metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Di­chloridobis(2,2-di­methyl­prop­ane-1,3-di­amine-κ2N,N′)chromium(III) perchlorate

aDepartment of Chemistry, Andong National University, Andong 760-749, Republic of Korea, bDepartment of Chemistry, Kyungpook National University, Daegu 702-701, Republic of Korea, and cDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 8 October 2008; accepted 11 October 2008; online 18 October 2008)

In the title salt, [CrCl2(C5H14N2)2]ClO4, the Cr atom is in a trans-CrCl2N4 octa­hedral environment comprising the four N atoms of two chelating 2,2-dimethyl­propane-1,3-diamine ligands and two Cl atoms. The two six-membered CrC3N2 rings in the cation adopt anti chair–chair conformations with respect to each other. The perchlorate anion is disordered over two positions in respect of the Cl and an O atom in a 6:4 ratio. N—H⋯O hydrogen bonds link the cations and anions into a layer structure.

Related literature

For the synthesis, see: House (1986[House, D. A. (1986). Inorg. Chem. 25, 1671-1674.]). For related structures, see: Choi et al. (2002[Choi, J.-H., Suzuki, T. & Kaizaki, S. (2002). Acta Cryst. C58, m539-m541.], 2007[Choi, J. H., Clegg, W., Nichol, G. S., Lee, S. H., Park, Y. C. & Habibi, M. H. (2007). Spectrochim. Acta A, 68, 796-801.]). For the spectroscopic properties, see: Choi (2000[Choi, J. H. (2000). Chem. Phys. 256, 29-35.]); Poon & Pun (1980[Poon, C. K. & Pun, K. C. (1980). Inorg. Chem. 19, 568-569.]).

[Scheme 1]

Experimental

Crystal data
  • [CrCl2(C5H14N2)2]ClO4

  • Mr = 426.71

  • Monoclinic, P 21 /c

  • a = 6.6373 (6) Å

  • b = 20.767 (2) Å

  • c = 13.878 (2) Å

  • β = 100.249 (9)°

  • V = 1882.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.05 mm−1

  • T = 298 (2) K

  • 0.32 × 0.30 × 0.25 mm

Data collection
  • Stoe Stadi-4 diffractometer

  • Absorption correction: numerical (X-SHAPE; Stoe & Cie, 1996[Stoe & Cie (1996). STADI-4, X-RED and X-SHAPE. Stoe & Cie Gmbh, Darmstadt, Germany.]) Tmin = 0.805, Tmax = 0.942

  • 4305 measured reflections

  • 4305 independent reflections

  • 3453 reflections with I > 2σ(I)

  • 3 standard reflections frequency: 60 min intensity decay: 2.7%

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.146

  • S = 1.11

  • 4305 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.81 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1BN⋯O2i 0.90 2.29 3.030 (5) 139
N2—H2AN⋯O3ii 0.90 2.23 3.099 (6) 162
N2—H2AN⋯O4Aii 0.90 2.42 3.183 (6) 143
N2—H2BN⋯O4B 0.90 2.36 3.217 (9) 159
N3—H3AN⋯O4Aii 0.90 2.60 3.482 (7) 168
N4—H4BN⋯O2i 0.90 2.14 3.030 (5) 172
N4—H4AN⋯O4Aiii 0.90 2.54 3.403 (8) 161
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) x-1, y, z; (iii) [x-1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) x+1, y, z.

Data collection: STADI-4 (Stoe & Cie, 1996[Stoe & Cie (1996). STADI-4, X-RED and X-SHAPE. Stoe & Cie Gmbh, Darmstadt, Germany.]); cell refinement: STADI-4; data reduction: X-RED (Stoe & Cie, 1996[Stoe & Cie (1996). STADI-4, X-RED and X-SHAPE. Stoe & Cie Gmbh, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The [Cr(Me2tn)2L2]+ (Me2tn=2,2-dimethylpropane-1,3-diamine, L = monodentate) cation can exist as trans and cis geometric isomers. Especially, there are two possible conformations with respect to the six-membered rings in the trans isomer. The carbon atoms of the two chelate rings of the two conformers may be on the same side (syn conformer) or on opposite side (anti conformer) of the coordination plane (Choi et al., 2002; Choi et al., 2007). The syn or anti conformational stereochemistry of the six-membered chelate rings can not be readily determined by spectroscopic and physicochemical methods (Poon & Pun, 1980; Choi, 2000). In order to examine the influences of counter anions and packing forces of the crystal on the conformations, we have undertaken the X-ray structural analysis of trans-[Cr(Me2tn)2Cl2]ClO4, (I).

The title complex has approximate Ci symmetry. The two chelate rings in the complex cation are only in anti chair-chair conformation with respect to each other (Fig.1). The Cr—N and Cr—Cl bond length are very simillar to those of the trans-[Cr(Me2tn)2Cl2]Cl (Choi et al., 2007). However, the significant difference between these two crystal structures is the orientations with respect to the six-membered chelate rings of two Me2tn ligands in the same trans geometry. The complex is stabilized by the formation of the extensive hydrogen bonds (Table 1).

Related literature top

For the synthesis, see: House (1986). For related structures, see: Choi et al. (2002,2007). For the spectroscopic properties, see: Choi (2000); Poon & Pun (1980).

Experimental top

The complex trans-[Cr(Me2tn)2Cl2]ClO4 was prepared according to the literature (House, 1986). The crystalline product deposited with ice-bath cooling was filtered off, and washed with cold 2-propanol and then diethyl ether. Recrystallization of the crude precipitate from 0.5M HCl and 70% HClO4 solution afforded dark green crystals suitable for X-ray analysis. Anal. Found: C, 28.02; H, 6.50; N, 13.08%. Calc. for C10H28Cl3CrN4O4: C, 28.15; H, 6.61; N, 13.13%.

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.97 (methylene), 0.96 (methyl) Å, and N—H = 0.90 Å respectively, Uiso(H) = 1.2Ueq(C & N). The Cl and one O atoms in the perchlorate anion are disordered over two positions with site-occupancy factors fixed at 0.60 (for atoms labelled A) and 0.40 (for atoms labelled B) in the final refinement.

Computing details top

Data collection: STADI-4 (Stoe & Cie, 1996); cell refinement: STADI-4 (Stoe & Cie, 1996); data reduction: X-RED (Stoe & Cie, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view (30% probability level) of title compound.
trans-Dichloridobis(2,2-dimethylpropane-1,3-diamine- κ2N,N')chromium(III) perchlorate top
Crystal data top
[CrCl2(C5H14N2)2]ClO4F(000) = 892
Mr = 426.71Dx = 1.506 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P_2ybcCell parameters from 54 reflections
a = 6.6373 (6) Åθ = 9.5–10.4°
b = 20.767 (2) ŵ = 1.05 mm1
c = 13.878 (2) ÅT = 298 K
β = 100.249 (9)°Block, green
V = 1882.4 (4) Å30.32 × 0.30 × 0.25 mm
Z = 4
Data collection top
Stoe Stadi-4
diffractometer
3453 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 27.5°, θmin = 1.8°
ω/2–θ scansh = 88
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 1996)
k = 026
Tmin = 0.805, Tmax = 0.942l = 018
4305 measured reflections3 standard reflections every 60 min
4305 independent reflections intensity decay: 2.7%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0733P)2 + 1.4729P]
where P = (Fo2 + 2Fc2)/3
4305 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.81 e Å3
Crystal data top
[CrCl2(C5H14N2)2]ClO4V = 1882.4 (4) Å3
Mr = 426.71Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.6373 (6) ŵ = 1.05 mm1
b = 20.767 (2) ÅT = 298 K
c = 13.878 (2) Å0.32 × 0.30 × 0.25 mm
β = 100.249 (9)°
Data collection top
Stoe Stadi-4
diffractometer
3453 reflections with I > 2σ(I)
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 1996)
Rint = 0.000
Tmin = 0.805, Tmax = 0.9423 standard reflections every 60 min
4305 measured reflections intensity decay: 2.7%
4305 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.11Δρmax = 0.54 e Å3
4305 reflectionsΔρmin = 0.81 e Å3
217 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cr0.43254 (6)0.23278 (2)0.57694 (3)0.03056 (15)
Cl10.67222 (13)0.25634 (5)0.47898 (7)0.0540 (2)
Cl20.18895 (12)0.21076 (4)0.67312 (7)0.0493 (2)
Cl3A0.9541 (3)0.11988 (10)0.31249 (14)0.0471 (4)0.60
Cl3B0.8697 (4)0.11095 (15)0.3227 (2)0.0434 (6)0.40
O4B0.6845 (14)0.1083 (5)0.3541 (7)0.096 (3)0.40
O4A1.1593 (9)0.1344 (3)0.3048 (5)0.0913 (18)0.60
O10.8766 (6)0.06609 (19)0.2505 (3)0.0957 (12)
O20.8510 (7)0.1748 (2)0.2793 (3)0.1124 (15)
O30.9840 (9)0.1052 (3)0.4093 (3)0.140 (2)
N10.6658 (4)0.20091 (13)0.6894 (2)0.0420 (6)
H1AN0.78340.20100.66560.050*
H1BN0.67950.23050.73750.050*
N20.4181 (4)0.13895 (13)0.5210 (2)0.0466 (7)
H2AN0.29980.13540.47820.056*
H2BN0.52000.13480.48650.056*
N30.1983 (4)0.26418 (12)0.46576 (19)0.0385 (6)
H3AN0.18800.23540.41670.046*
H3BN0.08060.26220.48930.046*
N40.4506 (4)0.32609 (13)0.6350 (2)0.0448 (6)
H4AN0.35260.32970.67190.054*
H4BN0.57170.32950.67580.054*
C10.6476 (5)0.13679 (16)0.7353 (2)0.0444 (7)
H1A0.52820.13720.76670.053*
H1B0.76680.13020.78600.053*
C20.6295 (5)0.07995 (15)0.6641 (3)0.0411 (7)
C30.6162 (7)0.01867 (19)0.7255 (3)0.0644 (11)
H3A0.60490.01840.68360.077*
H3B0.49820.02120.75650.077*
H3C0.73740.01510.77460.077*
C40.8169 (6)0.07509 (19)0.6154 (3)0.0569 (9)
H4A0.80110.03930.57080.068*
H4B0.93680.06880.66450.068*
H4C0.83110.11410.58010.068*
C50.4308 (5)0.08283 (16)0.5890 (3)0.0495 (8)
H5A0.41810.04350.55070.059*
H5B0.31610.08460.62350.059*
C60.2096 (5)0.32895 (16)0.4223 (2)0.0441 (7)
H6A0.08740.33560.37350.053*
H6B0.32610.33000.38890.053*
C70.2293 (5)0.38464 (15)0.4953 (2)0.0410 (7)
C80.2337 (8)0.4469 (2)0.4358 (4)0.0715 (12)
H8A0.24550.48330.47910.086*
H8B0.10950.45030.38860.086*
H8C0.34880.44590.40260.086*
C90.4311 (5)0.38267 (15)0.5681 (3)0.0469 (8)
H9A0.54350.38210.53200.056*
H9B0.44330.42170.60710.056*
C100.0472 (6)0.38715 (19)0.5480 (3)0.0571 (9)
H10A0.06400.42240.59350.069*
H10B0.03880.34750.58270.069*
H10C0.07620.39320.50100.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr0.0243 (2)0.0293 (2)0.0375 (3)0.00052 (16)0.00378 (17)0.00218 (18)
Cl10.0375 (4)0.0574 (5)0.0726 (6)0.0075 (4)0.0244 (4)0.0073 (4)
Cl20.0377 (4)0.0561 (5)0.0578 (5)0.0062 (3)0.0185 (4)0.0123 (4)
Cl3A0.0561 (12)0.0449 (9)0.0375 (8)0.0080 (9)0.0011 (9)0.0001 (6)
Cl3B0.0381 (13)0.0507 (14)0.0405 (12)0.0016 (11)0.0046 (11)0.0027 (9)
O4B0.077 (5)0.122 (8)0.096 (6)0.025 (5)0.034 (5)0.052 (6)
O4A0.065 (3)0.100 (4)0.099 (4)0.011 (3)0.013 (3)0.000 (4)
O10.110 (3)0.091 (3)0.092 (2)0.029 (2)0.034 (2)0.038 (2)
O20.126 (3)0.077 (2)0.122 (3)0.025 (2)0.010 (3)0.024 (2)
O30.167 (5)0.178 (5)0.062 (2)0.004 (4)0.019 (3)0.017 (3)
N10.0319 (12)0.0373 (13)0.0526 (16)0.0014 (10)0.0036 (11)0.0012 (12)
N20.0489 (15)0.0369 (14)0.0502 (16)0.0038 (12)0.0017 (12)0.0068 (12)
N30.0332 (12)0.0391 (14)0.0420 (14)0.0029 (10)0.0031 (10)0.0021 (11)
N40.0485 (15)0.0358 (13)0.0460 (15)0.0014 (11)0.0029 (12)0.0048 (12)
C10.0439 (17)0.0408 (17)0.0467 (17)0.0064 (13)0.0035 (14)0.0064 (14)
C20.0373 (15)0.0323 (15)0.0554 (19)0.0035 (12)0.0126 (13)0.0059 (13)
C30.070 (3)0.044 (2)0.084 (3)0.0058 (18)0.024 (2)0.0195 (19)
C40.0474 (19)0.053 (2)0.076 (3)0.0068 (16)0.0259 (18)0.0017 (19)
C50.0434 (17)0.0322 (16)0.071 (2)0.0017 (13)0.0040 (16)0.0052 (15)
C60.0467 (17)0.0487 (18)0.0371 (16)0.0131 (14)0.0080 (13)0.0041 (14)
C70.0417 (16)0.0352 (15)0.0479 (17)0.0068 (12)0.0133 (13)0.0069 (13)
C80.083 (3)0.045 (2)0.086 (3)0.007 (2)0.015 (2)0.022 (2)
C90.0448 (18)0.0321 (15)0.064 (2)0.0009 (13)0.0094 (16)0.0003 (14)
C100.049 (2)0.052 (2)0.077 (3)0.0090 (16)0.0259 (19)0.0037 (18)
Geometric parameters (Å, º) top
Cr—N32.090 (3)C1—H1A0.9700
Cr—N22.093 (3)C1—H1B0.9700
Cr—N42.094 (3)C2—C41.522 (4)
Cr—N12.100 (3)C2—C51.530 (5)
Cr—Cl22.3179 (9)C2—C31.543 (5)
Cr—Cl12.3212 (9)C3—H3A0.9600
Cl3A—Cl3B0.629 (2)C3—H3B0.9600
Cl3A—O31.357 (4)C3—H3C0.9600
Cl3A—O21.368 (4)C4—H4A0.9600
Cl3A—O4A1.418 (6)C4—H4B0.9600
Cl3A—O11.447 (4)C4—H4C0.9600
Cl3B—O31.308 (5)C5—H5A0.9700
Cl3B—O11.374 (5)C5—H5B0.9700
Cl3B—O4B1.377 (9)C6—C71.528 (5)
Cl3B—O21.453 (5)C6—H6A0.9700
N1—C11.490 (4)C6—H6B0.9700
N1—H1AN0.9000C7—C101.520 (5)
N1—H1BN0.9000C7—C91.528 (5)
N2—C51.492 (4)C7—C81.537 (5)
N2—H2AN0.9000C8—H8A0.9600
N2—H2BN0.9000C8—H8B0.9600
N3—C61.481 (4)C8—H8C0.9600
N3—H3AN0.9000C9—H9A0.9700
N3—H3BN0.9000C9—H9B0.9700
N4—C91.488 (4)C10—H10A0.9600
N4—H4AN0.9000C10—H10B0.9600
N4—H4BN0.9000C10—H10C0.9600
C1—C21.530 (5)
N3—Cr—N292.17 (10)N1—C1—C2114.6 (3)
N3—Cr—N488.82 (10)N1—C1—H1A108.6
N2—Cr—N4179.01 (11)C2—C1—H1A108.6
N3—Cr—N1179.46 (11)N1—C1—H1B108.6
N2—Cr—N187.78 (11)C2—C1—H1B108.6
N4—Cr—N191.24 (11)H1A—C1—H1B107.6
N3—Cr—Cl289.04 (8)C4—C2—C5111.9 (3)
N2—Cr—Cl292.25 (9)C4—C2—C1111.2 (3)
N4—Cr—Cl287.65 (9)C5—C2—C1111.7 (3)
N1—Cr—Cl290.42 (8)C4—C2—C3108.8 (3)
N3—Cr—Cl189.95 (8)C5—C2—C3106.4 (3)
N2—Cr—Cl188.28 (9)C1—C2—C3106.6 (3)
N4—Cr—Cl191.84 (9)C2—C3—H3A109.5
N1—Cr—Cl190.59 (8)C2—C3—H3B109.5
Cl2—Cr—Cl1178.87 (4)H3A—C3—H3B109.5
O3—Cl3A—O2119.8 (4)C2—C3—H3C109.5
Cl3B—Cl3A—O4A170.0 (5)H3A—C3—H3C109.5
O3—Cl3A—O4A98.6 (4)H3B—C3—H3C109.5
O2—Cl3A—O4A103.2 (4)C2—C4—H4A109.5
O3—Cl3A—O1112.9 (3)C2—C4—H4B109.5
O2—Cl3A—O1109.9 (3)H4A—C4—H4B109.5
O4A—Cl3A—O1111.3 (3)C2—C4—H4C109.5
O3—Cl3A—O4B70.5 (4)H4A—C4—H4C109.5
O2—Cl3A—O4B77.1 (4)H4B—C4—H4C109.5
O4A—Cl3A—O4B166.7 (4)N2—C5—C2114.0 (3)
O1—Cl3A—O4B80.6 (3)N2—C5—H5A108.8
O3—Cl3B—O1121.3 (4)C2—C5—H5A108.8
O3—Cl3B—O4B96.3 (5)N2—C5—H5B108.8
O1—Cl3B—O4B110.6 (4)C2—C5—H5B108.8
O3—Cl3B—O2117.1 (4)H5A—C5—H5B107.7
O1—Cl3B—O2109.2 (3)N3—C6—C7115.0 (3)
O4B—Cl3B—O298.8 (6)N3—C6—H6A108.5
O3—Cl3B—O4A74.2 (3)C7—C6—H6A108.5
O1—Cl3B—O4A85.3 (3)N3—C6—H6B108.5
O4B—Cl3B—O4A164.1 (5)C7—C6—H6B108.5
O2—Cl3B—O4A75.2 (3)H6A—C6—H6B107.5
C1—N1—Cr119.62 (19)C10—C7—C6111.3 (3)
C1—N1—H1AN107.4C10—C7—C9111.2 (3)
Cr—N1—H1AN107.4C6—C7—C9112.3 (3)
C1—N1—H1BN107.4C10—C7—C8108.8 (3)
Cr—N1—H1BN107.4C6—C7—C8106.7 (3)
H1AN—N1—H1BN106.9C9—C7—C8106.2 (3)
C5—N2—Cr119.9 (2)C7—C8—H8A109.5
C5—N2—H2AN107.3C7—C8—H8B109.5
Cr—N2—H2AN107.3H8A—C8—H8B109.5
C5—N2—H2BN107.3C7—C8—H8C109.5
Cr—N2—H2BN107.3H8A—C8—H8C109.5
H2AN—N2—H2BN106.9H8B—C8—H8C109.5
C6—N3—Cr119.9 (2)N4—C9—C7113.7 (3)
C6—N3—H3AN107.3N4—C9—H9A108.8
Cr—N3—H3AN107.3C7—C9—H9A108.8
C6—N3—H3BN107.3N4—C9—H9B108.8
Cr—N3—H3BN107.3C7—C9—H9B108.8
H3AN—N3—H3BN106.9H9A—C9—H9B107.7
C9—N4—Cr119.9 (2)C7—C10—H10A109.5
C9—N4—H4AN107.4C7—C10—H10B109.5
Cr—N4—H4AN107.4H10A—C10—H10B109.5
C9—N4—H4BN107.4C7—C10—H10C109.5
Cr—N4—H4BN107.4H10A—C10—H10C109.5
H4AN—N4—H4BN106.9H10B—C10—H10C109.5
O2—Cl3A—Cl3B—O3123.6 (4)O1—Cl3A—O2—Cl3B67.3 (4)
O4A—Cl3A—Cl3B—O320 (3)O4B—Cl3A—O2—Cl3B7.5 (5)
O1—Cl3A—Cl3B—O3123.2 (4)O3—Cl3B—O2—Cl3A67.5 (5)
O4B—Cl3A—Cl3B—O380 (3)O1—Cl3B—O2—Cl3A75.3 (4)
O3—Cl3A—Cl3B—O1123.2 (4)O4B—Cl3B—O2—Cl3A169.2 (6)
O2—Cl3A—Cl3B—O1113.2 (3)O4A—Cl3B—O2—Cl3A4.3 (4)
O4A—Cl3A—Cl3B—O1103 (3)O1—Cl3B—O3—Cl3A76.7 (5)
O4B—Cl3A—Cl3B—O1157 (3)O4B—Cl3B—O3—Cl3A164.5 (7)
O3—Cl3A—Cl3B—O4B80 (3)O2—Cl3B—O3—Cl3A61.3 (5)
O2—Cl3A—Cl3B—O4B43 (3)O4A—Cl3B—O3—Cl3A2.4 (4)
O4A—Cl3A—Cl3B—O4B100 (4)O2—Cl3A—O3—Cl3B72.8 (5)
O1—Cl3A—Cl3B—O4B157 (3)O4A—Cl3A—O3—Cl3B176.6 (6)
O3—Cl3A—Cl3B—O2123.6 (4)O1—Cl3A—O3—Cl3B59.0 (5)
O4A—Cl3A—Cl3B—O2143 (3)O4B—Cl3A—O3—Cl3B11.2 (5)
O1—Cl3A—Cl3B—O2113.2 (3)N2—Cr—N1—C141.0 (2)
O4B—Cl3A—Cl3B—O243 (3)N4—Cr—N1—C1138.9 (2)
O3—Cl3A—Cl3B—O4A20 (3)Cl2—Cr—N1—C151.3 (2)
O2—Cl3A—Cl3B—O4A143 (3)Cl1—Cr—N1—C1129.2 (2)
O1—Cl3A—Cl3B—O4A103 (3)N3—Cr—N2—C5137.9 (2)
O4B—Cl3A—Cl3B—O4A100 (4)N1—Cr—N2—C541.6 (2)
O3—Cl3B—O4B—Cl3A78 (3)Cl2—Cr—N2—C548.8 (2)
O1—Cl3B—O4B—Cl3A155 (3)Cl1—Cr—N2—C5132.2 (2)
O2—Cl3B—O4B—Cl3A41 (2)N2—Cr—N3—C6141.5 (2)
O4A—Cl3B—O4B—Cl3A25.7 (16)N4—Cr—N3—C638.6 (2)
O3—Cl3A—O4B—Cl3B96 (3)Cl2—Cr—N3—C6126.3 (2)
O2—Cl3A—O4B—Cl3B135 (3)Cl1—Cr—N3—C653.2 (2)
O4A—Cl3A—O4B—Cl3B132 (3)N3—Cr—N4—C939.7 (2)
O1—Cl3A—O4B—Cl3B22 (2)N1—Cr—N4—C9140.8 (2)
O3—Cl3A—O4A—Cl3B19 (3)Cl2—Cr—N4—C9128.8 (2)
O2—Cl3A—O4A—Cl3B142 (3)Cl1—Cr—N4—C950.2 (2)
O1—Cl3A—O4A—Cl3B100 (3)Cr—N1—C1—C259.1 (3)
O4B—Cl3A—O4A—Cl3B53 (3)N1—C1—C2—C460.6 (4)
O3—Cl3B—O4A—Cl3A160 (3)N1—C1—C2—C565.2 (4)
O1—Cl3B—O4A—Cl3A76 (3)N1—C1—C2—C3179.0 (3)
O4B—Cl3B—O4A—Cl3A105 (4)Cr—N2—C5—C260.0 (4)
O2—Cl3B—O4A—Cl3A35 (3)C4—C2—C5—N260.1 (4)
O3—Cl3B—O1—Cl3A75.2 (5)C1—C2—C5—N265.2 (4)
O4B—Cl3B—O1—Cl3A173.4 (8)C3—C2—C5—N2178.8 (3)
O2—Cl3B—O1—Cl3A65.8 (4)Cr—N3—C6—C756.9 (3)
O4A—Cl3B—O1—Cl3A6.8 (4)N3—C6—C7—C1060.2 (4)
O3—Cl3A—O1—Cl3B59.8 (5)N3—C6—C7—C965.2 (4)
O2—Cl3A—O1—Cl3B76.8 (5)N3—C6—C7—C8178.8 (3)
O4A—Cl3A—O1—Cl3B169.6 (6)Cr—N4—C9—C758.7 (3)
O4B—Cl3A—O1—Cl3B4.3 (5)C10—C7—C9—N459.8 (4)
O3—Cl3A—O2—Cl3B65.8 (5)C6—C7—C9—N465.7 (4)
O4A—Cl3A—O2—Cl3B173.9 (6)C8—C7—C9—N4178.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1BN···O2i0.902.293.030 (5)139
N2—H2AN···O3ii0.902.233.099 (6)162
N2—H2AN···O4Aii0.902.423.183 (6)143
N2—H2BN···O4B0.902.363.217 (9)159
N3—H3AN···O4Aii0.902.603.482 (7)168
N4—H4BN···O2i0.902.143.030 (5)172
N4—H4AN···O4Aiii0.902.543.403 (8)161
N1—H1AN···Cl2iv0.902.683.525 (3)156
N3—H3BN···Cl1ii0.902.693.533 (3)156
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x1, y, z; (iii) x1, y+1/2, z+1/2; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formula[CrCl2(C5H14N2)2]ClO4
Mr426.71
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)6.6373 (6), 20.767 (2), 13.878 (2)
β (°) 100.249 (9)
V3)1882.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.05
Crystal size (mm)0.32 × 0.30 × 0.25
Data collection
DiffractometerStoe Stadi-4
diffractometer
Absorption correctionNumerical
(X-SHAPE; Stoe & Cie, 1996)
Tmin, Tmax0.805, 0.942
No. of measured, independent and
observed [I > 2σ(I)] reflections
4305, 4305, 3453
Rint0.000
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.146, 1.11
No. of reflections4305
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.81

Computer programs: STADI-4 (Stoe & Cie, 1996), X-RED (Stoe & Cie, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1BN···O2i0.902.293.030 (5)138.9
N2—H2AN···O3ii0.902.233.099 (6)161.5
N2—H2AN···O4Aii0.902.423.183 (6)142.5
N2—H2BN···O4B0.902.363.217 (9)158.7
N3—H3AN···O4Aii0.902.603.482 (7)167.7
N4—H4BN···O2i0.902.143.030 (5)172.4
N4—H4AN···O4Aiii0.902.543.403 (8)161.4
N1—H1AN···Cl2iv0.902.683.525 (3)156.2
N3—H3BN···Cl1ii0.902.693.533 (3)156.1
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x1, y, z; (iii) x1, y+1/2, z+1/2; (iv) x+1, y, z.
 

Acknowledgements

This work was supported by funds for 2008 of Andong National University.

References

First citationChoi, J. H. (2000). Chem. Phys. 256, 29–35.  Web of Science CrossRef CAS Google Scholar
First citationChoi, J. H., Clegg, W., Nichol, G. S., Lee, S. H., Park, Y. C. & Habibi, M. H. (2007). Spectrochim. Acta A, 68, 796–801.  CrossRef Google Scholar
First citationChoi, J.-H., Suzuki, T. & Kaizaki, S. (2002). Acta Cryst. C58, m539–m541.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHouse, D. A. (1986). Inorg. Chem. 25, 1671–1674.  CrossRef CAS Web of Science Google Scholar
First citationPoon, C. K. & Pun, K. C. (1980). Inorg. Chem. 19, 568-569.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1996). STADI-4, X-RED and X-SHAPE. Stoe & Cie Gmbh, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds