 1). these contacts and the cross-linking interactions stabilize the crystal packing.

Related literature top

For general background, see: Day & Arnold (2000); Day et al. (2002); Freeman et al. (1981); Kim et al. (2000); Ge et al. (2007). [From the Section Editors: It would be much more useful to readers if the "Related literature" section had some kind of simple sub-division, so that, instead of just "For related literature, see···" it said, for example, "For general background, see···. For related structures, see···." etc. Please revise this section as indicated.]

Experimental top

The propionic anhydride (13 g, 0.1 mol) was dissolved in hot water (100 ml) with stirring, and a warm solution of 1,2-diaminobenzene(10.8 g, 0.1 mol) in 1,4-dioxane (100 ml) was added, following by the addition of ployphosphoric acid (50 ml) as catalyst. The mixture was refluxed for 8 h and then cooled, the solution was filtered and the filtrate was set aside for three weeks to obtain colorless crystals.

Refinement top

Water H atoms were located in a difference Fourier map and refined as riding in their as-found positions relative to O atoms with Uiso(H) = 1.2Ueq(O). All other H atoms were placed in calculated positions and refined as riding, with C—H = 0.93–0.97 Å, N—H = 0.86 Å, and Uiso(H) = 1.2–1.5 Ueq(C,N).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
3-(Benzimidazolium-2-yl)propionate dihydrate top
Crystal data top
C10H10N2O2·2H2OF(000) = 480
Mr = 226.23Dx = 1.380 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2002 reflections
a = 18.444 (3) Åθ = 1.1–25.4°
b = 4.9730 (8) ŵ = 0.11 mm1
c = 11.9097 (19) ÅT = 273 K
β = 94.530 (5)°Prism, colourless
V = 1089.0 (3) Å30.29 × 0.26 × 0.20 mm
Z = 4
Data collection top
Bruker CCD area-detector
diffractometer
1394 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.066
Graphite monochromatorθmax = 25.4°, θmin = 1.1°
ϕ and ω scansh = 2119
7787 measured reflectionsk = 54
2002 independent reflectionsl = 1314
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0354P)2 + 0.5171P]
where P = (Fo2 + 2Fc2)/3
1971 reflections(Δ/σ)max < 0.001
161 parametersΔρmax = 0.19 e Å3
6 restraintsΔρmin = 0.23 e Å3
Crystal data top
C10H10N2O2·2H2OV = 1089.0 (3) Å3
Mr = 226.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.444 (3) ŵ = 0.11 mm1
b = 4.9730 (8) ÅT = 273 K
c = 11.9097 (19) Å0.29 × 0.26 × 0.20 mm
β = 94.530 (5)°
Data collection top
Bruker CCD area-detector
diffractometer
1394 reflections with I > 2σ(I)
7787 measured reflectionsRint = 0.066
2002 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0476 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.19 e Å3
1971 reflectionsΔρmin = 0.23 e Å3
161 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.24941 (9)0.3021 (3)0.56604 (13)0.0306 (5)
O20.31408 (9)0.3485 (3)0.41718 (12)0.0285 (4)
O1W0.45721 (11)0.3587 (4)0.36594 (15)0.0360 (5)
O2W0.52898 (12)0.1307 (4)0.37002 (17)0.0398 (5)
N10.22255 (10)0.8913 (4)0.70511 (15)0.0249 (5)
H1N0.22961.00210.65160.030*
N20.23986 (10)0.5625 (4)0.82389 (15)0.0241 (5)
H2N0.25950.42660.85910.029*
C10.12302 (14)0.6171 (5)0.92071 (19)0.0290 (6)
H1A0.13030.47750.97230.035*
C20.06132 (14)0.7751 (5)0.9168 (2)0.0331 (7)
H2A0.02640.74170.96730.040*
C30.04988 (14)0.9848 (5)0.8385 (2)0.0334 (7)
H3A0.00741.08580.83800.040*
C40.09993 (13)1.0447 (5)0.7624 (2)0.0300 (6)
H4A0.09241.18380.71070.036*
C50.16226 (13)0.8870 (5)0.76689 (18)0.0237 (6)
C60.17353 (13)0.6765 (5)0.84417 (18)0.0238 (6)
C70.26826 (13)0.6960 (5)0.74162 (18)0.0234 (6)
C80.34047 (13)0.6448 (5)0.69974 (18)0.0264 (6)
H8A0.35820.47240.72850.032*
H8B0.37410.78160.72990.032*
C90.34097 (13)0.6433 (5)0.57180 (18)0.0252 (6)
H9A0.32070.81150.54250.030*
H9B0.39090.63340.55210.030*
C100.29840 (13)0.4120 (5)0.51556 (18)0.0227 (6)
H1W10.4133 (12)0.352 (7)0.386 (3)0.084 (13)*
H1W20.4755 (16)0.208 (4)0.384 (3)0.059 (11)*
H2W10.5341 (16)0.149 (6)0.3009 (16)0.053 (9)*
H2W20.5073 (19)0.268 (5)0.387 (3)0.089 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0340 (10)0.0248 (10)0.0334 (9)0.0060 (8)0.0054 (8)0.0027 (8)
O20.0334 (10)0.0268 (10)0.0255 (8)0.0038 (8)0.0042 (8)0.0056 (7)
O1W0.0374 (13)0.0303 (12)0.0416 (11)0.0013 (10)0.0106 (10)0.0001 (9)
O2W0.0486 (13)0.0315 (12)0.0399 (11)0.0038 (11)0.0079 (10)0.0010 (10)
N10.0311 (12)0.0209 (12)0.0230 (9)0.0003 (10)0.0032 (9)0.0034 (9)
N20.0290 (12)0.0205 (12)0.0225 (9)0.0022 (10)0.0013 (9)0.0013 (8)
C10.0336 (15)0.0257 (15)0.0281 (12)0.0059 (13)0.0043 (11)0.0011 (11)
C20.0315 (15)0.0340 (16)0.0348 (14)0.0053 (13)0.0090 (12)0.0058 (12)
C30.0292 (15)0.0272 (15)0.0438 (15)0.0027 (13)0.0035 (13)0.0062 (13)
C40.0309 (15)0.0231 (15)0.0354 (13)0.0009 (12)0.0006 (12)0.0010 (11)
C50.0267 (14)0.0194 (14)0.0248 (11)0.0044 (11)0.0016 (11)0.0032 (10)
C60.0268 (14)0.0198 (13)0.0248 (12)0.0005 (11)0.0010 (11)0.0029 (10)
C70.0289 (14)0.0202 (13)0.0206 (11)0.0035 (12)0.0004 (10)0.0045 (10)
C80.0240 (14)0.0271 (15)0.0279 (12)0.0009 (12)0.0006 (11)0.0011 (11)
C90.0289 (14)0.0208 (14)0.0264 (12)0.0028 (12)0.0049 (11)0.0005 (11)
C100.0257 (14)0.0167 (13)0.0256 (12)0.0048 (11)0.0012 (11)0.0050 (10)
Geometric parameters (Å, º) top
O1—C101.250 (3)C2—C31.404 (4)
O2—C101.269 (3)C2—H2A0.9300
O1W—H1W10.863 (18)C3—C41.376 (3)
O1W—H1W20.845 (18)C3—H3A0.9300
O2W—H2W10.841 (17)C4—C51.389 (3)
O2W—H2W20.823 (18)C4—H4A0.9300
N1—C71.336 (3)C5—C61.399 (3)
N1—C51.381 (3)C7—C81.481 (3)
N1—H1N0.8600C8—C91.525 (3)
N2—C71.325 (3)C8—H8A0.9700
N2—C61.387 (3)C8—H8B0.9700
N2—H2N0.8600C9—C101.518 (3)
C1—C21.380 (3)C9—H9A0.9700
C1—C61.386 (3)C9—H9B0.9700
C1—H1A0.9300
H1W1—O1W—H1W2105 (3)C4—C5—C6121.8 (2)
H2W1—O2W—H2W2104 (3)C1—C6—N2132.5 (2)
C7—N1—C5109.22 (19)C1—C6—C5121.3 (2)
C7—N1—H1N125.4N2—C6—C5106.2 (2)
C5—N1—H1N125.4N2—C7—N1109.2 (2)
C7—N2—C6109.2 (2)N2—C7—C8125.6 (2)
C7—N2—H2N125.4N1—C7—C8125.2 (2)
C6—N2—H2N125.4C7—C8—C9114.5 (2)
C2—C1—C6116.9 (2)C7—C8—H8A108.6
C2—C1—H1A121.6C9—C8—H8A108.6
C6—C1—H1A121.6C7—C8—H8B108.6
C1—C2—C3121.7 (2)C9—C8—H8B108.6
C1—C2—H2A119.2H8A—C8—H8B107.6
C3—C2—H2A119.2C10—C9—C8113.63 (19)
C4—C3—C2121.6 (2)C10—C9—H9A108.8
C4—C3—H3A119.2C8—C9—H9A108.8
C2—C3—H3A119.2C10—C9—H9B108.8
C3—C4—C5116.7 (2)C8—C9—H9B108.8
C3—C4—H4A121.7H9A—C9—H9B107.7
C5—C4—H4A121.7O1—C10—O2124.2 (2)
N1—C5—C4132.0 (2)O1—C10—C9119.2 (2)
N1—C5—C6106.1 (2)O2—C10—C9116.6 (2)
C6—C1—C2—C30.5 (4)C4—C5—C6—C10.5 (3)
C1—C2—C3—C40.6 (4)N1—C5—C6—N20.7 (2)
C2—C3—C4—C50.1 (4)C4—C5—C6—N2179.2 (2)
C7—N1—C5—C4179.9 (2)C6—N2—C7—N11.2 (3)
C7—N1—C5—C60.0 (2)C6—N2—C7—C8176.5 (2)
C3—C4—C5—N1179.6 (2)C5—N1—C7—N20.7 (2)
C3—C4—C5—C60.4 (3)C5—N1—C7—C8177.0 (2)
C2—C1—C6—N2179.6 (2)N2—C7—C8—C9135.7 (2)
C2—C1—C6—C50.1 (3)N1—C7—C8—C947.0 (3)
C7—N2—C6—C1179.1 (2)C7—C8—C9—C1066.3 (3)
C7—N2—C6—C51.2 (2)C8—C9—C10—O123.1 (3)
N1—C5—C6—C1179.5 (2)C8—C9—C10—O2159.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.861.862.700 (2)166
N2—H2N···O2ii0.861.802.654 (3)170
O2W—H2W1···O1Wiii0.84 (2)2.01 (2)2.842 (3)172 (3)
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H10N2O2·2H2O
Mr226.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)18.444 (3), 4.9730 (8), 11.9097 (19)
β (°) 94.530 (5)
V3)1089.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.29 × 0.26 × 0.20
Data collection
DiffractometerBruker CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7787, 2002, 1394
Rint0.066
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.113, 1.08
No. of reflections1971
No. of parameters161
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.23

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.861.862.700 (2)165.5
N2—H2N···O2ii0.861.802.654 (3)169.6
O2W—H2W1···O1Wiii0.841 (17)2.007 (18)2.842 (3)172 (3)
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors gratefully acknowledge the Natural Science Foundation of China (grant No. 20767001), the International Collaborative Project of Guizhou Province, the Governor Foundation of Guizhou Province and the Natural Science Youth Foundation of Guizhou University (grant No. 2007-005) for financial support.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDay, A. I. & Arnold, A. P. (2000). Int. Patent WO/2000/068232.  Google Scholar
First citationDay, A. I., Blanch, R. J., Arnold, A. P., Lorenzo, S., Lewis, G. R. & Dance, I. (2002). Angew. Chem. Int. Ed. 41, 275–277.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFreeman, W. A., Mock, W. L. & Shih, N. Y. (1981). J. Am. Chem. Soc. 103, 7367–7368.  CSD CrossRef CAS Web of Science Google Scholar
First citationGe, J. Y., Xue, S. F., Zhu, Q. J., Tao, Z. & Zhang, J., X. (2007). J. Incl. Phenom. Macro. 58, 63–69.  Web of Science CrossRef CAS Google Scholar
First citationKim, J., Jung, I.-S., Kim, S.-Y., Lee, E., Kang, J.-K., Sakamoto, S., Yamaguchi, K. & Kim, K. (2000). J. Am. Chem. Soc. 122, 540–541.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds