organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(E)-(5-tert-Butyl-2-hy­droxy­phen­yl)­diazen­yl]benzoic acid

aDepartment of Chemistry, North-Eastern Hill University, NEHU Permanent Campus, Umshing, Shillong 793 022, India, and bDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA
*Correspondence e-mail: edward.tiekink@utsa.edu

(Received 10 October 2008; accepted 11 October 2008; online 18 October 2008)

The title compound, C17H18N2O3, is approximately planar, owing in part to an intra­molecular bifurcated O—H⋯(N,O) hydrogen bond; the dihedral angle between the two aromatic rings is 23.86 (9)°. In the crystal struture, centrosymmetrically related mol­ecules associate into dimers via the eight-membered carboxyl­ate {⋯H—O—C=O}2 synthon.

Related literature

For a related structure, see: Basu Baul et al. (2007[Basu Baul, T. S., Basu, S. & Tiekink, E. R. T. (2007). Acta Cryst. E63, o3358.]). For background, see: Willem et al. (1998[Willem, R., Verbruggen, I., Gielen, M., Biesemans, M., Mahieu, B., Basu Baul, T. S. & Tiekink, E. R. T. (1998). Organometallics, 17, 5758-5766.]). For reviews of organotin carboxyl­ates, see: Tiekink (1991[Tiekink, E. R. T. (1991). Appl. Organomet. Chem. 5, 1-23.]).

[Scheme 1]

Experimental

Crystal data
  • C17H18N2O3

  • Mr = 298.33

  • Monoclinic, P 21 /c

  • a = 5.9052 (19) Å

  • b = 10.872 (4) Å

  • c = 23.126 (8) Å

  • β = 94.432 (4)°

  • V = 1480.3 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 98 (2) K

  • 0.35 × 0.16 × 0.08 mm

Data collection
  • Rigaku Saturn724 diffractometer

  • Absorption correction: none

  • 8445 measured reflections

  • 3068 independent reflections

  • 2610 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.144

  • S = 1.12

  • 3068 reflections

  • 205 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯N1 0.84 1.86 2.587 (2) 144
O3—H3O⋯O1 0.84 2.26 2.894 (2) 132
O2—H2O⋯O1i 0.84 1.86 2.687 (2) 170
Symmetry code: (i) -x+2, -y+1, -z+1.

Data collection: CrystalClear (Rigaku Americas Corporation, 2005[Rigaku Americas Corporation (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

2-Aminobenzoic acid reacts with 4-tert-butyl-phenol to form the title compound (I), Fig. 1, which was prepared during an on-going study of the coordination chemistry of such molecules (Basu Baul et al., 2007) with organotin species (Tiekink, 1991; Willem et al., 1998). The molecule is approximately planar as seen in the value of the dihedral angle formed between the two aromatic residues of 23.86 (9)°. Small twists in the molecule are indicated by the N2–N1–C2–C3 and N1–N2–C8–C9 torsion angles of -18.1 (3) and -2.6 (3)°, respectively. The conformation is stabilized by intramolecular O—H···O and O—H···N hydrogen bonding interactions, Table 1. In the crystal packing, centrosymmetric molecules associate via the eight-membered carboxylate {···H—O—C=O}2 synthon.

Related literature top

For a related structure, see: Basu Baul et al. (2007). For background, see: Willem et al. (1998). For reviews of organotin carboxylates, see: Tiekink (1991).

Experimental top

2-Aminobenzoic acid (2.0 g, 14.58 mmol) was mixed with HCl (5 ml) and water (20 ml) and digested in a water bath for 1 h. The hydrochloride was cooled to 5 ° C and diazotized with ice-cold aqueous NaNO2 solution (1.1 g, 15.95 mmol, 10 ml). The cold diazonium salt solution was added slowly to 4-tert-butyl-phenol (2.19 g, 14.58 mmol), previously dissolved in a NaOH solution (4.0 g) in water (100 ml) under vigorous stirring. A deep-red colour developed almost immediately and stirring was continued for 1 h. The reaction mixture was kept overnight in a refrigerator followed by 2 h at room temperature and then acidified with acetic acid. The brown coloured precipitate was filtered, washed several times with water to remove soluble starting materials, and then dried in air. The dried mass was suspended in water, dissolved in dilute NaOH solution and filtered. The filtrate was collected, precipitated with dilute acetic acid and filtered. The orange-red precipitate was then washed thoroughly with water until the washings were neutral and dried in air. The dried precipitate was boiled in hot hexane, filtered and dried in vacuo. Several recrystallization of the precipitate from methanol yielded red plates of (I) (2.50 g, 40.3%), m.pt. 453–455 K. Elemental analysis, found: C 68.54, H 6.01, N 9.49%; C17H18N2O3 requires C 68.44, H 6.08, N 9.39%. IR (KBr, cm-1): 1699 ν(OCO)asym. 1H NMR (CDCl3, 400.13 MHz, see Fig. 1 for numbering scheme): δ H: 10.7 [br, 2H, OH & CO2H], 8.15 [d, 8 Hz, 1H, H6], 7.92 [d, 8 Hz, 1H, H3], 7.78 [d, 2.5 Hz, 1H, H13], 7.58 [t, 8 Hz, 1H, H4], 7.42 [t, 8 Hz, 1H, H5], 7.34 [dd, 2.5, 8 Hz, 1H, H11], 6.96 [d, 8 Hz, 1H, H10], 1.19 [s, 9H, CH3] p.p.m. 13C NMR (CDCl3, 100.62 MHz): δ C: 170.6 [CO2], 152.2 [C9], 149.8 [C2], 142.8 [C8], 137.9 [C11], 133.3 [C13], 132.7 [C4], 132.5 [C6], 130.3 [C5], 129.6 [C12'], 125.9 [C1], 119.0 [C10], 116.6 [C3], 34.4 [C14], 31.6 [CH3] p.p.m.

Refinement top

All C-bound H atoms were included in the riding-model approximation, with C—H = 0.95 to 0.98 Å, and with Uiso(H) = 1.2–1.5Ueq(C). The hydroxyl-H atom were located from a difference map and included so that O—H = 0.84 Å and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: CrystalClear (Rigaku Americas Corporation, 2005); cell refinement: CrystalClear (Rigaku Americas Corporation, 2005); data reduction: CrystalClear (Rigaku Americas Corporation, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level.
2-[(E)-(5-tert-butyl-2-hydroxyphenyl)diazenyl]benzoic acid top
Crystal data top
C17H18N2O3F(000) = 632
Mr = 298.33Dx = 1.339 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7951 reflections
a = 5.9052 (19) Åθ = 2.1–40.6°
b = 10.872 (4) ŵ = 0.09 mm1
c = 23.126 (8) ÅT = 98 K
β = 94.432 (4)°Prism, red
V = 1480.3 (9) Å30.35 × 0.16 × 0.08 mm
Z = 4
Data collection top
Rigaku Saturn724 (2x2 bin mode)
diffractometer
2610 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.065
Graphite monochromatorθmax = 26.5°, θmin = 2.6°
Detector resolution: 28.5714 pixels mm-1h = 77
dtprofit.ref scansk = 1310
8445 measured reflectionsl = 2827
3068 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0534P)2 + 0.6036P]
where P = (Fo2 + 2Fc2)/3
3068 reflections(Δ/σ)max < 0.001
205 parametersΔρmax = 0.24 e Å3
2 restraintsΔρmin = 0.31 e Å3
Crystal data top
C17H18N2O3V = 1480.3 (9) Å3
Mr = 298.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.9052 (19) ŵ = 0.09 mm1
b = 10.872 (4) ÅT = 98 K
c = 23.126 (8) Å0.35 × 0.16 × 0.08 mm
β = 94.432 (4)°
Data collection top
Rigaku Saturn724 (2x2 bin mode)
diffractometer
2610 reflections with I > 2σ(I)
8445 measured reflectionsRint = 0.065
3068 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0592 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 1.12Δρmax = 0.24 e Å3
3068 reflectionsΔρmin = 0.31 e Å3
205 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.8680 (2)0.51703 (14)0.43659 (6)0.0263 (3)
O20.7565 (3)0.39227 (16)0.50557 (6)0.0321 (4)
H2O0.86400.42740.52500.048*
O31.0671 (2)0.59362 (14)0.33194 (6)0.0246 (3)
H3O0.95990.55420.34510.037*
N10.7361 (2)0.43713 (16)0.32732 (6)0.0190 (3)
N20.7593 (2)0.40523 (16)0.27524 (6)0.0191 (4)
C10.5577 (3)0.37647 (19)0.41419 (8)0.0201 (4)
C20.5548 (3)0.37664 (18)0.35309 (8)0.0185 (4)
C30.3792 (3)0.31732 (19)0.32013 (8)0.0199 (4)
H30.37740.31770.27900.024*
C40.2083 (3)0.25820 (19)0.34670 (8)0.0218 (4)
H40.08920.21860.32380.026*
C50.2102 (3)0.2566 (2)0.40711 (8)0.0243 (4)
H50.09280.21570.42540.029*
C60.3842 (3)0.3148 (2)0.44028 (8)0.0237 (4)
H60.38570.31280.48140.028*
C70.7425 (3)0.43611 (19)0.45205 (7)0.0204 (4)
C80.9426 (3)0.46168 (18)0.25033 (7)0.0179 (4)
C91.0885 (3)0.55091 (18)0.27794 (7)0.0188 (4)
C101.2692 (3)0.59442 (19)0.24792 (8)0.0226 (4)
H101.36720.65590.26500.027*
C111.3068 (3)0.54898 (19)0.19368 (8)0.0218 (4)
H111.43150.58000.17450.026*
C121.1679 (3)0.45878 (19)0.16583 (8)0.0195 (4)
C130.9861 (3)0.41778 (19)0.19516 (7)0.0201 (4)
H130.88720.35770.17720.024*
C141.2258 (3)0.4010 (2)0.10821 (8)0.0221 (4)
C151.3827 (3)0.2902 (2)0.12276 (9)0.0285 (5)
H15A1.42240.25100.08670.043*
H15B1.30400.23060.14590.043*
H15C1.52130.31830.14490.043*
C161.3498 (4)0.4929 (2)0.07107 (9)0.0350 (5)
H16A1.38450.45330.03470.052*
H16B1.49130.51940.09240.052*
H16C1.25240.56460.06240.052*
C171.0117 (3)0.3565 (2)0.07259 (8)0.0300 (5)
H17A1.05440.31980.03630.045*
H17B0.90990.42630.06390.045*
H17C0.93410.29480.09480.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0322 (7)0.0266 (8)0.0198 (6)0.0063 (6)0.0008 (5)0.0028 (6)
O20.0389 (8)0.0371 (10)0.0193 (7)0.0135 (7)0.0048 (6)0.0059 (6)
O30.0284 (7)0.0242 (8)0.0218 (6)0.0050 (6)0.0052 (5)0.0054 (6)
N10.0187 (7)0.0213 (9)0.0171 (7)0.0019 (6)0.0024 (5)0.0007 (6)
N20.0185 (7)0.0208 (9)0.0181 (7)0.0017 (6)0.0029 (6)0.0004 (6)
C10.0215 (9)0.0184 (10)0.0208 (9)0.0024 (7)0.0033 (7)0.0002 (7)
C20.0187 (8)0.0165 (9)0.0207 (8)0.0032 (7)0.0045 (6)0.0008 (7)
C30.0208 (8)0.0192 (10)0.0200 (8)0.0044 (7)0.0031 (7)0.0011 (7)
C40.0182 (8)0.0196 (10)0.0274 (9)0.0014 (7)0.0009 (7)0.0014 (8)
C50.0222 (9)0.0263 (11)0.0252 (9)0.0010 (8)0.0067 (7)0.0047 (8)
C60.0283 (9)0.0244 (11)0.0185 (8)0.0016 (8)0.0034 (7)0.0005 (8)
C70.0240 (9)0.0210 (10)0.0166 (8)0.0024 (8)0.0041 (7)0.0001 (7)
C80.0173 (8)0.0188 (10)0.0177 (8)0.0006 (7)0.0021 (6)0.0011 (7)
C90.0217 (8)0.0152 (9)0.0194 (8)0.0016 (7)0.0010 (6)0.0010 (7)
C100.0240 (9)0.0184 (10)0.0254 (9)0.0033 (7)0.0018 (7)0.0003 (8)
C110.0203 (8)0.0201 (10)0.0256 (9)0.0014 (7)0.0050 (7)0.0043 (8)
C120.0200 (8)0.0187 (10)0.0199 (8)0.0019 (7)0.0025 (6)0.0021 (7)
C130.0198 (8)0.0215 (10)0.0189 (8)0.0016 (7)0.0006 (7)0.0011 (7)
C140.0212 (9)0.0260 (11)0.0197 (9)0.0016 (8)0.0060 (7)0.0003 (8)
C150.0262 (9)0.0303 (12)0.0292 (10)0.0024 (8)0.0040 (8)0.0069 (9)
C160.0397 (12)0.0378 (14)0.0295 (10)0.0080 (10)0.0157 (9)0.0012 (10)
C170.0250 (9)0.0468 (15)0.0185 (9)0.0007 (9)0.0039 (7)0.0049 (9)
Geometric parameters (Å, º) top
O1—C71.221 (2)C9—C101.400 (3)
O2—C71.323 (2)C10—C111.382 (3)
O2—H2O0.84C10—H100.9500
O3—C91.348 (2)C11—C121.403 (3)
O3—H3O0.84C11—H110.9500
N1—N21.271 (2)C12—C131.387 (2)
N1—C21.426 (2)C12—C141.536 (3)
N2—C81.406 (2)C13—H130.9500
C1—C61.400 (3)C14—C171.533 (3)
C1—C21.412 (2)C14—C161.539 (3)
C1—C71.494 (3)C14—C151.541 (3)
C2—C31.396 (3)C15—H15A0.9800
C3—C41.380 (3)C15—H15B0.9800
C3—H30.9500C15—H15C0.9800
C4—C51.396 (3)C16—H16A0.9800
C4—H40.9500C16—H16B0.9800
C5—C61.387 (3)C16—H16C0.9800
C5—H50.9500C17—H17A0.9800
C6—H60.9500C17—H17B0.9800
C8—C131.404 (2)C17—H17C0.9800
C8—C91.417 (3)
C7—O2—H2O109.0C10—C11—C12122.50 (17)
C9—O3—H3O106.6C10—C11—H11118.7
N2—N1—C2114.19 (16)C12—C11—H11118.7
N1—N2—C8114.34 (15)C13—C12—C11116.58 (17)
C6—C1—C2118.67 (17)C13—C12—C14121.71 (17)
C6—C1—C7118.77 (16)C11—C12—C14121.52 (16)
C2—C1—C7122.54 (16)C12—C13—C8122.54 (17)
C3—C2—C1119.78 (17)C12—C13—H13118.7
C3—C2—N1122.33 (16)C8—C13—H13118.7
C1—C2—N1117.88 (16)C17—C14—C12111.46 (15)
C4—C3—C2120.65 (17)C17—C14—C16108.24 (17)
C4—C3—H3119.7C12—C14—C16111.47 (17)
C2—C3—H3119.7C17—C14—C15109.10 (18)
C3—C4—C5120.12 (17)C12—C14—C15107.52 (15)
C3—C4—H4119.9C16—C14—C15109.01 (17)
C5—C4—H4119.9C14—C15—H15A109.5
C6—C5—C4119.72 (18)C14—C15—H15B109.5
C6—C5—H5120.1H15A—C15—H15B109.5
C4—C5—H5120.1C14—C15—H15C109.5
C5—C6—C1121.06 (17)H15A—C15—H15C109.5
C5—C6—H6119.5H15B—C15—H15C109.5
C1—C6—H6119.5C14—C16—H16A109.5
O1—C7—O2122.55 (17)C14—C16—H16B109.5
O1—C7—C1124.99 (16)H16A—C16—H16B109.5
O2—C7—C1112.46 (17)C14—C16—H16C109.5
C13—C8—N2115.13 (16)H16A—C16—H16C109.5
C13—C8—C9119.64 (16)H16B—C16—H16C109.5
N2—C8—C9125.11 (16)C14—C17—H17A109.5
O3—C9—C10118.24 (17)C14—C17—H17B109.5
O3—C9—C8123.79 (16)H17A—C17—H17B109.5
C10—C9—C8117.94 (17)C14—C17—H17C109.5
C11—C10—C9120.77 (18)H17A—C17—H17C109.5
C11—C10—H10119.6H17B—C17—H17C109.5
C9—C10—H10119.6
C2—N1—N2—C8178.01 (15)C13—C8—C9—O3176.45 (17)
C6—C1—C2—C30.8 (3)N2—C8—C9—O30.7 (3)
C7—C1—C2—C3178.85 (18)C13—C8—C9—C101.6 (3)
C6—C1—C2—N1178.37 (17)N2—C8—C9—C10177.41 (17)
C7—C1—C2—N10.4 (3)O3—C9—C10—C11176.50 (17)
N2—N1—C2—C318.1 (3)C8—C9—C10—C111.7 (3)
N2—N1—C2—C1161.07 (17)C9—C10—C11—C120.4 (3)
C1—C2—C3—C40.1 (3)C10—C11—C12—C131.0 (3)
N1—C2—C3—C4179.05 (17)C10—C11—C12—C14174.16 (18)
C2—C3—C4—C50.4 (3)C11—C12—C13—C81.0 (3)
C3—C4—C5—C60.1 (3)C14—C12—C13—C8174.10 (17)
C4—C5—C6—C10.6 (3)N2—C8—C13—C12176.47 (17)
C2—C1—C6—C51.1 (3)C9—C8—C13—C120.3 (3)
C7—C1—C6—C5179.17 (18)C13—C12—C14—C1732.4 (3)
C6—C1—C7—O1160.29 (19)C11—C12—C14—C17152.69 (19)
C2—C1—C7—O121.7 (3)C13—C12—C14—C16153.50 (18)
C6—C1—C7—O219.2 (3)C11—C12—C14—C1631.6 (3)
C2—C1—C7—O2158.82 (18)C13—C12—C14—C1587.1 (2)
N1—N2—C8—C13173.37 (16)C11—C12—C14—C1587.8 (2)
N1—N2—C8—C92.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···N10.841.862.587 (2)144
O3—H3O···O10.842.262.894 (2)132
O2—H2O···O1i0.841.862.687 (2)170
Symmetry code: (i) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC17H18N2O3
Mr298.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)98
a, b, c (Å)5.9052 (19), 10.872 (4), 23.126 (8)
β (°) 94.432 (4)
V3)1480.3 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.35 × 0.16 × 0.08
Data collection
DiffractometerRigaku Saturn724 (2x2 bin mode)
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8445, 3068, 2610
Rint0.065
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.144, 1.12
No. of reflections3068
No. of parameters205
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.31

Computer programs: CrystalClear (Rigaku Americas Corporation, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···N10.841.862.587 (2)144
O3—H3O···O10.842.262.894 (2)132
O2—H2O···O1i0.841.862.687 (2)170
Symmetry code: (i) x+2, y+1, z+1.
 

Footnotes

Additional correspondence author, e-mail: basubaul@nehu.ac.in.

Acknowledgements

The financial support of the Department of Science and Technology, New Delhi, India (grant No. SR/S1/IC-03/2005 to TSBB), is gratefully acknowledged.

References

First citationBasu Baul, T. S., Basu, S. & Tiekink, E. R. T. (2007). Acta Cryst. E63, o3358.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationRigaku Americas Corporation (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTiekink, E. R. T. (1991). Appl. Organomet. Chem. 5, 1–23.  CrossRef CAS Web of Science Google Scholar
First citationWillem, R., Verbruggen, I., Gielen, M., Biesemans, M., Mahieu, B., Basu Baul, T. S. & Tiekink, E. R. T. (1998). Organometallics, 17, 5758–5766.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds